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ABSTRACT:
Classical acoustic wave-field representations consist of volume and boundary integrals, of which the integrands con-

tain specific combinations of Green’s functions, source distributions, and wave fields. Using a unified matrix-vector

wave equation for different wave phenomena, these representations can be reformulated in terms of Green’s matri-

ces, source vectors, and wave-field vectors. The matrix-vector formalism also allows the formulation of representa-

tions in which propagator matrices replace the Green’s matrices. These propagator matrices, in turn, can be

expressed in terms of Marchenko-type focusing functions. An advantage of the representations with propagator

matrices and focusing functions is that the boundary integrals in these representations are limited to a single open

boundary. This makes these representations a suitable basis for developing advanced inverse scattering, imaging and

monitoring methods for wave fields acquired on a single boundary.
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I. INTRODUCTION

The aim of this paper is to give a systematic treatment

of different types of wave-field representations (with

Green’s functions, propagator matrices, and Marchenko-

type focusing functions), discuss their mutual relations, and

indicate some new applications.

• Representations with Green’s functions. A Green’s func-

tion is the response of a medium to an impulsive point

source. It is named after George Green, who, in a pri-

vately published essay,1 introduced the use of impulse

responses in field representations.2 Wave-field representa-

tions with Green’s functions have been formulated,

among others, for optics,3 acoustics,4,5 elastodynamics,6–9

and electromagnetics.10–12 They find numerous applica-

tions in forward modeling problems,13–15 inverse source

problems,12,16 inverse scattering problems,5,17–19 imag-

ing,20–25 time-reversal acoustics,26 and Green’s function

retrieval from ambient noise.27–29

• Representations with propagator matrices. In elastody-

namic wave theory, a matrix formalism has been intro-

duced to describe the propagation of waves in laterally

invariant layered media.30,31 This formalism was refined

by Gilbert and Backus,32 who coined the name propaga-

tor matrix. In essence, a propagator matrix “propagates”

a wave field (represented as a vectorial quantity) from

one plane in space to another. Using perturbation theory,

the connection between wave-field representations with

Green’s functions and the propagator matrix formalism

was discussed.33 The propagator matrix has been

extended for laterally varying isotropic and anisotropic

layered media.34,35 Propagation invariants for laterally

varying layered media have been introduced, and the

propagator matrix concept has been proposed for the

modeling of reflection and transmission responses.36–39

The propagator matrix has also been used in a seismic

imaging method, which accounts for multiple scattering

in a model-driven way.40

• Representations with Marchenko-type focusing func-

tions. Building on a one-dimensional (1D) acoustic

autofocusing method, it has been shown that the wave

field inside a laterally invariant layered medium can be

retrieved with the Marchenko method from the single-

sided reflection response at the surface of the

medium.41–43 This concept was extended to a three-

dimensional (3D) Marchenko wave-field retrieval

method for laterally varying media.44 Central in the 3D

Marchenko method are wave-field representations con-

taining focusing functions. These representations have

found applications in imaging methods45–47 and inverse

source problems,48 which account for multiple scatter-

ing in a data-driven way.

The setup of this paper is as follows. In Sec. II, we briefly

review the matrix-vector wave equation for laterally varying

media,34,35 generalized for different wave phenomena, and we

briefly discuss the concept of the Green’s matrix, propagator

matrix, and Marchenko-type focusing function. The symmetry

properties of the matrix-vector wave equation allow the for-

mulation of unified matrix-vector wave-field reciprocity
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theorems,49,50 which are reviewed in Sec. III. These reciproc-

ity theorems form the basis for a systematic treatment of the

different types of wave-field representations mentioned above.

Traditionally, a wave-field representation is obtained by

replacing one of the states in a reciprocity theorem by a

Green’s state. In Sec. IV, we follow this approach for the

matrix-vector reciprocity theorems. By replacing one of the

wave-field vectors by the Green’s matrix (and the source

vector by a unit source matrix), we obtain wave-field repre-

sentations with Green’s matrices. Analogous to this, in

Sec. V, we replace one of the wave-field vectors in the reci-

procity theorems by the propagator matrix and, thus, obtain

wave-field representations with propagator matrices. In

Sec. VI, we discuss a mixed form, obtained by replacing one

of the wave-field vectors by the Green’s matrix and the other

by the propagator matrix. In Sec. VII, we discuss the rela-

tion between the propagator matrix and Marchenko-type

focusing functions and use this relation to derive wave-field

representations with focusing functions. We end with con-

clusions in Sec. VIII.

II. THE UNIFIED MATRIX-VECTOR WAVE EQUATION,
GREEN’S MATRIX, PROPAGATOR MATRIX, AND
FOCUSING FUNCTION

A. The matrix-vector wave equation

We use a unified matrix-vector wave equation as the

basis for the derivations in this paper. In the space-

frequency domain, it has the following form:32–36

@3q�A q ¼ d; (1)

with

q ¼
q1

q2

 !
; d ¼

d1

d2

 !
; A ¼

A11 A12

A21 A22

 !
: (2)

Here, qðx;xÞ is a space- and frequency-dependent N � 1

wave-field vector, where x denotes the Cartesian coordinate

vector ðx1; x2; x3Þ (with the positive x3-axis pointing down-

ward) and x is the angular frequency. The N=2� 1

sub-vectors, q1ðx;xÞ and q2ðx;xÞ, contain wave-field

quantities, which are specified for different wave phenom-

ena in Table I. Operator @3 stands for the differential

operator @=@x3. Matrix Aðx;xÞ is an N�N operator

matrix; it contains the space- and frequency-dependent

anisotropic medium parameters and horizontal differential

operators @1 and @2. The definitions of this operator matrix

for different wave phenomena can be found in many of the

references mentioned in Sec. I. The N � 1 vector dðx;xÞ
contains the space- and frequency-dependent source func-

tions. A comprehensive overview of the operator matrices

and source vectors for the wave phenomena considered in

Table I (with some minor modifications) is given in

Ref. 51.

For the wave phenomena considered in Table I, the

operator matrixA obeys the symmetry properties

At
N ¼ �NA; (3)

A†
K ¼ �K �A ; (4)

A�J ¼ J �A ; (5)

with

N ¼
O I

�I O

 !
; K ¼

O I

I O

 !
; J ¼

I O

O �I

 !
;

(6)

where O and I are the N=2� N=2 zero and identity matri-

ces, respectively. The superscript t denotes transposition

(meaning that the matrix is transposed and the operators in

the matrix are also transposed with @t
1 ¼ �@1 and

@t
2 ¼ �@2), The “�” denotes complex conjugation, and “†”

denotes transposition and complex conjugation. In general,

the medium parameters in A are complex valued and fre-

quency dependent, accounting for losses. The bar above a

quantity means that this quantity is defined in the adjoint

medium. Hence, if A is defined in a lossy medium, then �A
is defined in an effectual medium and vice versa52 (a wave

propagating through an effectual medium gains energy). For

lossless media, the bar can be dropped. For the wave phe-

nomena considered in Table I, the power-flux density j in

the x3-direction is related to the sub-vectors q1 and q2

according to

TABLE I. The wave-field sub-vectors q1ðx;xÞ and q2ðx;xÞ for the differ-

ent wave phenomena. For acoustic waves in stationary fluids, p and v3 stand

for the acoustic pressure and the vertical component of the particle velocity,

respectively. For electromagnetic waves, Ea and Ha (a ¼ 1; 2) are the hori-

zontal components of the electric and magnetic field strength, respectively.

For elastodynamic waves, vk and sk3 (k ¼ 1,2,3) are the particle velocity

and traction components, respectively. The same quantities appear in the

vectors for the other wave phenomena, where, for poroelastodynamic and

seismoelectric waves, the quantities are averaged in the bulk, fluid, or solid

as indicated by the superscripts b, f, and s, respectively. Finally, / denotes

the porosity.

N q1 q2

Acoustic 2 p v3

Electromagnetic 4
E0 ¼

E1

E2

 !
H0 ¼

H2

�H1

 !
Elastodynamic 6

v ¼
v1

v2

v3

0
B@

1
CA �s3 ¼ �

s13

s23

s33

0
B@

1
CA

Poroelastodynamic 8 vs

/ðvf
3 � vs

3Þ

 !
�sb

3

pf

 !
Piezoelectric 10 v

H0

 !
�s3

E0

 !
Seismoelectric 12 vs

/ðvf
3 � vs

3Þ
H0

0
B@

1
CA �sb

3

pf

E0

0
B@

1
CA

588 J. Acoust. Soc. Am. 151 (1), January 2022 Kees Wapenaar

https://doi.org/10.1121/10.0009236

https://doi.org/10.1121/10.0009236


j ¼ 1

4
ðq†

1q2 þ q
†
2q1Þ: (7)

As a special case, we consider acoustic waves in an

inhomogeneous stationary medium with complex-valued

and frequency-dependent compressibility jðx;xÞ and mass

density qklðx;xÞ. The latter is defined as a tensor to account

for effective anisotropy, for example, as a result of fine

layering at the micro scale.53 The mass density tensor is

symmetric, that is, qklðx;xÞ ¼ qlkðx;xÞ. We introduce the

inverse of the mass density tensor, the specific volume ten-

sor #klðx;xÞ, via #klqlm ¼ dkm. Einstein’s summation con-

vention holds for repeated subscripts (unless otherwise

noted); Latin subscripts run from 1 to 3 and Greek subscripts

run from 1 to 2. For the acoustic situation, the vectors and

matrix in Eq. (1) are given by

q ¼
p

v3

 !
; d ¼

#�1
33 #3lfl

1

ix
@aðbabfbÞ þ q

0
B@

1
CA; (8)

A ¼
�#�1

33 #3b@b ix#�1
33

ixj� 1

ix
@abab@b �@a#a3#

�1
33

0
B@

1
CA; (9)

with

bab ¼ #ab � #a3#
�1
33 #3b; (10)

where i is the imaginary unit and qðx;xÞ and flðx;xÞ are

sources in terms of the volume-injection rate density and

external force density, respectively.

Finally, for an isotropic medium, using #kl ¼ q�1dkl

(where q is the scalar mass density), we obtain for the

source vector and operator matrix54–58

d¼
f3

1

ix
@a

1

q
fa

� �
þ q

0
B@

1
CA; A ¼ 0 ixq

ixj� 1

ix
@a

1

q
@a 0

0
B@

1
CA:

(11)

B. The Green’s matrix

In the space-time domain, a Green’s function is the

response to an impulsive point source with the impulse

defined as dðtÞ. The Fourier transform of dðtÞ equals one;

hence, in the space-frequency domain, the Green’s function

is the response to a point source with unit amplitude for all

frequencies. We introduce the N�N Green’s matrix

Gðx; xA;xÞ for an unbounded, arbitrary inhomogeneous,

anisotropic medium as the solution of

@3G�AG ¼ Idðx� xAÞ; (12)

where xA ¼ ðx1;A; x2;A; x3;AÞ defines the position of the point

source, and I is an N�N identity matrix. Here, I has a size

that is different from that in Eq. (6). For simplicity, we use

one notation for differently sized identity matrices (the size

always follows from the context). Also, for the zero matrix

O, we use a single notation for differently sized matrices.

Similar to the operator matrix A, the Green’s matrix is par-

titioned as

Gðx; xA;xÞ ¼
G11 G12

G21 G22

 !
ðx; xA;xÞ: (13)

Equation (12) does not have a unique solution. To specify a

unique solution, we demand that the time-domain Green’s

function Gðx; xA; tÞ is causal, hence,

Gðx; xA; t < 0Þ ¼ O: (14)

This condition implies that G is outward propagating for

jx� xAj ! 1.

The simplest representation involving the Green’s

matrix is obtained when q and G reside in the same medium

throughout space and both are outward propagating for

jx� xAj ! 1. Whereas qðx;xÞ is the response to a source

distribution dðx;xÞ [Eq. (1)], Gðx; xA;xÞ is the response to

a point source Idðx� xAÞ for an arbitray source position xA

[Eq. (12)]. Because Eq. (1) and (12) are linear, a representa-

tion for qðx;xÞ follows by applying the superposition prin-

ciple, according to

qðx;xÞ ¼
ð

R3
Gðx; xA;xÞdðxA;xÞd3xA; (15)

where R is the set of real numbers. This representation is a

special case of the more general representations with the

Green’s matrices, which are derived in a more formal way

in Sec. IV.

Next, we discuss the 2� 2 acoustic Green’s matrix as a

special case of the N�N Green’s matrix. For this situation,

G is partitioned as

Gðx; xA;xÞ ¼
Gp;f Gp;q

Gv;f Gv;q

 !
ðx; xA;xÞ: (16)

Here, the first superscript (p or v) refers to the observed wave-

field quantity at x (the acoustic pressure or vertical component

of the particle velocity), whereas the second superscript ( f or q)

refers to the source type at xA (the vertical component of the

force or volume-injection rate). The unit of a specific element

of the Green’s matrix is the ratio of the units of the observed

wave-field quantity at x and the source quantity at xA. For

example, ½Gp; f ðx; xA;xÞ� ¼ ½p�=½ f � ¼ m�2. For an isotropic

medium, all elements can be expressed in terms of the upper-

right element as

Gv;qðx; xA;xÞ ¼
1

ixqðx;xÞ @3Gp;qðx; xA;xÞ; (17)

Gp;f ðx; xA;xÞ ¼ �
1

ixqðxA;xÞ
@3;AGp;qðx; xA;xÞ; (18)
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Gv;f ðx; xA;xÞ ¼
1

ixqðx;xÞ

�
@3Gp;f ðx; xA;xÞ

� dðx� xAÞ
�
: (19)

Here, @3;A stands for the differentiation with respect to the

source coordinate x3;A. Equations (17) and (19) follow

directly from Eqs. (11), (12), and (16). Equation (18) fol-

lows from Eq. (17) and a source-receiver reciprocity rela-

tion, which is derived in Sec. IV A.

We illustrate Gp;q, decomposed into plane waves, for a

horizontally layered lossless isotropic medium. To this end,

we first define the spatial Fourier transform of a space- and

frequency-dependent function uðx;xÞ along the horizontal

coordinates xH ¼ ðx1; x2Þ according to

~uðs; x3;xÞ ¼
ð

R2
exp f�ixs � xHguðxH; x3;xÞd2xH; (20)

where s ¼ ðs1; s2Þ, and s1 and s2 are the horizontal slow-

nesses. This transform decomposes function uðx;xÞ at a

given depth level x3 into monochromatic plane wave com-

ponents. Next, we define the inverse temporal Fourier trans-

form per slowness value s as

uðs; x3; sÞ ¼
1

p
<
ð1

0

~uðs; x3;xÞ exp �ixsf gdx; (21)

where < denotes the real part and s is the intercept time.59

We apply these transforms to the Green’s function

Gp;qðx; xA;xÞ and source function dðx� xAÞ, choosing

xA ¼ ð0; 0; x3;0Þ and setting s2 ¼ 0 (the field is cylindrically

symmetric in the considered horizontally layered isotropic

medium). We, thus, obtain Gp;qðs1; x3; x3;0; sÞ, which is the

plane wave response (as a function of x3 and s) to a source

function dðx3 � x3;0ÞdðsÞ.
An example of a horizontally layered medium is shown

in Fig. 1(a). The propagation velocities in the layers are

indicated by cn (with c ¼ 1=
ffiffiffiffiffiffi
jq
p

). The depth level of the

source is chosen as x3;0 ¼ 0 m; see Fig. 1(b). The vertical

green line in Fig. 1 is the line s ¼ 0, left of which the field is

zero due to the causality condition [similar to that in Eq.

(14)]. Figure 1(b) further shows the numerically modelled

Green’s function Gp;qðs1; x3; x3;0; sÞ as a function of x3 and s
for a single horizontal slowness s1 ¼ 1=3500 s/m (the red

and blue arrows indicate the downgoing and upgoing waves,

respectively). This is the wave field that would be measured

by a series of acoustic pressure receivers, vertically above

and below the volume-injection rate source at x3;0 ¼ 0 m.

Each trace shows Gp;qðs1; x3; x3;0; sÞ for a specific depth x3

as a function of s (actually, at each depth, the Green’s func-

tion has been convolved with a time-symmetric wavelet

with a central frequency of 50 Hz to get a nicer display).

The horizontal slowness s1 is related to the propagation

angle an in layer n via sin an ¼ s1cn, hence, in layer 1 (with

c1 ¼ 1600 m/s), the propagation angle is a1 ¼ 27:2�. In the

thin layer, with c3 ¼ 3600 m/s, we obtain sin a3 ¼ 1:03,

meaning that a3 is complex valued. This implies that the

wave is evanescent in this layer. Because the layer is thin, the

wave tunnels through the layer and continues with a lower

amplitude as a downgoing wave in the lower half-space.

C. The homogeneous Green’s matrix

For a lossless medium, a homogeneous Green’s func-

tion is the superposition of a Green’s function and its com-

plex conjugate (or, in the time domain, its time-reversed

version). The superposition is chosen such that the source

terms of the two functions cancel each other, hence, a homo-

geneous Green’s function obeys a wave equation without a

source term.19,20 Here, we extend this concept for the

matrix-vector wave equation for a medium with losses.

Let Gðx; xA;xÞ be, again, the outward propagating

solution of Eq. (12) for an unbounded, arbitrary inhomoge-

neous, anisotropic medium. We introduce the Green’s

matrix of the adjoint medium, �Gðx; xA;xÞ, as the outward

propagating solution of

@3
�G � �A �G ¼ Idðx� xAÞ: (22)

Pre- and post-multiplying all terms by J and, subsequently,

using Eq. (5) and JJ ¼ I gives

@3J �GJ�A�J �GJ ¼ Idðx� xAÞ: (23)

FIG. 1. (Color online) The (a) horizontally layered medium and (b) Green’s

function Gp;qðs1; x3; x3;0; sÞ (fixed s1), convolved with a wavelet, are shown.
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Subtracting the complex conjugate of all terms in Eq. (23)

from the corresponding terms in Eq. (12) yields

@3Gh �AGh ¼ O; (24)

with

Ghðx; xA;xÞ ¼ Gðx; xA;xÞ � J �G
�ðx; xA;xÞJ: (25)

Because Ghðx; xA;xÞ obeys a wave equation without a

source term, we call it the homogeneous Green’s matrix.

According to Eqs. (6), (13), and (25), it is partitioned as

Ghðx;xA;xÞ

¼ fG11 � �G
�
11g fG12 þ �G

�
12g

fG21 þ �G
�
21g fG22 � �G

�
22g

 !
ðx;xA;xÞ: (26)

D. The propagator matrix

We introduce the N�N propagator matrix Wðx; xA;xÞ
for an arbitrary inhomogeneous anisotropic medium as the

solution of the unified matrix-vector wave equation (1) but

without the source vector d. Hence,

@3W�AW ¼ O: (27)

Similar to the operator matrix A and Green’s matrix G, the

propagator matrix is partitioned as

Wðx; xA;xÞ ¼
W11 W12

W21 W22

 !
ðx; xA;xÞ: (28)

Equation (27) does not have a unique solution. To specify a

unique solution, we impose the boundary condition

Wðx; xA;xÞjx3¼x3;A
¼ IdðxH � xH;AÞ; (29)

where xH;A denotes the horizontal coordinates of xA, hence,

xH;A ¼ ðx1;A; x2;AÞ. Because Eq. (27) is first order in @3, a

single boundary condition suffices. Note that Wðx; xA;xÞ
only depends on the medium parameters between the depth

levels x3;A and x3. This is different from the Green’s matrix

Gðx; xA;xÞ, which, for an arbitrary inhomogeneous

medium, depends on the entire medium [this is easily under-

stood from the illustration in Fig. 1(b)].

The simplest representation involving the propagator

matrix is obtained when q and W reside in the same medium

in the region between x3;A and x3 and both have no sources

in this region. Whereas qðx;xÞ obeys no boundary condi-

tions in this region, Wðx; xA;xÞ collapses to IdðxH � xH;AÞ
at the depth level x3;A [Eq. (29)]. Applying the superposition

principle again yields

qðx;xÞ ¼
ð
@DA

Wðx; xA;xÞqðxA;xÞd2xA; (30)

where @DA is the horizontal boundary defined as

x3 ¼ x3;A.32–36 Note that Wðx; xA;xÞ propagates the field

vector q from the depth level x3;A to x3, hence, the name

“propagator matrix.” This representation is a special case of

the more general representations with the propagator matri-

ces, which are derived in a more formal way in Sec. V.

When we replace qðxA;xÞ by a Green’s matrix

GðxA; xB;xÞ with xB outside the region between x3;A and x3,

we obtain

Gðx; xB;xÞ ¼
ð
@DA

Wðx; xA;xÞGðxA; xB;xÞd2xA: (31)

This is the simplest relation between the Green’s matrix and

propagator matrix. It is a special case of the more general

representations with the Green’s matrices and propagator

matrices, which are derived in a more formal way in Sec.

VI A. Alternatively, we may replace Gðx; xB;xÞ by the

homogeneous Green’s matrix Ghðx; xB;xÞ, where xB may

be located anywhere because the homogeneous Green’s

matrix has no source at xB, hence,

Ghðx; xB;xÞ ¼
ð
@DA

Wðx; xA;xÞGhðxA; xB;xÞd2xA: (32)

This relation will be derived in a more formal way in

Sec. VI B.

Next, we discuss the 2� 2 acoustic propagator matrix

as a special case of the N�N propagator matrix. For this sit-

uation, W is partitioned as

Wðx; xA;xÞ ¼
Wp;p Wp;v

Wv;p Wv;v

 !
ðx; xA;xÞ: (33)

The first and second superscripts refer to the wave-field

quantities at x and xA, respectively (where the superscript p,

again, stands for the acoustic pressure and v is the vertical

component of the particle velocity). The unit of a specific

element of the propagator matrix is the ratio of the units of

the wave-field quantities at x and xA. For example,

½Wp;vðx; xA;xÞ� ¼ ½p�=½v� ¼ kg s�1 m�2. For an isotropic

medium, the elements can be expressed in terms of the

upper-right element as

Wv;vðx; xA;xÞ ¼
1

ixqðx;xÞ @3Wp;vðx; xA;xÞ; (34)

Wp;pðx;xA;xÞ ¼ �
1

ixqðxA;xÞ
@3;AWp;vðx;xA;xÞ; (35)

Wv;pðx; xA;xÞ ¼
1

ixqðx;xÞ @3Wp;pðx; xA;xÞ: (36)

Equations (34) and (36) follow directly from Eqs. (11), (27),

and (33). Equation (35) follows from Eq. (34) and a source-

receiver reciprocity relation, which is derived in Sec. V A.

We illustrate the elements Wp;p and Wp;v, decomposed

into plane waves, for the horizontally layered medium of

Fig. 1(a). We choose, again, xA ¼ ð0; 0; x3;0Þ and set s2 ¼ 0.

Usually, the propagator matrix is considered in the
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frequency domain, but to facilitate the comparison with

the Green’s function in Fig. 1(b), we consider the time-

domain functions Wp;pðs1; x3; x3;0; sÞ and Wp;vðs1; x3; x3;0; sÞ
[obtained via the transforms of Eqs. (20) and (21)], once

more, for a single horizontal slowness s1 ¼ 1=3500 s/m; see

Figs. 2(a) and 3(a). At x3 ¼ x3;0 (the horizontal green lines

in Figs. 2(a) and 3(a)), the boundary conditions for these

functions are Wp;pðs1; x3;0; x3;0; sÞ ¼ dðsÞ and Wp;vðs1; x3;0;
x3;0; sÞ ¼ 0, respectively [this follows from applying the

transforms of Eqs. (20) and (21) to Eq. (29), with

xH;A ¼ ð0; 0Þ]. Following these functions along the depth

coordinate, starting at x3 ¼ x3;0, we observe an acausal

upgoing wave and a causal downgoing wave until we reach

the first interface. Here, both events split into upgoing and

downgoing waves below the interface. The waves tunnel

through the high-velocity layer, split again, and continue

with higher amplitudes in the next layer. This illustrates that

the evanescent waves may lead to unstable behaviour of the

propagator matrix and should be handled with care. Note

that Wp;pðs1; x3; x3;0; sÞ and Wp;vðs1; x3; x3;0; sÞ are symmetric

and asymmetric in time, respectively. This is best seen in

Figs. 2(b) and 3(b), which show the last traces of both ele-

ments. The same holds for elements Wv;v and Wv;p, which

are not shown.

E. The Marchenko-type focusing function

For an arbitrary inhomogeneous anisotropic medium,

the time-domain version of boundary condition (29) reads

Wðx; xA; tÞjx3¼x3;A
¼ IdðxH � xH;AÞdðtÞ: (37)

This boundary condition has a form similar to the focusing

condition for the focusing functions appearing in the multi-

dimensional Marchenko method.44 In Sec. VII A, we discuss

the general relations between the propagator matrix and

Marchenko-type focusing functions. Here, we present a

short preview of these relations by considering the acoustic

propagator matrix in the horizontally layered lossless isotro-

pic medium of Fig. 1(a). We combine the elements Wp;p and

Wp;v, decomposed into plane waves (Figs. 2 and 3), as60

Fpðs1; x3; x3;0; sÞ ¼ Wp;pðs1; x3; x3;0; sÞ

� s3;0

q0

Wp;vðs1; x3; x3;0; sÞ; (38)

where the vertical slowness s3;0 is defined as

s3;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=c2

0 � s2
1

q
; (39)

where c0 and q0 are the propagation velocity and mass den-

sity of the upper half-space x3 � x3;0, respectively. Due to

the symmetric form of Wp;p and the asymmetric form of

Wp;v, half of the events double in amplitude and the other

half of the events cancel. The result is shown in Fig. 4. For

the interpretation of this focusing function, we start at the

bottom of Fig. 4(a). The blue arrows indicate the upgoing

waves, which are tuned such that after the interaction with

the tunneling waves in the thin layer and downgoing wave

just above the thin layer (indicated by a red arrow), they

continue as a single upgoing wave, which finally focuses at

FIG. 2. (Color online) The (a) propagator element Wp;pðs1; x3; x3;0; sÞ (fixed

s1), convolved with a wavelet, and (b) last trace of (a) are shown.

FIG. 3. (Color online) The (a) propagator element Wp;vðs1; x3; x3;0; sÞ (fixed

s1), convolved with a wavelet, and (b) last trace of (a) are shown.
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the depth level x3;0 as a temporal delta function dðsÞ and

continues as an upgoing wave into the homogeneous upper

half-space.

Note that, although we interpret the focusing function here

in terms of upgoing and downgoing waves, it is derived from

the propagator matrix (which does not rely on up/down decom-

position), vertical slowness s3;0, and the mass density q0 of the

upper half-space. Moreover, the focusing function is defined in

the actual medium rather than in a truncated version of the

actual medium as is usually the case for the Marchenko-type

focusing functions.44 Hence, the only assumption is that a real-

valued vertical slowness s3;0 exists in the upper half-space.

Other than that, the focusing function Fpðs1; x3; x3;0; sÞ, as

defined in Eq. (38), does not require a truncated medium, does

not rely on up/down decomposition inside the medium, and

does (at least in principle) not break down when the waves

become evanescent inside the medium. These properties also

hold for the more general version of the Marchenko-type focus-

ing functions defined in Sec. VII.

III. UNIFIED MATRIX-VECTOR WAVE-FIELD
RECIPROCITY THEOREMS

As the basis for the derivation of the general representa-

tions with Green’s matrices (Sec. IV), propagator matrices

(Sec. V), or a combination thereof (Sec. VI), we introduce

unified matrix-vector wave-field reciprocity theorems. In

general, a wave-field reciprocity theorem interrelates two

wave states (sources, wave fields, and medium parameters)

in the same spatial domain.12 The reciprocity theorems have

been formulated for acoustic,4 electromagnetic,61

elastodynamic,62,63 poroelastodynamic,64 piezoelectric,65,66

and seismoelectric waves.67 The matrix-vector equation,

discussed in Sec. II, allows a unified formulation of the reci-

procity theorems for these different wave phenomena,49,50

which extends the theory of the propagation invari-

ants.36–39 Using the symmetry properties of operator

matrix A, formulated in Eqs. (3) and (4), the matrix-

vector reciprocity theorems can be derived49,50ð
D

ðdt
ANqBþ qt

ANdBÞd3x

¼
ð
@D0[@DM

qt
ANqBn3d2xþ

ð
D

qt
ANðAA�ABÞqBd3x

(40)

and ð
D

ðd†
AKqBþq

†
AKdBÞd3x

¼
ð
@D0[@DM

q
†
AKqBn3d2xþ

ð
D

q
†
AKð �AA�ABÞqBd3x:

(41)

Here, D denotes a domain enclosed by two infinite horizon-

tal boundaries @D0 and @DM at the depth levels x3;0 and

x3;M with outward pointing normals n3 ¼ �1 and n3 ¼ 1,

respectively; see Fig. 5. The subscripts A and B refer to two

independent states. These theorems hold for lossless media

and media with losses.51 Equation (40) is a convolution-type

reciprocity theorem as products like qt
ANqB in the frequency

domain correspond to convolutions in the time domain (sim-

ilar to those in Ref. 63). Equation (41) is a correlation-type

reciprocity theorem because products such as q
†
AKqB in the

frequency domain correspond to correlations in the time

domain (as in Ref. 18).

A special case is obtained when the sources, wave

fields, and medium parameters are identical in both states.

We may then drop the subscripts A and B, and Eq. (41) sim-

plifies toð
D

1

4
ðd†Kqþ q†KdÞd3x

¼
ð
@D0[@DM

1

4
q†Kqn3d2xþ

ð
D

1

4
q†Kð �A �AÞqd3x:

(42)

FIG. 4. (Color online) The (a) focusing function Fpðs1; x3; x3;0; sÞ (fixed s1),

convolved with a wavelet, and (b) last trace of (a) are shown.

FIG. 5. The configuration for the matrix-vector reciprocity theorems, Eqs.

(40) and (41), and for the representations with Green’s matrices is depicted.
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Because 1
4

q†Kq ¼ 1
4
ðq†

1q2 þ q
†
2q1Þ ¼ j [see Eq. (7)], Eq.

(42) formulates the unified power balance. The term on the

left-hand side is the power generated by the sources in D.

The first term on the right-hand side is the power flux

through the boundary @D0 [ @DM (i.e., the power leaving

the domain D), and the second term on the right-hand side

is the dissipated power in D.

IV. REPRESENTATIONS WITH
GREEN’S MATRICES

A wave-field representation is obtained by replacing one

of the states in a reciprocity theorem by a Green’s state.6–9 In

this section, we follow this approach to derive wave-field rep-

resentations with Green’s matrices from the matrix-vector

reciprocity theorems discussed in Sec. III.

A. Symmetry property of the Green’s matrix

Before we derive wave-field representations, we first

derive a symmetry property of the Green’s matrix. To this

end, we replace both of the wave-field vectors qA and qB in

the reciprocity theorem (40) by the Green’s matrices

Gðx; xA;xÞ and Gðx; xB;xÞ, respectively. Accordingly, we

replace the source vectors dA and dB by Idðx� xAÞ and

Idðx� xBÞ, respectively, where xA and xB denote the source

positions; see Fig. 5. Furthermore, we replace D by R3

such that the boundary integral in Eq. (40) vanishes (the

Sommerfeld radiation condition). Both of the Green’s matri-

ces are defined in the same medium, hence, AA ¼ AB. This

implies that the second integral on the right-hand side of Eq.

(40) also vanishes. From the remaining integral, we, thus,

obtain the following symmetry property of the Green’s

matrix:

GtðxB; xA;xÞN ¼ �NGðxA; xB;xÞ: (43)

The Green’s matrix on the left-hand side is the response to a

source at xA, observed by a receiver at xB. Similarly, the

Green’s matrix on the right-hand side is the response to a

source at xB, observed by a receiver at xA. Hence, Eq. (43) is

a unified source-receiver reciprocity relation.

Using this relation and JN ¼ �NJ, for the homoge-

neous Green’s matrix defined in Eq. (25), we find

Gt
hðxB; xA;xÞN ¼ �NGhðxA; xB;xÞ: (44)

B. Representations of the convolution type with the
Green’s matrix

We derive a representation of the convolution type for

the actual wave-field vector qðx;xÞ, emitted by the actual

source distribution dðx;xÞ in the actual medium; the opera-

tor matrix in the actual medium is defined as Aðx;xÞ. We

let state B in the reciprocity theorem (40) be this actual state,

hence, we drop the subscript B from qB, dB, and AB. For

state A, we choose the Green’s state. Therefore, we replace

qAðx;xÞ in the reciprocity theorem (40) by Gðx; xA;xÞ and

dAðx;xÞ by Idðx� xAÞ. We keep the subscript A in

AAðx;xÞ to account for the fact that, in general, this opera-

tor matrix is defined in a medium that may be different from

the actual medium. We, thus, obtain

vDðxAÞNqðxA;xÞ

¼ �
ð

D

Gtðx; xA;xÞNdðx;xÞd3x

þ
ð
@D0[@DM

Gtðx; xA;xÞNqðx;xÞn3d2x

þ
ð

D

Gtðx; xA;xÞNfAA �Agqðx;xÞd3x; (45)

where vDðxÞ is the characteristic function for the domain

D, which is defined as

vDðxÞ ¼

1 for x inside D;

1

2
for x on @D0 [ @DM;

0 for x outside D:

8>><
>>: (46)

Using the symmetry property of the Green’s matrix, formu-

lated by Eq. (43), we obtain

vDðxAÞqðxA;xÞ

¼
ð

D

GðxA; x;xÞdðx;xÞd3x

�
ð
@D0[@DM

GðxA; x;xÞqðx;xÞn3d2x

�
ð

D

GðxA; x;xÞfAA �Agqðx;xÞd3x: (47)

This is the unified wave-field representation of the convolu-

tion type with the Green’s matrix. The left-hand side is the

wave-field vector q at a specific point xA, multiplied with

the characteristic function. According to the right-hand

side, this field consists of a contribution from the source

distribution in D (the first integral), a contribution from the

wave field on the boundary of D (the second integral), and

a contribution caused by the contrasts between the operator

matrices in the Green’s and the actual state (the third

integral).

Note that Eq. (15) follows as a special case of Eq. (47)

if we choose the same medium parameters in both states and

replace D by R3 [except that the roles of x and xA are inter-

changed because we used the symmetry property of Eq. (43)

in the derivation of Eq. (47)].

Next, we consider another special case. Again, we

choose the same medium parameters in both states, but this

time we replace D by the entire half-space below @D0,

which we choose to be source-free in the actual state.

Assuming xA lies in the lower half-space, we obtain

qðxA;xÞ ¼
ð
@D0

GðxA;x;xÞqðx;xÞd2x for x3;A > x3;0:

(48)
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Using Eqs. (8), (16), and (18) for the isotropic acoustic situ-

ation, for the upper element of qðxA;xÞ, Eq. (48) yields

pðxA;xÞ ¼
ð
@D0

�
� 1

ixqðx;xÞ @3Gp;qðxA; x;xÞ
� �

� pðx;xÞ þ Gp;qðxA; x;xÞv3ðx;xÞ
�

d2x;

(49)

which is the well-known acoustic Kirchhoff-Helmholtz inte-

gral. Hence, the representation of Eq. (48) is the unified

Kirchhoff-Helmholtz integral. It can be used for forward

wave-field extrapolation of the wave-field vector qðx;xÞ
from @D0 to any point xA below @D0. Note that the

Green’s matrix GðxA; x;xÞ depends on the medium

parameters of the entire half-space below @D0. In Sec. V B,

we derive a relation similar to Eq. (48) but with the Green’s

matrix replaced by the propagator matrix, which depends

only on the medium parameters between x3;0 and x3;A.

Finally, we replace qðx;xÞ by Gðx; xB;xÞ in Eq. (48).

Because we assumed that the lower half-space is source-free

for q, we choose xB in the upper half-space. We, thus, obtain

GðxA; xB;xÞ ¼
ð
@D0

GðxA; x;xÞGðx; xB;xÞd2x

for x3;A > x3;0 > x3;B: (50)

This expression shows that the Green’s matrix can be com-

posed from a cascade of Green’s matrices, assuming a spe-

cific order of the depth levels at which the Green’s sources

and receivers are situated. In Sec. V B, we derive a similar

relation for propagator matrices for an arbitrary order of

depth levels.

Equation (50) can be seen as a generalization of the rep-

resentation that underlies the Green’s function retrieval by

cross-convolution [where GðxA; xB;xÞ is the unknown68] or

by multidimensional deconvolution [where GðxA; x;xÞ is

the unknown69].

C. Representations of the correlation type with the
Green’s matrix

We derive a representation of the correlation type for

the actual wave-field vector qðx;xÞ, emitted by the actual

source distribution dðx;xÞ in the actual medium. As in Sec.

IV B, we let the state B be this actual state, and state A be

the Green’s state. Hence, making the same substitutions as

in Sec. IV B, this time in the reciprocity theorem (41), using

Eq. (43) and N�1K ¼ �J, yields

vDðxAÞqðxA;xÞ

¼
ð

D

JG�ðxA;x;xÞJdðx;xÞd3x

�
ð
@D0[@DM

JG�ðxA;x;xÞJqðx;xÞn3d2x

�
ð

D

JG�ðxA;x;xÞJf �AA�Agqðx;xÞd3x: (51)

This is the unified wave-field representation of the correla-

tion type with the Green’s matrix.

As a special case, we derive a representation for the

homogeneous Green’s matrix Gh. To this end, for state B,

we choose the Green’s matrix in the actual medium, hence,

we replace qðx;xÞ by Gðx; xB;xÞ and dðx;xÞ by

Idðx� xBÞ. For state A, we replace the Green’s matrix by

that in the adjoint of the actual medium, therefore, we

replace GðxA; x;xÞ by �GðxA; x;xÞ and AA by �A . With this

choice, the contrast operator �AA �A ¼ ��A �A vanishes.

Making these substitutions in Eq. (51), taking xA and xB

both inside of D, and using Eq. (25), we obtain

GhðxA; xB;xÞ

¼ �
ð
@D0[@DM

J �G
�ðxA; x;xÞJGðx; xB;xÞn3d2x

for x3;M > x3;fA;Bg > x3;0: (52)

This is the unified homogeneous Green’s matrix representa-

tion. It finds applications in optical, acoustic, and seismic

holography,20,25 inverse source problems,16 inverse scatter-

ing methods,19 and Green’s function retrieval by cross cor-

relation.27–29,70,71 A disadvantage is that the integral is taken

along the two boundaries @D0 and @DM, whereas in many

practical situations, the measurements are only available on

a single boundary. Using the propagator matrix, in Sec,

VI B, we present a single-sided unified homogeneous

Green’s function representation.

Finally, using Eqs. (16)–(18) for the isotropic acoustic

situation, for the upper-right element of GhðxA; xB;xÞ, Eq.

(52) yields

Gp;q
h ðxA;xB;xÞ

¼� 1

ix

ð
@D0[@DM

�
1

�q�ðx;xÞf@3
�G

p;qðxA;x;xÞg�

�Gp;qðx;xB;xÞ

� 1

qðx;xÞf
�G

p;qðxA;x;xÞg�@3Gp;qðx;xB;xÞ
�

n3d2x;

(53)

where

Gp;q
h ðxA; xB;xÞ ¼ Gp;qðxA; xB;xÞ þ f �G

p;qðxA; xB;xÞg�;
(54)

according to Eqs. (16) and (26). For a lossless constant den-

sity medium, using Gp;qðx; xB;xÞ ¼ �ixqGðx; xB;xÞ, Eq.

(53) is the well-known scalar homogeneous Green’s func-

tion representation,19,20 which is applied to the configuration

of Fig. 5.

V. REPRESENTATIONS WITH PROPAGATOR
MATRICES

We follow an approach similar to that used in Sec. IV

to derive wave-field representations. However, this time, we
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replace one of the states in the reciprocity theorems by a

propagator state (instead of a Green’s state). Hence, this

leads to the wave-field representations with the propagator

matrices.

A. Symmetry properties of the propagator matrix

We start with deriving the symmetry properties of the

propagator matrix. To this end, we replace the wave-field

vectors qA and qB in the reciprocity theorem (40) by the

propagator matrices Wðx; xA;xÞ and Wðx; xB;xÞ, respec-

tively. We define horizontal boundaries @DA and @DB,

containing the points xA and xB, respectively; see Fig. 5. We

replace @D0 and @DM in Eq. (40) by these boundaries (and

D by the region enclosed by these boundaries). Note that

the boundary condition (29) implies Wðx; xA;xÞ ¼ IdðxH

�xH;AÞ for x at @DA and Wðx; xB;xÞ ¼ IdðxH � xH;BÞ for x

at @DB. The propagators obey the wave equation (27) with-

out sources, hence, we set dA and dB to O. This implies that

the integral on the left-hand side of Eq. (40) vanishes. Both

propagator matrices are defined in the same medium, hence,

AA ¼ AB. This implies that the second integral on the

right-hand side vanishes. Evaluating the remaining integral

along the boundary @DA [ @DB yields (irrespective of the

arrangement of @DA and @DB)

WtðxB; xA;xÞN ¼ NWðxA; xB;xÞ: (55)

This is the first unified symmetry relation for the propagator

matrix.

A second symmetry relation can be derived from the

reciprocity theorem (41). To this end, we replace qA and qB

by �Wðx; xA;xÞ and Wðx; xB;xÞ, respectively. We replace

@D0 [ @DM in Eq. (41) by @DA [ @DB (and D by the

enclosed region). We set dA and dB to O, therefore, the inte-

gral on the left-hand side vanishes. The propagator matrices

are defined in mutually adjoint media, hence, AA ¼ �AB.

This implies that the second integral on the right-hand side

of Eq. (41) vanishes. From the remaining integral, we, thus,

obtain

�W
†ðxB; xA;xÞK ¼ KWðxA; xB;xÞ: (56)

From Eqs. (55) and (56), using KN�1 ¼ J, we find that

�W
�ðxB; xA;xÞJ ¼ JWðxB; xA;xÞ: (57)

Note that in this last equation, xB and xA appear in the same

order on the left- and right-hand sides.

B. Representations of the convolution type with the
propagator matrix

We derive a representation of the convolution type for

the actual wave-field vector qðx;xÞ, emitted by the actual

source distribution dðx;xÞ in the actual medium; the opera-

tor matrix in the actual medium is defined as Aðx;xÞ. We

let state B in reciprocity theorem (40) be this actual state,

hence, we drop the subscript B from qB, dB, and AB. For

state A, we choose the propagator state. Therefore, we

replace qAðx;xÞ in the reciprocity theorem (40) by

Wðx; xA;xÞ and dAðx;xÞ by O. We keep the subscript A in

AAðx;xÞ to account for the fact that, in general, this opera-

tor matrix is defined in a medium that may be different from

the actual medium. We replace @D0 [ @DM in the reciproc-

ity theorem (40) by @D0 [ @DA, where @DA is the bound-

ary containing xA. Here and in the following, @DA is below

@D0, thus, x3;A > x3;0. The domain enclosed by these

boundaries is called DA; see Fig. 6. Unlike in the classical,

decomposition-based derivations of the Marchenko

method,44,72 the domain DA does not define a truncated

medium; in general, the medium below @DA is inhomoge-

neous. Applying the mentioned substitutions in Eq. (40),

using the boundary condition (29) and symmetry relation

(55) (with xB replaced by x), yields

qðxA;xÞ ¼
ð

DA

WðxA; x;xÞdðx;xÞd3x

þ
ð
@D0

WðxA; x;xÞqðx;xÞd2x

�
ð

DA

WðxA; x;xÞfAA �Agqðx;xÞd3x:

(58)

This is the unified wave-field representation of the convolu-

tion type with the propagator matrix. Note the analogy with

the representation of the convolution type with the Green’s

matrix, Eq. (47). An important difference is that the bound-

ary integral in Eq. (58) is single sided.

We consider a special case by choosing the same

medium parameters in DA in both states and choosing DA

to be source free. We obtain

qðxA;xÞ ¼
ð
@D0

WðxA; x;xÞqðx;xÞd2x: (59)

This is the special case that was already presented in Eq.

(30) [except that the roles of x and xA are interchanged

because we used the symmetry property of Eq. (55) in the

derivation of Eq. (58)].

Note the analogy of Eq. (59) with Eq. (48), which con-

tains a Green’s matrix instead of the propagator matrix. The

propagator matrix in Eq. (59) depends only on the medium

parameters between x3;0 and x3;A. Equation (59) is used in

FIG. 6. The configuration for the representations with the propagator matri-

ces is shown.
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Sec. VII as the basis for deriving the Marchenko-type

representations.

Next, we again consider Eq. (58) in which we replace

qðx;xÞ by Wðx; xB;xÞ and, hence, dðx;xÞ by O and A by

AA. This implies that the first and third integrals on the right-

hand side vanish. Moreover, we replace @D0 by @DC at an

arbitrarily chosen depth level x3;C; see Fig. 6. This yields

WðxA; xB;xÞ ¼
ð
@DC

WðxA; x;xÞWðx; xB;xÞd2x: (60)

This expression shows that the propagator matrix can be

composed from a cascade of propagator matrices.32–36 It is

similar to Eq. (50) with the cascade of the Green’s matrices,

but unlike in Eq. (50), where x3;A > x3;0 > x3;B, the arrange-

ment of x3;A; x3;B, and x3;C in Eq. (60) is arbitrary (because

there are no sources in both states).

Finally, we replace xB in Eq. (60) by x0A ¼ ðx0H;A; x3;AÞ.
Applying the boundary condition (29) to the left-hand side,

we obtain

IdðxH;A � x0H;AÞ ¼
ð
@DC

WðxA; x;xÞWðx; x0A;xÞd2x: (61)

This equation defines WðxA; x;xÞ as the inverse of

Wðx; xA;xÞ.32–36

C. Representations of the correlation type with the
propagator matrix

We aim to derive a representation of the correlation type

for the actual wave-field vector qðx;xÞ, emitted by the actual

source distribution dðx;xÞ in the actual medium. Similar to

Sec. V B, we let state B be this actual state. For state A, we

choose the adjoint propagator state. Hence, we replace

qAðx;xÞ; AAðx;xÞ, and dAðx;xÞ by �Wðx; xA;xÞ;
�AAðx;xÞ, and O, respectively. Furthermore, we again

replace @D0 [ @DM by @D0 [ @DA. Applying these substi-

tutions in the reciprocity theorem (41), using the boundary

condition (29) and symmetry relation (56) (with xB replaced

by x), yields, once more, Eq. (58). Therefore, due to the addi-

tional symmetry property of the propagator matrix [Eq. (56)],

the correlation-type reciprocity theorem does not lead to a

new representation.

VI. REPRESENTATIONS WITH GREEN’S MATRICES
AND PROPAGATOR MATRICES

We follow an approach, which is similar to that in Secs.

IV and V, to derive wave-field representations. However, this

time, we replace one of the states in the reciprocity theorem of

the convolution type by a Green’s state and the other state by a

propagator state. This leads to wave-field representations with

Green’s matrices and propagator matrices.

A. Single-sided Green’s matrix representation

In the reciprocity theorem (40), we choose the propaga-

tor state for state A and the Green’s state for state B.

Hence, in state A, we replace qAðx;xÞ and dAðx;xÞ by

Wðx; xA;xÞ and O, respectively. In state B, we replace

qBðx;xÞ and dBðx;xÞ by Gðx; xB;xÞ and Idðx� xBÞ,
respectively. The medium parameters in states A and B may

be different, thus, we keep the subscripts in AAðx;xÞ and

ABðx;xÞ. Last but not least, we replace @D0 [ @DM by

@D0 [ @DA and D by the enclosed region DA; see Fig. 6.

With these substitutions, using boundary condition (29) and

symmetry relation (55), the reciprocity theorem (40) yields

GðxA; xB;xÞ � vDA
ðxBÞWðxA; xB;xÞ

¼
ð
@D0

WðxA; x;xÞGðx; xB;xÞd2x

�
ð

DA

WðxA; x;xÞfAA �ABgGðx; xB;xÞd3x;

(62)

where vDA
ðxÞ is the characteristic function for domain DA,

defined similarly as vDðxÞ in Eq. (46). Equation (62) is a

representation for G�W (when xB is inside DA) in terms

of integrals containing G and W. When G and W are

defined in the same medium, this representation simplifies

to

GðxA; xB;xÞ � vDA
ðxBÞWðxA; xB;xÞ

¼
ð
@D0

WðxA; x;xÞGðx; xB;xÞd2x: (63)

Finally, when xB (the position of the source of the Green’s

matrix) lies outside of DA (i.e., above @D0 or below @DA),

then the latter expression simplifies to

GðxA; xB;xÞ ¼
ð
@D0

WðxA; x;xÞGðx; xB;xÞd2x

for x3;B < x3;0 or x3;B > x3;A: (64)

This is a single-sided representation of the Green’s matrix,

which uses the propagator matrix. This special case was

already presented in Eq. (31) (except that the roles of x and

xA are interchanged as we used the symmetry property of

Eq. (55) in the derivation of Eq. (64)].

Note the analogy of Eq. (64) with Eq. (50), which con-

tains a Green’s matrix instead of the propagator matrix. The

propagator matrix in Eq. (64) depends only on the medium

parameters between x3;0 and x3;A. Moreover, unlike the rep-

resentation of Eq. (50), which only holds for x3;B < x3;0, Eq.

(64) also holds for x3;B > x3;A.

B. Single-sided homogeneous Green’s matrix
representation

We follow the same procedure as in Sec. VI A, except

that in state B, we choose the homogeneous Green’s matrix;

hence, we replace qBðx;xÞ and dBðx;xÞ in the reciprocity

theorem (40) by Ghðx; xB;xÞ and O, respectively. We, thus,

obtain
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GhðxA; xB;xÞ ¼
ð
@D0

WðxA; x;xÞGhðx; xB;xÞd2x

�
ð

DA

WðxA; x;xÞfAA �ABg

�Ghðx; xB;xÞd3x: (65)

When Gh and W are defined in the same medium, this repre-

sentation simplifies to

GhðxA; xB;xÞ ¼
ð
@D0

WðxA; x;xÞGhðx; xB;xÞd2x: (66)

This is a single-sided representation of the homogeneous

Green’s matrix, which uses the propagator matrix. This special

case was already presented in Eq. (32) [except that the roles of

x and xA are interchanged as we used the symmetry property

of Eq. (55) in the derivation of Eq. (66)]. Note that unlike the

Green’s matrix representation of Eq. (64), the homogeneous

Green’s matrix representation of Eq. (66) has no restrictions

for the position of xB (as there is no source at xB).

Equation (66) is the single-sided counterpart of the unified

homogeneous Green’s matrix representation of Eq. (52).

Whereas in Eq. (52) the integral is taken along two boundaries

@D0 and @DM, in Eq. (66) the integral is taken only along

@D0. This is an important advantage for the practical situations

in which the measurements are often available only on a single

boundary. In Sec. VI C, we indicate how Eq. (66) can be used

in a process called source and receiver redatuming.

Finally, using Eqs. (16), (17), (26), (33), and (35) for

the isotropic acoustic situation, assuming real-valued qðxÞ,
Eq. (66) yields for the upper-right element of GhðxA; xB;xÞ

Gp;q
h ðxA; xB;xÞ

¼ � 1

ix

ð
@D0

1

qðxÞ f@3Wp;vðxA; x;xÞgGp;q
h ðx; xB;xÞ

	
�Wp;vðxA; x;xÞ@3Gp;q

h ðx; xB;xÞ


d2x; (67)

with Gp;q
h ðxA; xB;xÞ as defined in Eq. (54).

C. Source and receiver redatuming

Redatuming is the process of moving sources and/or

receivers from the acquisition boundary to positions inside

of the medium.22,57,73,74 Traditionally, this is done with the

Kirchhoff-Helmholtz integrals with the Green’s functions

defined in a smooth background medium, thus, ignoring

multiple scattering. Here, we derive a unified redatuming

method, which accounts for multiple scattering, using the

single-sided homogeneous Green’s matrix representation of

Sec. VI B as the starting point.

Let xS and xR denote the source and receiver coordi-

nates, respectively, at the acquisition boundary @D0. Then

the Green’s matrix GðxR; xS;xÞ represents the medium’s

response, measured with the sources and receivers at the sur-

face; see Fig. 7(a). Assuming that the medium is lossless,

the homogeneous Green’s matrix GhðxR; xS;xÞ is obtained

from this Green’s matrix via Eq. (25).

First, we discuss a method for source redatuming. We

rename some variables in Eq. (66) (xB ! xR; xA ! xB;
x! xS) and transpose all matrices, which gives

Gt
hðxB;xR;xÞ ¼

ð
@D0

Gt
hðxS;xR;xÞWtðxB;xS;xÞd2xS: (68)

Using Eqs. (44) and (55), we obtain

GhðxR; xB;xÞ ¼
ð
@D0

GhðxR; xS;xÞWðxS; xB;xÞd2xS: (69)

The latter expression describes the redatuming of the sour-

ces from xS at the acquisition boundary to a virtual-source

position xB inside of the medium; see Fig. 7(b).

FIG. 7. The illustration of source and receiver redatuming. All of the

responses are represented by simple rays, but in reality these are multi-

component wave fields, including primaries, multiples, converted, refracted,

and evanescent waves. (a) The response GðxR; xS;xÞ at the surface is

shown. The homogeneous Green’s matrix GhðxR; xS;xÞ is obtained from

this response with Eq. (25). (b) The source redatuming is depicted. Using

Eq. (69), the homogeneous Green’s matrix GhðxR; xB;xÞ is obtained for a

virtual source at xB. (c) The receiver redatuming is shown. Using Eq. (70),

the homogeneous Green’s matrix GhðxA; xB;xÞ is obtained for a virtual

receiver at xA.
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Next, we discuss receiver redatuming. We replace x by

xR in Eq. (66), which gives

GhðxA;xB;xÞ ¼
ð
@D0

WðxA;xR;xÞGhðxR;xB;xÞd2xR: (70)

This expression describes the redatuming of the receivers

from xR at the acquisition boundary to a virtual-receiver

position xA inside of the medium; see Fig. 7(c). The Green’s

matrix under the integral is the output of the source reda-

tuming method, which is described by Eq. (69).

Combining Eqs. (69) and (70) gives the following

expression for the combined source and receiver

redatuming:

GhðxA; xB;xÞ ¼
ð
@D0

ð
@D0

WðxA; xR;xÞ

�GhðxR; xS;xÞWðxS; xB;xÞd2xSd2xR:

(71)

This expression redatums the actual sources and receivers

from the acquisition boundary @D0 to the virtual sources

and receivers inside of the medium. Because it takes multi-

ple scattering into account, it generalizes the classical source

and receiver redatuming.22,57,73,74 Equation (71) resembles

expressions for source-receiver interferometry75,76 but with

the integrals along a closed boundary replaced by the inte-

grals along the open acquisition boundary @D0 and two of

the Green’s functions replaced by the propagator matrices.

When the medium is known, these matrices can be numeri-

cally modelled. Alternatively, the propagator matrices can

be expressed in terms of focusing functions which, at least

for the acoustic situation, can be retrieved via the

Marchenko method from the reflection response at the

acquisition boundary. In Sec. VII, we introduce the relations

between the propagator matrix and focusing functions (Sec.

VII A) and derive Marchenko-type representations, which

relate the focusing functions to the reflection response at the

acquisition boundary (Sec. VII B).

VII. REPRESENTATIONS WITH FOCUSING
FUNCTIONS

A. Relation between the propagator matrix and
focusing functions

In Sec. II E, we indicated that there is a relation between

the propagator matrix and the Marchenko-type focusing

functions. Here, we derive this relation for the propagator

matrix of the unified matrix-vector wave equation, assuming

that the medium is lossless. Our starting point is Eq. (59),

which is repeated here for convenience,

qðxA;xÞ ¼
ð
@D0

WðxA; x;xÞqðx;xÞd2x; (72)

with the boundary condition

WðxA; x;xÞjx3;A¼x3;0
¼ IdðxH;A � xHÞ (73)

for x at @D0. From here on, we assume that the half-space

above @D0 (including @D0) is homogeneous and isotropic,

the medium below @D0 is arbitrary inhomogeneous, aniso-

tropic, and source-free, and xA is chosen at or below @D0

(hence, x3;A 	 x3;0).

Without loss of generality, we can decompose qðx;xÞ
in the upper half-space into downgoing and upgoing plane

waves. To this end, we defined the spatial Fourier trans-

form ~uðs; x3;xÞ of a space- and frequency-dependent func-

tion uðx;xÞ in Eq. (20). For a function of two space

variables, uðxA; x;xÞ, we define the spatial Fourier trans-

form along the horizontal components of the second space

variable as

~uðxA; s; x3;xÞ ¼
ð

R2
uðxA; xH; x3;xÞ exp fixs � xHgd2xH:

(74)

Using these definitions and Parseval’s theorem, we rewrite

Eq. (72) as

qðxA;xÞ ¼
x2

4p2

ð
R2

~WðxA; s; x3;0;xÞ~qðs; x3;0;xÞd2s; (75)

with the boundary condition

~WðxA; s; x3;0;xÞjx3;A¼x3;0
¼ I exp fixs � xH;Ag: (76)

In the upper half-space, we relate the wave-field vector ~q to

the downgoing and upgoing wave-field vectors ~pþ and ~p�,

respectively, via

~q ¼
~q1

~q2

 !
¼

~L
þ
1

~L
�
1

~L
þ
2

~L
�
2

0
@

1
A ~pþ

~p�

 !
for x3 � x3;0

(77)

(Refs. 55–57 and 77). Next, we renormalize the downgoing

and upgoing wave-field vectors. To this end, we define the

downgoing and upgoing parts of ~q1 as

~q6
1 ¼ ~L

6

1 ~p6 (78)

and rewrite Eq. (77) as

~q ¼
~q1

~q2

 !
¼

I I

~D
þ
1

~D
�
1

 !
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

~D1

~qþ1
~q�1

 !
|fflfflfflffl{zfflfflfflffl}

~b1

for x3 � x3;0;

(79)

with

~D
6

1 ¼ ~L
6

2 ð~L
6

1 Þ
�1: (80)

In Appendix A, we give explicit expressions for ~D
6

1 for the

acoustic, electromagnetic, and elastodynamic situation. The

substitution of Eq. (79) into Eq. (75) gives
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qðxA;xÞ ¼
x2

4p2

ð
R2

~Y1ðxA; s; x3;0;xÞ~b1ðs; x3;0;xÞd2s; (81)

with

~Y1ðxA; s; x3;0;xÞ ¼ ~WðxA; s; x3;0;xÞ~D1ðsÞ: (82)

Let ~F1ðxA; s; x3;0;xÞ be the upper-right N=2� N=2 matrix

of the block matrix ~Y1ðxA; s; x3;0;xÞ. According to Eqs.

(28), (82), and the definition of ~D1ðsÞ in Eq. (79), it is

defined as

~F1ðxA; s; x3;0;xÞ ¼ ð ~W11 þ ~W12
~D
�
1 ÞðxA; s; x3;0;xÞ: (83)

This is a generalization of the definition of the acoustic

focusing function for a horizontally layered medium, which

is defined in Eq. (38). From Eqs. (28) and (76), it follows

that ~F1ðxA; s; x3;0;xÞ obeys the boundary condition

~F1ðxA; s; x3;0;xÞjx3;A¼x3;0
¼ I exp fixs � xH;Ag; (84)

or, applying an inverse spatial and temporal Fourier

transform,

F1ðxA; x; tÞjx3;A¼x3;0
¼ IdðxH;A � xHÞdðtÞ; (85)

for x at @D0. Hence, F1ðxA; x; tÞ is indeed a focusing func-

tion (where xA is a variable and x is the focal point at @D0).

To analyse the upper-left N=2� N=2 matrix of the block

matrix ~Y1ðxA; s; x3;0;xÞ, we first establish some symmetry

properties. The symmetry of ~W follows from the Fourier trans-

form of Eq. (57) for the lossless situation, hence,

~WðxA; s; x3;0;xÞ ¼ J ~W
�ðxA;�s; x3;0;xÞJ: (86)

For the sub-matrices of ~W, this implies that

~WabðxA; s; x3;0;xÞ ¼ Jaa
~W
�
abðxA;�s; x3;0;xÞJbb; (87)

(no summation convention) where J11 ¼ �J22 ¼ I. The sym-

metry of ~D
6

1 follows from its explicit definitions in Appendix

A. In all of the cases, the following symmetry holds:

~D
þ
1 ðsÞ ¼ �~D

�
1 ð�sÞ: (88)

When we ignore the evanescent waves at and above @D0,

then ~D
6

1 ðsÞ is real valued; see Appendix A. Hence, given

that ~F1ðxA; s; x3;0;xÞ is the upper-right N=2� N=2 matrix

of ~Y1ðxA; s; x3;0;xÞ, we derive from Eqs. (28), (82), (87),

and (88) and the structure of ~D1 indicated in Eq. (79) that

the upper-left N=2� N=2 matrix is equal to
~F
�
1ðxA;�s; x3;0;xÞ. Using this in Eq. (81), for the upper

N=2� 1 vector of qðxA;xÞ, we obtain

q1ðxA;xÞ ¼
x2

4p2

ð
R2

~F
�
1ðxA;�s; x3;0;xÞ~qþ1 ðs; x3;0;xÞd2s

þ x2

4p2

ð
R2

~F1ðxA; s; x3;0;xÞ~q�1 ðs; x3;0;xÞd2s:

(89)

By applying Parseval’s theorem again, we obtain

q1ðxA;xÞ ¼
ð
@D0

F�1ðxA; x;xÞqþ1 ðx;xÞd2x

þ
ð
@D0

F1ðxA; x;xÞq�1 ðx;xÞd2x: (90)

This relation has previously been derived via another

route for the situations of acoustic waves (q1 ¼ p) and elas-

todynamic waves (q1 ¼ v),78 but without explicitly defining

the focusing function F1ðxA; x;xÞ. Here, we have an

explicit expression for the Fourier transform of this focus-

ing function [Eq. (83)]. In Sec. VII B, we use Eq. (90) as

the basis for deriving the Marchenko-type Green’s matrix

representations.

Next, we derive a representation similar to Eq. (90) for

q2ðxA;xÞ. To this end, we define the downgoing and

upgoing parts of ~q2 as

~q6
2 ¼ ~L

6

2 ~p6 (91)

and rewrite Eq. (77), analogous to Eq. (79), as

~q ¼ ~q1

~q2

� �
¼ ~D

þ
2

~D
�
2

I I

 !
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

~D2

~qþ2
~q�2

� �
|fflfflffl{zfflfflffl}

~b2

for x3 � x3;0; (92)

with

~D
6

2 ¼ ~L
6

1 ð~L
6

2 Þ
�1 ¼ ð~D6

1 Þ
�1: (93)

The substitution of Eq. (92) into Eq. (75) gives

qðxA;xÞ ¼
x2

4p2

ð
R2

~Y2ðxA; s; x3;0;xÞ~b2ðs; x3;0;xÞd2s; (94)

with

~Y2ðxA; s; x3;0;xÞ ¼ ~WðxA; s; x3;0;xÞ~D2ðsÞ: (95)

Let ~F2ðxA; s; x3;0;xÞ be the lower-right N=2� N=2 matrix

of the block matrix ~Y2ðxA; s; x3;0;xÞ. According to Eqs.

(28), (95), and the definition of ~D2ðsÞ in Eq. (92), it is

defined as

~F2ðxA; s; x3;0;xÞ ¼ ð ~W21
~D
�
2 þ ~W22ÞðxA; s; x3;0;xÞ: (96)

~F2 is a focusing function with focusing properties similar to

those of ~F1, expressed in Eqs. (84) and (85).

To analyse the lower-left N=2� N=2 matrix of the

block matrix ~Y2ðxA; s; x3;0;xÞ, from Eqs. (88) and (93), we

first derive

~D
þ
2 ðsÞ ¼ �~D

�
2 ð�sÞ: (97)

When we ignore the evanescent waves at and above @D0,

then ~D
6

2 ðsÞ is real valued. Hence, given that ~F2ðxA; s; x3;0;xÞ

600 J. Acoust. Soc. Am. 151 (1), January 2022 Kees Wapenaar

https://doi.org/10.1121/10.0009236

https://doi.org/10.1121/10.0009236


is the lower-right N=2� N=2 matrix of ~Y2ðxA; s; x3;0;xÞ,
we derive from Eqs. (28), (87), (95), and (97) and the

structure of ~D2 indicated in Eq. (92) that the lower-left

N=2� N=2 matrix is equal to ~F
�
2ðxA;�s; x3;0;xÞ. Using

this in Eq. (94), we obtain for the lower N=2� 1 vector of

qðxA;xÞ

q2ðxA;xÞ ¼
x2

4p2

ð
R2

~F
�
2ðxA;�s; x3;0;xÞ~qþ2 ðs; x3;0;xÞd2s

þ x2

4p2

ð
R2

~F2ðxA; s; x3;0;xÞ~q�2 ðs; x3;0;xÞd2s:

(98)

Applying Parseval’s theorem again, we obtain

q2ðxA;xÞ ¼
ð
@D0

F�2ðxA; x;xÞqþ2 ðx;xÞd2x

þ
ð
@D0

F2ðxA; x;xÞq�2 ðx;xÞd2x: (99)

From Eqs. (78), (80), and (91), we obtain ~q6
2 ¼ ~D

6

1 ~q6
1 .

Substituting this into Eq. (98), we obtain a representation

for q2ðxA;xÞ in terms of ~qþ1 and ~q�1 . Combining this with

Eq. (89) into a single equation, we obtain Eq. (81) with

[using Eq. (88)]

~Y1ðxA; s; x3;0;xÞ ¼
~F
�
1ðxA;�s; x3;0;xÞ ~F1ðxA; s; x3;0;xÞ

�~F
�
2ðxA;�s; x3;0;xÞ~D

�
1 ð�sÞ ~F2ðxA; s; x3;0;xÞ~D

�
1 ðsÞ

 !
: (100)

Once ~Y1 is known, the propagator matrix ~W follows from

inverting Eq. (82), according to

~WðxA; s; x3;0;xÞ ¼ ~Y1ðxA; s; x3;0;xÞf~D1ðsÞg�1: (101)

Equations (100) and (101), with ~D1ðsÞ defined in Eq. (79),

express the propagator matrix explicitly in terms of the

focusing functions.

For the acoustic situation, using Eq. (A16), Eqs. (83)

and (96) become

~F
pðxA; s; x3;0;xÞ ¼ ~W

p;p � s3;0

q0

~W
p;v

� �
ðxA; s; x3;0;xÞ;

(102)

~F
vðxA; s; x3;0;xÞ ¼ � q0

s3;0

~W
v;p þ ~W

v;v
� �

ðxA; s; x3;0;xÞ;

(103)

with s3 defined as in Eq. (A15). For the acoustic situation,

Eq. (100) yields

~Y1ðxA; s; x3;0;xÞ ¼
f ~F

pðxA;�s; x3;0;xÞg� ~F
pðxA; s; x3;0;xÞ

s3;0

q0

f ~F
vðxA;�s; x3;0;xÞg� �

s3;0

q0

~F
vðxA; s; x3;0;xÞ

0
B@

1
CA: (104)

Using this in Eq. (101), together with

f~D1ðsÞg�1 ¼

1

2

q0

2s3;0

1

2
� q0

2s3;0

0
BBB@

1
CCCA; (105)

we obtain an explicit expression for ~WðxA; s; x3;0;xÞ in

terms of the acoustic focusing functions. Transforming this

to the space-frequency domain, replacing s3;0 by ð1=xÞH1

(where H1 is the square-root of the Helmholtz operator

x2=c2
0 þ @a@a in the homogeneous upper half-space54,56,57)

yields60

WðxA; x;xÞ ¼
<fFpðxA; x;xÞg �ixq0H�1

1 ðx;xÞ=fFpðxA; x;xÞg
1

ixq0

H1ðx;xÞ= FvðxA; x;xÞ
� �

<fFvðxA; x;xÞg

0
B@

1
CA (106)

for x at @D0, where = denotes the imaginary part.
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B. Marchenko-type Green’s matrix representations
with focusing functions

We use Eqs. (90) and (99) as the starting point for

deriving two Marchenko-type Green’s matrix representa-

tions. We follow a similar procedure as in Ref. 78

(Appendix B), generalized for the different wave phenom-

ena considered in this paper. We replace the N=2� 1 vector

q1ðx;xÞ by a modified version C12ðx; xS;xÞ of the N=2

�N=2 Green’s matrix G12ðx; xS;xÞ. Here, G12ðx; xS;xÞ
stands for the q1-type field observed at x in response to a

unit d2-type source at xS. We choose xS ¼ ðxH;S; x3;SÞ in the

upper half-space at a vanishing distance � above @D0,

hence, x3;S ¼ x3;0 � �. Our aim is to modify this Green’s

matrix such that for x at @D0 (i.e., just below the source),

its downgoing part simplifies to

Cþ12ðx; xS;xÞjx3¼x3;0
¼ IdðxH � xH;SÞ: (107)

First, we derive the properties of the downgoing part of

G12ðx; xS;xÞ for x at @D0. To this end, consider the inverse

of Eq. (79), which reads

~qþ1
~q�1

� �
¼

�ð~D1Þ�1 ~D
�
1 ð~D1Þ�1

ð~D1Þ�1 ~D
þ
1 �ð~D1Þ�1

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð~D1Þ�1

~q1

~q2

 !
; (108)

for x3 � x3;0 with

~D1 ¼ ~D
þ
1 � ~D

�
1 : (109)

The upper-right N=2� N=2 matrix ð~D1Þ�1
transforms ~q2

into a downgoing field vector ~qþ1 . In a similar way, this

matrix transforms a unit d2-type source in a homogeneous

half-space into the downgoing part of the Green’s matrix
~G12 just below this source, according to

lim
x3#x3;S

~G
þ
12ðs; x3; 0; x3;S;xÞ ¼ f~D1ðsÞg�1: (110)

The explicit expressions for ð~D1Þ�1
are given in Appendix

A. In Eq. (110), the source is located at ð0; x3;SÞ. Next, we

consider G12ðx; xS;xÞ for a laterally shifted source position

ðxH;S; x3;SÞ. Applying a spatial Fourier transform along the

horizontal source coordinate xH;S, using Eq. (74) with xH

replaced by xH;S, yields ~G12ðx; s; x3;S;xÞ. For the down-

going part just below the source, we obtain a phase-shifted

version of the Green’s matrix of Eq. (110), according to

lim
x3#x3;S

~G
þ
12ðx; s; x3;S;xÞ ¼ f~D1ðsÞg�1

exp fixs � xHg: (111)

This suggests that the modified Green’s matrix be defined as

~C12ðx; s; x3;S;xÞ ¼ ~G12ðx; s; x3;S;xÞ~D1ðsÞ; (112)

such that

lim
x3#x3;S

~C
þ
12ðx; s; x3;S;xÞ ¼ I exp fixs � xHg: (113)

Transforming this back to the space domain yields, indeed,

Eq. (107). Next, we define the reflection response

R12ðx; xS;xÞ of the medium below @D0 as the upgoing part

of the modified Green’s matrix C12ðx; xS;xÞ for x at @D0,

hence,

R12ðx; xS;xÞ ¼ C�12ðx; xS;xÞ: (114)

Substituting q1ðxA;xÞ ¼ C12ðxA; xS;xÞ and q6
1 ðx;xÞ

¼ C6
12ðx; xS;xÞ into Eq. (90), using Eqs. (107) and (114),

gives

C12ðxA; xS;xÞ ¼
ð
@D0

F1ðxA; x;xÞR12ðx; xS;xÞd2x

þ F�1ðxA; xS;xÞ (115)

for x3;A 	 x3;0. This is the first Marchenko-type representa-

tion. In a similar way, we derive a second Marchenko-type

representation for a modified version C22ðx; xS;xÞ of the

Green’s matrix G22ðx; xS;xÞ. We derive the properties of

the downgoing part of G22ðx; xS;xÞ for x at @D0. Consider

the inverse of Eq. (92), which reads

~qþ2
~q�2

� �
¼ ð~D2Þ�1 �ð~D2Þ�1 ~D

�
2

�ð~D2Þ�1 ð~D2Þ�1 ~D
þ
2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð~D2Þ�1

~q1

~q2

� �
; (116)

for x3 � x3;0 with

~D2 ¼ ~D
þ
2 � ~D

�
2 : (117)

The upper-right N=2� N=2 matrix �ð~D2Þ�1 ~D
�
2 transforms

~q2 into a downgoing field vector ~qþ2 . In a similar way, this

matrix transforms a unit d2-type source in a homogeneous

half-space into the downgoing part of the Green’s matrix
~G22 just below this source, according to

lim
x3#x3;S

~G
þ
22ðs; x3; 0; x3;S;xÞ ¼ �f~D2ðsÞg�1 ~D

�
2 ðsÞ: (118)

The explicit expressions for �ð~D2Þ�1 ~D
�
2 are given in

Appendix A. Steps similar to those below Eq. (110) lead to

lim
x3#x3;S

~G
þ
22ðx; s; x3;S;xÞ ¼ �f~D2ðsÞg�1 ~D

�
2 ðsÞ exp fixs � xHg:

(119)

This suggests that the modified Green’s matrix be defined

as

~C22ðx; s; x3;S;xÞ ¼ � ~G22ðx; s; x3;S;xÞf~D
�
2 ðsÞg

�1 ~D2ðsÞ;
(120)

such that

Cþ22ðx; xS;xÞjx3¼x3;0
¼ IdðxH � xH;SÞ: (121)

We define the reflection response R22ðx; xS;xÞ as
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R22ðx; xS;xÞ ¼ C�22ðx; xS;xÞ (122)

for x at @D0. Substituting q2ðxA;xÞ ¼ C22ðxA; xS;xÞ and

q6
2 ðx;xÞ ¼ C6

22ðx; xS;xÞ into Eq. (99), using Eqs. (121) and

(122), gives

C22ðxA; xS;xÞ ¼
ð
@D0

F2ðxA; x;xÞR22ðx; xS;xÞd2x

þ F�2ðxA; xS;xÞ (123)

for x3;A 	 x3;0. This is the second Marchenko-type

representation.

For the acoustic case, using Eqs. (A16) and (A17), Eqs.

(112) and (120) become

~C12ðx; s; x3;S;xÞ ¼
2s3;0

q0

~G
p;qðx; s; x3;S;xÞ

¼ � 2

ixq0

@3;S
~G

p;qðx; s; x3;S;xÞ; (124)

~C22ðx; s; x3;S;xÞ ¼ 2 ~G
v;qðx; s; x3;S;xÞ; (125)

or in the space-frequency domain [using Eq. (18)],

C12ðx; xS;xÞ ¼ 2Gp;f ðx; xS;xÞ; (126)

C22ðx; xS;xÞ ¼ 2Gv;qðx; xS;xÞ: (127)

For this situation, R12ðx; xS;xÞ and R22ðx; xS;xÞ in the rep-

resentations of Eqs. (115) and (123) are the upgoing parts of

2Gp;f ðx; xS;xÞ and 2Gv;qðx; xS;xÞ, respectively, for x at

@D0. Note that according to Eq. (43), Gv;qðx; xS;xÞ
¼ �Gp;f ðxS; x;xÞ.

In their general form, the representations of Eqs. (115)

and (123) are generalizations of the previously derived

representations for the 3D Marchenko method for

acoustic72,79,80 and elastodynamic wave fields81,82 (but

note that the subscripts 1 and 2 of the focusing functions

have a different meaning than in those papers; here, they

refer to the wave-field components q1 and q2). In most of

the previous work on the 3D Marchenko method, one of

the underlying assumptions is that the wave field can be

decomposed into downgoing and upgoing waves in the

interior of the medium. Only recently, several authors pro-

posed to avoid the decomposition inside the

medium.78,83,84 The representations discussed in this sec-

tion expand on this. In these representations, decomposi-

tion into downgoing and upgoing waves and negligence of

the evanescent waves occurs only in the upper half-space.

However, inside the medium, no wave-field decomposition

takes place. Moreover, the evanescent waves inside the

medium (for example, in high-velocity layers) are

accounted for by the representations of Eqs. (115) and

(123). These representations, transformed to the time

domain, form the basis for the development of Marchenko

schemes, aiming at resolving the focusing functions F1 and

F2 from the reflection responses R12 and R22, respectively,

at the acquisition boundary @D0. Such schemes have been

successfully developed for precritical acoustic data.45–47,85–88

For more complex situations, research on retrieving the focus-

ing functions from the reflection responses is ongoing (for

example, Ref. 89). Once the focusing functions are found, they

can be used to define the propagator matrix via Eqs. (100) and

(101), which can, subsequently, be used in the representations

of Secs. V and VI.

VIII. CONCLUSIONS

We have discussed different types of wave-field repre-

sentation in a systematic way. Classical wave-field represen-

tations contain Green’s functions. By starting with a unified

matrix-vector wave equation, we have formulated wave-

field representations with Green’s matrices, analogous to the

classical representations. For example, the classical

Kirchhoff-Helmholtz integral follows as a special case of

the unified representation with the Green’s matrix. Another

special case is the classical homogeneous Green’s function

representation.

Using the same matrix-vector formalism, we formulated

wave-field representations with propagator matrices. Unlike

a Green’s matrix, a propagator matrix depends only on the

medium parameters between the two depth levels for which

this matrix is defined. The representations with the propaga-

tor matrices have a similar form as those with the Green’s

matrices. An important difference is that the boundary inte-

grals in the representations with the propagator matrices are

single sided.

We also formulated representations containing a mix of

Green’s matrices and propagator matrices. A special case is

the single-sided homogeneous Green’s function representa-

tion as the counterpart of the classical closed-boundary

homogeneous Green’s function representation.

We have shown that the propagator matrix is related to

Marchenko-type focusing functions. We have used this rela-

tion to reformulate the representations with the propagator

matrix into representations with focusing functions. For the

acoustic situation, these focusing functions can be retrieved

from the single-sided reflection response of the medium by

applying the Marchenko method. For more complex situa-

tions, research on retrieving these focusing functions from

the reflection response is ongoing. Once the focusing func-

tions are known, they can be used to construct the propaga-

tor matrix. Subsequently, the propagator matrix can be used

in the representations to obtain the wave field inside of the

medium which, in turn, can be used, for example, for imag-

ing or monitoring. Unlike earlier imaging methods, which

use the propagator matrix, this is a data-driven approach

(because the propagator matrix is retrieved from the reflec-

tion response) and, hence, it does not require a detailed

model of the medium.
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APPENDIX A: EXPLICIT EXPRESSIONS FOR SOME
MATRICES IN THE HOMOGENEOUS ISOTROPIC
UPPER HALF-SPACE

We derive the explicit expressions for ~D
6

1 ; ð~D1Þ�1
, and

�ð~D2Þ�1 ~D
�
2 in the homogeneous isotropic upper half-space

x3 � x3;0 for the acoustic, electromagnetic, and elastody-

namic situations.

1. Unified expressions in the horizontal slowness
domain

For the lossless homogeneous isotropic upper half-

space x3 � x3;0, we transform the unified matrix-vector

wave equation (1) to the horizontal slowness domain using

the spatial Fourier transform of Eq. (20). This yields

@3~q � ~A~q ¼ ~d; (A1)

where

~q ¼
~q1

~q2

 !
; ~d ¼

~d1

~d2

 !
; ~A ¼

~A11
~A12

~A21
~A22

 !
:

(A2)

The symmetry property, defined by Eq. (3), transforms to

f~Að�s;xÞgt
N ¼ �N ~Aðs;xÞ: (A3)

We decompose matrix ~A as55,57,77

~A ¼ ~L ~K ~L
�1
; (A4)

where

~L ¼
~L
þ
1

~L
�
1

~L
þ
2

~L
�
2

0
@

1
A; ~K ¼

~K
þ

O

O ~K
�

 !
: (A5)

With a proper scaling of the columns of matrix ~L, these

matrices obey the following symmetry properties:

f~Lð�sÞgt
N ¼ �Nf~LðsÞg�1; (A6)

f~Kð�s;xÞgt
N ¼ �N ~Kðs;xÞ: (A7)

The substitution of Eq. (A4) into Eq. (A1) and premultiply-

ing all terms with ~L
�1

yields

@3~p � ~K~p ¼ ~L
�1~d; (A8)

where

~p ¼ ~L
�1

~q ¼
~pþ

~p�

 !
; (A9)

where ~pþ and ~p� are wave-field vectors containing the

downgoing (þ) and upgoing (-) waves, respectively.

Following Eqs. (80), (93), (109), and (117), we define

~D
6

1 ðsÞ ¼ ~L
6

2 ð~L
6

1 Þ
�1; f~D1ðsÞg�1 ¼ ð~Dþ1 � ~D

�
1 Þ
�1;

(A10)

~D
6

2 ðsÞ ¼ ~L
6

1 ð~L
6

2 Þ
�1; f~D2ðsÞg�1 ¼ ð~Dþ2 � ~D

�
2 Þ
�1:

(A11)

2. Acoustic wave equation

For the acoustic wave equation, the 1� 1 sub-matrices

of ~A are

~A12 ¼ ixq; ~A21 ¼ ixðj� s2
r=qÞ; ~A11 ¼ ~A22 ¼ 0;

(A12)

where the radial slowness sr is defined as

s2
r ¼ sasa ¼ s2

1 þ s2
2: (A13)

Here, j and q are the compressibility and mass density of

the homogeneous upper half-space, respectively. For con-

venience, here and in the remainder of this appendix, we

do not use the subscripts 0 to indicate the parameters

of the upper half-space. The 1� 1 sub-matrices of ~L and
~K are

~L
6

1 ¼
q

2s3

� �1=2

; ~L
6

2 ¼ 6
s3

2q

� �1=2

; ~K
6 ¼ 6ixs3;

(A14)

where the vertical slowness s3 is defined as

s3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=c2 � s2

r

p
for s2

r � 1=c2;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

r � 1=c2
p

for s2
r > 1=c2;

8<
: (A15)

where the propagation velocity c is defined as c ¼ 1=
ffiffiffiffiffiffi
jq
p

.

The two expressions in Eq. (A15) represent the propagating

and evanescent waves. On substitution of Eq. (A14) into

Eqs. (A10) and (A11), we obtain

~D
6

1 ðsÞ ¼ 6
s3

q
; f~D1ðsÞg�1 ¼ q

2s3

; (A16)

~D
6

2 ðsÞ ¼ 6
q
s3

; �f~D2ðsÞg�1 ~D
�
2 ðsÞ ¼

1

2
: (A17)

3. Electromagnetic wave equation

For the electromagnetic wave equation, the 2� 2 sub-

matrices of ~A are
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~A12 ¼ ix
l� s2

1

e
� s1s2

e

� s1s2

e
l� s2

2

e

0
BBB@

1
CCCA; ~A21 ¼ ix

e� s2
2

l
s1s2

l

s1s2

l
e� s2

1

l

0
BBB@

1
CCCA;

(A18)

~A11 ¼ ~A22 ¼ O: (A19)

Here, e and l are the permittivity and permeability of the

upper half-space, respectively. The 2� 2 sub-matrices of ~L
and ~K are

~L
6

1 ¼
iffiffiffi
2
p

sr

s1

s3

e

� �1=2

�s2

l
s3

� �1=2

s2

s3

e

� �1=2

s1

l
s3

� �1=2

0
BBBB@

1
CCCCA; (A20)

~L
6

2 ¼ 6
iffiffiffi
2
p

sr

s1

e
s3

� �1=2

�s2

s3

l

� �1=2

s2

e
s3

� �1=2

s1

s3

l

� �1=2

0
BBBB@

1
CCCCA; (A21)

~K
6 ¼ 6ix

s3 0

0 s3

 !
; (A22)

where sr and s3 are defined in Eqs. (A13) and (A15), respec-

tively, but this time with the propagation velocity c defined

as c ¼ 1=
ffiffiffiffiffi
el
p

. On substitution of Eqs. (A20) and (A21) into

Eqs. (A10) and (A11), we obtain

~D
6

1 ðsÞ ¼ 6
1

ls3

c�2 � s2
2 s1s2

s1s2 c�2 � s2
1

 !
; (A23)

f~D1ðsÞg�1 ¼ 1

2es3

c�2 � s2
1 �s1s2

�s1s2 c�2 � s2
2

 !
; (A24)

~D
6

2 ðsÞ ¼ 6
1

es3

c�2 � s2
1 �s1s2

�s1s2 c�2 � s2
2

 !
; (A25)

�ð~D2Þ�1 ~D
�
2 ¼

1

2
0

0
1

2

0
BB@

1
CCA: (A26)

4. Elastodynamic wave equation

For the elastodynamic wave equation, the 3� 3 sub-

matrices of ~A are

~A11 ¼ ix

0 0 �s1

0 0 �s2

� k
kþ 2l

s1 � k
kþ 2l

s2 0

0
BBB@

1
CCCA; (A27)

~A12 ¼ ix

1

l
0 0

0
1

l
0

0 0
1

kþ 2l

0
BBBBBBB@

1
CCCCCCCA
; (A28)

~A21 ¼ ix

q� �1s2
1 � ls2

2 �ð�2 þ lÞs1s2 0

�ð�2 þ lÞs1s2 q� ls2
1 � �1s2

2 0

0 0 q

0
B@

1
CA; (A29)

~A22 ¼ ð~A11Þt; (A30)

where

�1 ¼ 4l
kþ l
kþ 2l

� �
; �2 ¼ 2l

k
kþ 2l

� �
; (A31)

where k and l are the Lam�e parameters and q is the mass

density of the upper half-space. The 3� 3 sub-matrices of ~L
and ~K are

~L
6

1 ¼
1

ð2qÞ1=2

s1

ðsP
3 Þ

1=2
� s1ðsS

3Þ
1=2

sr
� s2

cSsrðsS
3Þ

1=2

s2

ðsP
3 Þ

1=2
� s2ðsS

3Þ
1=2

sr

s1

cSsrðsS
3Þ

1=2

6ðsP
3 Þ

1=2
6

sr

ðsS
3Þ

1=2
0

0
BBBBBBBBB@

1
CCCCCCCCCA
;

(A32)

~L
6

2 ¼
q
2

� �1=2

c2
S

62s1ðsP
3 Þ

1=2
7

s1ðc�2
S �2s2

r Þ
srðsS

3Þ
1=2

7
s2ðsS

3Þ
1=2

cSsr

62s2ðsP
3 Þ

1=2
7

s2ðc�2
S �2s2

r Þ
srðsS

3Þ
1=2

6
s1ðsS

3Þ
1=2

cSsr

ðc�2
S �2s2

r Þ
ðsP

3 Þ
1=2

2srðsS
3Þ

1=2
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

(A33)

~K
6 ¼ 6ix

sP
3 0 0

0 sS
3 0

0 0 sS
3

0
B@

1
CA; (A34)

where sr is defined as in Eq. (A13), and the vertical slow-

nesses sP
3 and sS

3 are defined as

sP;S
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=c2

P;S � s2
r

q
for s2

r � 1=c2
P;S;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

r � 1=c2
P;S

q
for s2

r > 1=c2
P;S:

8><
>: (A35)

Here, cP and cS are the P- and S-wave velocities of the upper

half-space, respectively, defined as cP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
and

cS ¼
ffiffiffiffiffiffiffiffi
l=q

p
. On substitution of Eqs. (A32) and (A33) into

Eqs. (A10) and (A11), we obtain
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~D
6

1 ðsÞ ¼
qc2

S

sP
3 sS

3 þ s2
r

6ððc�2
S � s2

2ÞsP
3 þ s2

2sS
3Þ 6s1s2ðsP

3 � sS
3Þ �s1ðc�2

S � 2SÞ
6s1s2ðsP

3 � sS
3Þ 6ððc�2

S � s2
1ÞsP

3 þ s2
1sS

3Þ �s2ðc�2
S � 2SÞ

s1ðc�2
S � 2SÞ s2ðc�2

S � 2SÞ 6sS
3c�2

S

0
BB@

1
CCA; (A36)

f~D1ðsÞg�1 ¼ 1

2q

s2
1

sP
3

þ 1

c2
S

� s2
1

� �
1

sS
3

1

sP
3

� 1

sS
3

� �
s1s2 0

1

sP
3

� 1

sS
3

� �
s1s2

s2
2

sP
3

þ 1

c2
S

� s2
2

� �
1

sS
3

0

0 0 sP
3 þ

s2
r

sS
3

0
BBBBBBBBB@

1
CCCCCCCCCA
; (A37)

�f~D2ðsÞg�1 ~D
�
2 ðsÞ ¼

1

2
0

s1 Sc2
S �

1

2

� �
sS

3

0
1

2

s2 Sc2
S �

1

2

� �
sS

3

�
s1 Sc2

S �
1

2

� �
sP

3

�
s2 Sc2

S �
1

2

� �
sP

3

1

2

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

; (A38)

where S ¼ sP
3 sS

3 þ s2
r .
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For the elastodynamic wave equation discussed in

Appendix A.4 in Ref. 1, the expressions for matrices ~L
6

1

and ~L
6

2 in Eqs. (A32) and (A33) must be multiplied by 61.

In other words, the signs of ~L
�
1 and ~L

�
2 have to be changed,

whereas the signs of ~L
þ
1 and ~L

þ
2 remain unchanged. With

these corrections, matrix ~L, defined in Eq. (A5), fulfills the

symmetry property formulated by Eq. (A6). The corrections

have no consequences for Eqs. (A36)–(A38).
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