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As shown by Pierce [J. Acoust. Soc. Am. 87, 2292-2299 (1990) ], the influence of the static 
pressure on sound propagation through the atmosphere is only of the second order. For very 
accurate predictions, the improvements suggested by Raspet et al. [J. Acoust. Soc. Am 91, 
498-500 (1992) ] can be used, but then other second-order effects and cross products should be 
taken into account as well. The two-dimensional Fourier transform can be used for three- 

dimensional sound-pressure predictions considering the method of stationary phase. Errors are 
well within 2% for common temperature and wind gradients, provided that the wind vector is 
parallel to the vertical plane through the source and receiver. For situations with a cross-wind 
vector full three-dimensional calculations are recommended. These situations were avoided in 

the original article [Nijs and Wapenaar, J. Acoust. Soc. Am. 87, 1987-1998 (1990) ]. 

PACS numbers: 43.28.Fp, 43.20. Fn 

INTRODUCTION 

The comments of Raspet et al. • on the method as we 
introduced it 2 can be summarized as follows: (1) The 
method does not take into account ambient pressure and 
density variations with height, and (2) The use of a one- 
dimensional Fourier transform is not justified. We will deal 
with these subjects in different sections, but we will start 
with the second topic. 

I. THREE-DIMENSIONAL PROPAGATION PREDICTED 
WITH A TWO-DIMENSIONAL MODEL 

In our article, we introduce a calculation method in 
three dimensions based on the Fourier transform from 

x • kx, y• ky, and t• to, defined as [ see Eq. (7) of Ref. 2 ]: 

fff_ P( kx ,ky,z, to ) = p ( x,y,z,t ) e - •'øteik•e/kYdt dx dy. 
(1) 

This method can handle both wind and temperature ef- 
fects (separately or combined) as long as the medium is built 
up in horizontal layers (a so-called stratified medium). The 
Hankel transform that is used in previous calculation meth- 
ods has one disadvantage when compared to our model: It 
depends on only one variable r and hence requires cylindri- 
cal symmetry around the z axis. So the temperature effect, 
which has cylindrical symmetry, can be dealt with, but the 
wind effect cannot be handled separately. 

After introducing the theoretical scheme for the three- 
dimensional method, we restricted ourselves to two-dimen- 
sional calculation schemes by leaving out the transform from 
y • ky. The only reason was to save computer time and me- 
mory. However, the outcome of the two-dimensional com- 
puter calculations is used for three-dimensional sound pro- 
pagation as well. We fully agree with Raspet et al. that there 

is little justification for this step in our article 2 and therefore 
we want to be more specific on this subject. 

The justification is explained with the method of sta- 
tionary phase. 3 It starts with the following relation between 
the sound pressure in a two-dimensional sound field (P2i•) 
and the sound pressure (P3D) in a three-dimensional field: 

P2D (X,2, O) • P3D (x,y,z,w)dy. (2) 

Now P:I• is approximated in terms of P3i• by 

P:i• (x,z,w) = Cp3i• (x,y = yo,z,w), (3a) 
with 

C = •J 2•rj/•b" (x,y = Yo ,z,w ). (3b) 
Here, 4 (x,Y,Z,w) represents the phase of the complex func- 
tion P3i• (x,y,z,w). The primes denote differentiation with 
respect toy. The equation is valid in the far field. There is one 
important condition for this method: It can only be applied 
when 4' (x,Y = yo,z,w) = 0 in y = Yo (hence the name of the 
method). 

If the symmetry plane is taken in y -- 0, the method of 
stationary phase can be used in our own method. Tempera- 
ture effects are treated correct, as their circular symmetry 
automatically leads to a mirror symmetry around y = 0. Si- 
tuations with wind gradients are only symmetric around 
y = 0 when cross wind components are neglected. That is 
why we explicitly confined ourselves in the article 2 to those 
situations where the wind vector points in the x direction. 

Now the main question of this section (can a two-di- 
mensional method be used to solve three-dimensional prob- 
lems) has reduced to the question whether or not C can be 
solved. 

In the homogeneous free-field case solving C is easy. In 
that case the sound field from a monopole source situated at 
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(0,0,Zs) is given in the Fourier domain as 

P(k•,ky,z, to) = exp ( - jk z I z - Zs I)/Jkz, (4) 
leaving out an arbitrary amplitude factor. 

Here, k• is given by 

k• =ko • --k 2 --k 2 (Sa) x y• 

,,, (Sb) 

in three and two dimensions, respectively. 
The Fourier transform from k• to x is solved numerical- 

ly in our article, but for a homogeneous free field it can be 
solved in closed form as well (see, for instance, Ref. 4). 
Then, we find 

P3D (x,y,z,o)) = (2•rr) -le-•r, (6a) 

P2D (X,Z, tO ) = ( 2•rkr) - l/2e --j ( kr q- •'/4). (6b) 
Actually, the 2-D solution contains a Hankel function, but 
this function reduces to the exponential function for the far 
field. The values of r, given by 

r = [ (z -- Zs )2 ._[_ X2 ._[_ y2] 1/2, (7a) 
r = [ (Z -- Z s )2 .•_ X2] 1/2, (7b) 

give the distances between source and receiver. 
In a homogeneous free field case, the phase • is propor- 

tional to -- kr, and the solution of C from Eq. (3b) is found 
as 

Co = ( -- 2•r/k ) 1/2, ( 8 ) 

As expected Co gives indeed the ratio between the two solu- 
tions of Eqs. (6). 

When a ground surface is added (but the medium re- 
mains homogeneous), phase shifts are introduced due to the 
mirror source and the value of Co will be slightly different 
from the free-field value. However, if ZZs/r a ,• 1 and kr> 1, 
these differences can be neglected. These conditions are al- 
ways fulfilled in the situations described in our article. 2 

It is interesting to note that in this particular case it can 
be proved numerically that the two-dimensional calculation 
method may well be used to calculate three-dimensional 
sound pressures, as the computer results can be compared 
with previous models on sound propagation over absorbing 
ground surfaces. These models are basically three dimen- 
sional. For the comparison, we used the calculation method 
given by Attenborough et al. 5 The agreement was excellent; 
we never found differences between both methods larger 
then 1 dB, while these differences might be caused by com- 
putational errors as well. 

The next step is to compare a case with a vertical gra- 
dient plus an absorbing ground surface with the homogen- 
eous free-field case. Then, we find for the homogeneous case 
without a ground surface: 

P2D,0 (X,Z, CO ) = C0P3D,0 (X,0,Z, CO ), (9) 

and when both a gradient and a ground surface are present: 

P2D,g ( X,Z, tO ) --- CgP3D,g ( x,O,z, to ). ( 1 O) 
Dividing Eq. (10) by Eq. (9), we find 

P3D,g C0P2D,g 
•=•. (11) 
P3D,0 CgP2D,0 

The value of P2D,g was numerically calculated in our arti- 
cle. 2 Here, Pm,o andp3r•,o are known from the homogeneous 
cases, sop3r•,g can be calculated if the quotient of Co and Cg is 
known. 

In our original article, 2 we did not calculate P3D,g, but 
we restricted ourselves to the so-called insertion loss (IL), 
defined as: 

IL = 2010glpg/Po I. (12) 

We claimed that the insertion loss in the two-dimensional 

case would be approximately the same as in the three-dimen- 
sional case. From Eqs. ( 11 ) and (12), it can be concluded 
that this statement is true when Co •Cg. If, again, we as- 
sume that phase shifts from the boundary surface may be 
neglected, the only phase shifts causing changes in Cg come 
from the difference in medium parameters. For temperature 
gradients (with their circular symmetry), the quotient 
Co/Cg will be approximately equal to (kg/ko) 1/2. That 
means that the error will be no more than 2% in extreme 

cases, and thus may be neglected for the cases we dealt with 
in the article. For wind gradients, the error can be calculated 
as w/2c, with w the wind speed and c the sound speed. This 
error is also 2% in extreme cases. It should be emphasized 
again that this calculation can be carried out only when the 
cross wind component is absent. When the wind vector has a 
component in the y direction, the phase is no longer sym- 
metric and full three-dimensional computations are recom- 
mended. 

We restricted ourselves in our article explicitly to those 
cases where the wind in the y direction equals zero. In out- 
door measurements, however, the wind speed is mainly gi- 
ven as the vector in the direction from source to receiver. 

This must be done because it otherwise takes too long to wait 
for those meteorological cases where the cross wind speed 
equals zero. The question arises whether our model could 
also be expanded to cases with a non-zero cross wind speed. 

De Jong did a lot of work in our laboratory examining 
the Parkin and Scholes measurements, 6'7 including extra 
measurements published in separate reports. Unfortunately, 
he did not publish the results in his thesis. 8 He stated that, 
generally speaking, the two-dimensional case can be used for 
those cases where the cross wind speed is no more than 1/2 
the component in the direction of sound propagation. For 
higher ratios, the influence of the cross wind speed is too 
important. The vector wind speed used by Parkin and 
Scholes is therefore not a good indicator. This can also be 
concluded from the very large variation in the measured re- 
sults of Parkin and Scholes when the vector wind speed in 
the x direction equals zero. 

Our conclusion agrees with that of Rasper et al. that 
three-dimensional computations are strongly needed to cal- 
culate the influence of cross wind situations. We ourselves 

have no plans in that direction in the near future, but we look 
forward eagerly to calculation results on this subject. When 
there is no cross wind the method of stationary phase justi- 
fies the use of a two-dimensional method to predict three- 
dimensional sound propagation. The effect of temperature 
gradients in three dimensions can be calculated also with a 
two-dimensional model. 
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II. THE INFLUENCE OF STATIC PRESSURE IN THE 
ATMOSPHERE 

Raspet et al. state in their comments I that density varia- 
tions are not taken into account in our model. This is a misin- 

terpretation. The sound speed is calculated [Eq. (13a) in 
Ref. 2] with 

c2 = YPo/Po , (13) 

with Po the ambient pressure and Po the density. It is true 
that the pressure is kept constant along z. However, density 
varies with z, as it is the only possibility to introduce temper- 
ature variations into the model. 

When we started our investigations described in the ori- 
ginal article, 2 we based our theory mainly on the work of 
Pridmore-Brown. 9 From his theory, we decided that the sta- 
tic pressure is only a second-order effect for the case we 
wanted to investigate: near horizontal sound propagation in 
air. There was one other important reason not to include 
static pressure: We do not know of any results from measure- 
ments where a pressure gradient could be isolated, so it is 
impossible to compare the model with measurements. 

However, although it was initially not our intention to 
account for ambient pressure variations, we will show that 
our equations are more general than might be concluded 
from our paper, and can be applied beyond the limits we 
gave. In other words, Eq. (13) can be used to account for 
pressure variations as well and is not restricted to near hori- 
zontal propagation. 

In concept with Raspet et al., we refer to the excellent 
article of Pierce, lO particular to his Eqs. (23), (21 ), and (3), 
which read in our notation: 

(1/po)V.(poV•b) --Dt[(1/c2)Dtqb] =0, (14) 
with 

p= --poDt•, (15) 

D, = •-• + w.V. (16) 
We quote Pierce: "Several pleasant surprises emerge during 
the derivation... the influence of gravity disappears, as does 
the influence of the ambient pressure gradients." Let us now 
assume a horizontal wind velocity and vertically varying 
ambient conditions. Then, applying a Fourier transform [ as 
given in Eq. ( 1 ) ], Eqs. (14), ( 15 ), and (16) transform to 

) 1 t3 t3• 2 k2--k: (I)=O, (17) Po c9z o q- 2 ,, c 

P = --jcolttPo (I), ( 18 ) 

Dt =jcol. t =jco( ] -- w•,k,,/co -- wyky/cO). (19) 

After substitution of Eq. (18) into (17), we obtain 

) , 2 P=0. c• c• P + • • o c•z •Po 
(20) 

This result is identical to Eq. (12) in our original article 
under the assumption that second-order derivatives with re- 
spect to z and products of first-order derivatives of the am- 
bient parameters can be neglected. Hence, our matrix Eq. 

(17) which was based on Eq. (12) (both in the original 
article2), is correct to the first order also in the presence of 
vertical ambient conditions. According to Pierce, the ap- 
proximations are of the same order as those in the well- 
known wave equation for an inhomogeneous medium with- 
out wind: 

(p_•l ø ) 1 c•:p =0. (21) po V' Vp C 2 03t 2 

Equation (20) [ and thus Eq. (17) of Ref. 2 ] is valid 
throughout the inhomogeneous medium. It can be solved, 
however, for simple gradients only. To solve it numerically, 
we developed a recursive extrapolation model through a me- 
dium divided into horizontal layers. To keep the propaga- 
tion matrices simple, we assume each layer homogeneous, 
although there are also solutions with layers that vary linear- 
ly. Although ambient pressure was left out as a variable in 
our original article, 2 the extrapolation model is well capable 
to account for ambient pressure variations from layer to 
layer. The ambient pressure can be introduced when using 
Eq. (13) (given in more detail in Eqs. (13a) to (13d)ofRef. 
2). Pressure variations can be taken into account just like 
temperature variations and our model is not restricted to 
near horizontal sound propagation. 

The improvements on our ,4 matrix [Eq. (19) of Ref. 
2 ], as suggested by Raspet et al. are on the order g/coc (as 
they state in their comments). When changing from the ,4 
matrix to the W matrix [ from Eq. (19) to Eq. ( 33 ) in Ref. 
2], improvements of the same order are found in the ele- 
ments of the Wmatrix. However, these are improvements in 
P. The improvements in the pressure gradient can be esti- 
mated when a new definition of kz is introduced. When the 
wind effect is left out we find in two dimensions: 

k = (oVc - g/c - k X ß (22) 

In our original definition, 2 the second term on the right 
side was not found. The static pressure is introduced by sub- 
stitution of Eq. (13) into Eq. (22). The influence of the 
second term on the pressure gradient is on the order 
292/a)2C 2 when compared to the first term and thus extreme- 
ly small in common sound propagation. As the value of the 
gradient is more important than the value of the static pres- 
sure itself for the calculation of the sound pressure, the 
changes suggested by Raspet et al. can be considered of the 
second order. 

If, for some reason, second-order improvements are 
necessary, we think all ambient parameters should be taken 
into account. Second-order derivatives and cross products, 
neglected by Pierce throughout the derivation of Eq. (21 ) 
and by us for the derivation ofEq. (12) of Ref. 2 may well be 
on the order g/coc too. Also the calculation scheme itself 
introduces errors of this order. 

Surprisingly, Raspet et al. ignored temperature and 
wind speed gradients in their matrix wave equation, which is 
actually a step backward with respect to our matrix wave 
equation. 
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III. CONCLUSION 

The matrix wave equation (presented in our original 
article 2) is not only applicable for wind and temperature 
effects, but for pressure variations as well. As long as the 
medium is stratified, any source or receiver height can be 
introduced. The improvements suggested by Raspet et al. 
are of the second order. 

The theory is basically three dimensional but our com- 
puter model is restricted to two dimensions for practical rea- 
sons. This two-dimensional model is able to predict three- 
dimensional sound propagation from a point source if the 
medium is symmetric with respect to the plane y -- 0, which 
is the case for temperature gradients and for wind gradients 
if the wind vector points in the x direction. For situations 
with a significant cross wind component a three-dimensional 
implementation of the method will be necessary for accurate 
predictions of the sound field. In the two-dimensional calcu- 
lations, large vertical separations between source and receiv- 
er should be avoided. 
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In a recent paper Nijs and Wapenaar [J. Acoust. Am. 87, 1987-1998 (1990) ] have developed 
a method for solving for the effects of horizontal winds on sound propagation in the 
atmosphere. In this development, Nijs and Wapenaar neglect terms containing the density 
gradient of the atmosphere which in their notation are comparable to the effects of the 
adiabatic temperature lapse rate on the sound-speed gradient. Their method represents a 
significant improvement over the use of an effective sound-speed gradient to express the effects 
of the wind only for high propagation angles. For these situations, one would expect errors due 
to the change in ambient pressure and density to be greatest. In this letter, a numerically 
attractive method to incorporate horizontal winds and a hydrostatic density gradient into a 
two-dimensional transform solution for sound propagation in the atmosphere is developed. In 
addition, Nijs and Wapenaar approximate the two-dimensional Fourier transforms by a single 
one-dimensional transform with little justification. Conditions are discussed under which such 
an approximation may be valid and it is demonstrated that these conditions are unlikely to be 
met by the two-dimensional kernal of Nijs and Wapenaar. 

PACS numbers: 43.28.Fp, 43.20. Fn 

INTRODUCTION 

Nijs and Wapenaar derived a two-dimensional Fourier 
transform solution for sound propagation in a layered atmo- 
sphere above a complex impedance ground surface. • Their 
solution assumes that the winds are horizontal and the prop- 
erties of the media only vary with altitude. In addition, they 
have assumed that the ambient pressure and density do not 
vary with height. Nijs and Wapenaar recognize that this lat- 
ter assumption may lead to inaccuracies in atmospheric pre- 
dictions and show that the neglected density gradient terms 
are of the same order of magnitude as gradients due to an 
adiabatic lapse rate of temperature. 

Previous fast Fourier transform methods 2 of predicting 
the effect of wind and temperature gradients on sound prop- 
agation have used the approximation that an effective sound 
speed in the direction of propagation can be used to describe 
the contribution of horizontal winds to refraction: 

Ceff : C(Z) -Jr" W(Z)COS[ 0(Z) ], ( 1 ) 

where c(z) is the sound speed in still air at altitude z, w(z) 
the wind speed, and O(z) the angle between the direction the 
wind is blowing to at the altitude z and the horizontal com- 
ponent of propagation direction. This approximation is only 
useful for low vertical propagation angles. The fast-field 
methods incorporate the density variation with height into 
layers with constant density, constant sound velocity, wind 

speed, and wind direction. Gradients of these properties are 
modeled by the use of multiple thin layers. 

Nijs and Wapenaar's method represents a significant 
improvement for sound propagation when the source and 
receiver have large vertical separation or the atmosphere is 
strongly refracting so that ray paths are at steep vertical an- 
gles. However, the variations with ambient pressure and 
density which the Nijs and Wapenaar method does not in- 
clude will be greatest for these situations. 

In addition, Nijs and Wapenaar assume that a one-di- 
mensional Fourier transform will give correct results for 
propagation in the spatial direction corresponding to the 
wave-number component for propagation in the downwind 
or uPWind. No direct justification is given for such an as- 
sumption. 

In this letter, we drive the matrix equations in pressure 
and particle velocity to correctly describe sound propagation 
in an atmosphere with altitude dependent pressure, density, 
sound speed, and horizontal wind vector, and investigate the 
limitations imposed by the use of the one-dimensional Four- 
ier transform in place of the two-dimensional transform. 

I. THEORY 

The matrix relations between pressure and particle ve- 
locity for a horizontally stratified media can be derived 
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based on Pierce's derivation of a wave equation for fluids 
with unsteady inhomogeneous flow. 3 Pierce derives a linear 
wave equation correct to first order in the ratio of acoustic 
wavelength to inhomogeneity length scale and also to first 
order in ratio of wave period to inhomogeneity time scale. 
Consequently, these equations do not apply to very low-fre- 
quency propagation in the atmosphere. 

We take Pierce's Eqs. (10a) and (10b) as our starting 
point: 

• P' Dtv' q- (v"V)Vo q- 1 Vp'--• Vpo 
Po (po C ) '- 

q- '•S 0 (poC) 2 •7pO = 0, (2) 

p' ) 1 v'Vpo +V.v' Dt q- c 2 Po c•- Po 

(3) 

where D t = •/•t q- Vo'V; p',v', and s' are the field quantities 
of pressure, particle velocity, and entropy, c is the speed of 
sound, Po the ambient density, po the ambient pressure and Vo 
the wind velocity. Pierce notes that s' is a first-order quantity 
in wavelength to inhomogeneity length scale and the last two 
terms in Eqs. (2) and (3) are therefore second order and 
may be omitted. 

At this point, we diverge from Pierce and apply Nijs and 
Wapenaar's conditions to Eqs. (2) and (3); namely, the 
wind velocity is horizontal and all spatial variations of am- 
bient conditions are functions only of altitude. To match 
Nijs and Wapenaar, we let Vo = w, and • be the unit vector in 
the z direction. Equations (2) and (3) become 

a ) ow kF aPO_o; (4) vp' + po + w.V v' + po v; & poC'- 
=0. 

3z • w.V) p' v.v' + (7;+ + po c2 

1 

,Oo c2 V; (5) 
Comparison of these equations with Eqs. ( 5 ) and (6) of Nijs 
and Wapenaar shows that their equations do not contain the 
last terms in Eqs. (4) and (5). 

Nijs and Wapenaar have restricted their analysis to an 
isobaric atmosphere, and so the matrix equations they derive 
are only correct for that case. It is not clear if the assumption 
of an isobaric atmosphere in their notation will produce rea- 
listic results for comparison with outdoor sound propaga- 
tion data. The introduction of horizontal winds instead of an 

effective sound velocity into the calculations should only be 
significant for high angle propagation where the effects of 
wind are not equivalent to a change in sound velocity, but the 
ambient density and pressure variation then should affect 
the wave variables. 

Equations (4) and (5) may be two dimensionally Four- 
ier transformed and a propagation matrix similar to Eq. 
(17) ofRef. 1 developed for the vertical component of parti- 
cle velocity and the pressure in an atmosphere with vertical- 
ly varying ambient density, ambient pressure, and horizon- 
tal winds. In the following, we will use e - io,, notation, rather 

than Nijs and Wapenaar's e +jot notation. The transform 
equations for pressure are 

P ' ( k,k,z,o ) 

=fff_•oop'(x,y,z,t)ei•'te-ik•e-ik•Vdtdxdy 
and 

(6) 

l fff © p' ( x,y,z,t ) = •-• P ' ( kx ,ky ,z,w ) 
X e - iø•teikxXeik9'do) dkx dky. (7) 

Using similar transform equations for the components of 
particle velocity, we find 

-- kOpo(1 k•w• kywy.)V; ' 
+ Po V; + ik•P' = 0; 

dz 

_.o(1 
+ Po V; dwy dz + ikyP' = O; 

- iwpo(1 k,,w,, kyWy)v;_ t •P' P' dœo 

(8) 

•Z po c2 dz 

(9) 

/ = O; 

and 

(lO) 

- ) v; apo -- iw 1 kxw• kywy P' -t c2 t- ik• V• po c2 co co Po dz 

q-ikyV; q- & =0. (11) 
With the substitution /z= 1-k,,w,,/c-kywy/c and 
k = to/c Eqs. (8), (9), and (10) can be reduced to equa- 
tions relating to p' and V;' 

c•P ' 1 dPo 
• P' q- iwpotzV;, (12) 

•9z po c2 dz 

[•t2k 2 _ k 2 _ k 2 ]p' x y 

and 

3z Wpo!• 

Po dz 
(13) 

These equations will reduce to a form solvable by the 
propagation matrix method for a model atmosphere com- 
posed of layers with constant temperature and constant 
wind speed under the condition of hydrostatic equilibrium. 
Within each layer Po and Po are exponentially decreasing 
with height as exp( -- ygz/c2), where yis the ratio of specific 
heats for atmosphere and g is the acceleration due to gravity. 
The effects of gradients of sound speed, wind speed, and 
wind direction on sound propagation may be modeled using 
multiple thin layers. The ambient pressure and density are 
related by YPo/Po = c2, where c is a function only of tempera- 
ture. Within each layer Eqs. (12) and (13) become 
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•= _ (g/½2)p, + icopot•V•, (14) 

and 

•= 2)p,+ g o9Vi i (/_t2k 2 _ k 2 _ k y •-• V•. (15) c•z cOpo/• • 
With the definitions of new variables P" and V;' such that 
P' - P "x[po and V • = V •'/xfpo, Eqs. (14) and ( 15 ) become 

c9z [ V;'] --A + , (16) V7 S,5(z -- z• ) 
where 

and 

All = -- (1 -- •//2)g/c 2, 

A 12 = icot•, 

2) A21 -- (i/co/t) (•2k 2 __ k 2 _ k y 

A22: ( 1 -- ?'/2)g/c 2. 

The AllP" term and A22V •' terms are on the order of 
g/coc smaller than the A 12 V}' and ,42•P" terms respectively 
for kx and ky small. The scaling of the pressure variable by 
the density will be significant for propagation from a source 
to a receiver with wide vertical separations. 

Equation (16), along with the boundary conditions, can 
be used to solve for the Fourier transform of the pressure and 
vertical particle velocity. The time domain pressure and par- 
ticle velocity can then be calculated with the inverse Fourier 
transform. In fast field programs, one Fourier transform cal- 
culates the pressure dependences with radial distance from 
the source. In the Nijs and Wapenaar notation, a two-dimen- 
sional discrete Fourier transform transform will produce the 
pressure as a function ofx and y for fixed source and receiver 
heights. 

!1. NUMERICAL METHODS 

Nijs and Wapenaar have restricted their results to the 
use of a one-dimensional Fourier transform and display re- 
suits only for upwind and downwind propagation. A one- 
dimensional transform with kx equivalent to a two-dimen- 
sional transform in kx and ky only if the kernal of the 
transform does not depend on ky or has a delta function 
dependence on ky. 

Even if wy is zero, the propagation matrix in Eq. (17) of 
Ref. 1 will contain ky. That Nijs and Wapenaar obtain rea- 
sonable predictions from the one-dimensional transform in- 
dicates a delta function behavior of the kernal with ky. A 
theoretical or numerical evaluation of the behavior of the 

kernal in two dimensions would serve to clarify this point. 
The matrix element A21 contains the same dependence on ky 
as Eq. (17) of Ref. 1. If a two-dimensional transform is 
necessary for accurate prediction it will be computationally 
expensive, however the use of the fast Fourier transform in 
two dimensions will produce a map of sound-pressure level 
versus position for given source and receiver heights around 
a spherically symmetrical source in a horizontally stratified 
wind and temperature field. 

III. CONCLUSIONS 

Nijs and Wapenaar have addressed an important prob- 
lem in outdoor sound propagation. The inclusion of the wind 
as a horizontal vector into an FFP like calculation is neces- 

sary for the prediction of sound propagation for nonhorizon- 
tal geometries typical of aircraft noise. However, their nota- 
tion and results are limited to near horizontal propagation 
where the use of an effective sound speed is valid. That tem- 
perature gradients are equivalent to wind speed gradients for 
their test cases is noted in Sec. IIIA of Ref. 1. 

We have derived a propagation matrix that includes the 
variation of pressure and density with altitude. A numerical- 
ly attractive form of the propagation equations is developed 
for a model atmosphere composed of layers with constant 
temperature, constant wind speed, constant wind direction 
in which the ambient density obeys the hydrostatic equation. 
In the future, we plan to investigate the behavior of the two- 
dimensional kernal and to develop methods of evaluating the 
two dimensional sound pressure field using two-dimensional 
transforms. 
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