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Using the forward matrix model, as derived in part I [A. J. Berkhout, J. Acoust. Soc. Am. 93,
2005-2016(1993) ], it is shown that the first and main part of numerical acoustic imaging
consists of a wave field extrapolation process by double matrix inversion. Physically, the wave
field extrapolation process means that the downward propagation effects and the upward
propagation effects are eliminated from the measurements. Next, the reflection information is
extracted from the wave field extrapolation result. Optionally, the reflection information is
translated to discipline-oriented material parameters by some data fitting process. Double
focusing, i.e., focusing in emission and focusing in detection, is closely related to the above
numerical imaging process. Finally, it is shown that imaging of zero-offset or puls-echo data
can be formulated by single matrix inversion, involving phase shifts only.

PACS numbers: 43.60.Gk, 43.60.Pt

INTRODUCTION

In part I of this paper (Berkhout, 1993) a general for-
ward model has been derived for discrete acoustic reflection
data:

M
P_ (ZO) = ( Z w_ (ZO!zm )R+ (zm )w+ (znuzo))

m=1

XS+ (z,), (1a)

with
S§7(20) =D (2,)8(z), (1b)
P(z,) =D~ (2)P ™ (2). (1¢)

In expressions (1a)-(1c) two corresponding columns in the
source matrix S (or $*) and measurement matrix P (or
P ~) refer to one experiment. Matrix operators D+ and D ~
are defined by the boundary conditions at the data acquisi-
tion surface (z=z,) as well as the choice of sources and
detectors (velocity and/or pressure). Propagation matrices
W+ and W ~ define the propagation effects in the measure-
ments; reflection matrix R* defines the (angle-dependent)
reflection effects in the measurements. All matrices refer to
one Fourier component (frequency domain formulation).
The choice of a frequency domain formulation has the im-
portant consequence that the multi-dimensional forward
model (1a) is relatively simple. To keep the notation simple
as well, the frequency parameter @ has been omitted. Note
that in one-dimensional media all matrices simplify to Toe-
plitz matrices and matrix equation (1) can be rewritten as a
scalar equation in the spatial Fourier domain:

P~ (k,.k,,zp,0)

M = _—
= 2 [ W B (k,.,AZm,a))R + (k,,ks,zm ,a))

m=1
X W * (k,,Az,,0) 15 * (k,z00) (1d)
withAz,, = (z,, —zy), k = (k,,k,), subscript s referring to

2017 J. Acoust. Soc. Am. 93 (4), Pt. 1, April 1993

0001-4966/93/042017-07$06.00

the source coordinate, and subscript 7 referring to the receiv-
er coordinate.

In part I multiple scattering caused by the surface has
been simply introduced by using in (1a):

P*(2) =8%(z) + R™(20)P ™ (2) (2)

instead of S * (z,,), where R ~ (z,) defines the surface reflec-
tivity for upward traveling waves. Expression (2) has also
been generalized for internal multiple scattering.

The objective of the proposed forward model is not pri-
marily for simulation purposes (there exist excellent finite
difference and finite element algorithms for acoustic simula-
tion). The primary objective of our version of the forward
model is the derivation of a generalized acoustic imaging and
inversion process. We will see that our formulation in terms
of matrix operators is pre-eminently suited for the derivation
and understanding of imaging and inversion methods.

In the forward problem all details about the data acqui-
sition procedure are known, the acoustic properties of the
surfaceand medium (trend and detail) are available, and the
measurements need to be computed (“numerical simula-
tion”). In the case where we start with reflectivity, simula-
tion means

R+ (2)-»P(z). (3a)

In the inverse problem, all details about the data acquisition
procedure should be known, the measurements are avail-
able, and the medium parameters need to be computed. If
the spatial reflectivity distribution is aimed for (reflection
imaging), inversion means

P(z,)-R* (2). (3b)
Generally, in reflection imaging the diagonal elements of
R * (z) are computed only, meaning that the angle-depend-
ence information of reflection is not aimed for (one reflec-

tion coefficient per medium grid point).
For a high-resolution result the localization (position-
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ing) information can be supplemented with shape and size
information. In addition, if a// elements of the reflection ma-
trix are computed, then for each grid point angle-dependent
reflection information is available as well and reflection
imaging can be followed by the computation of the material
parameters (post processing):

R*(2)-p(2),c,(2),¢,(2), (3¢)

where p(z), ¢,(2), ¢,(z) are diagonal matrices that repre-
sent, respectively, density, longitudinal velocity, and shear
velocity (if applicable) at each grid point of depth level z. In
most imaging techniques results are not in terms of material
parameters but are in terms of local reflectivity (reflection
imaging).

I. IMAGE FORMATION BY DOUBLE INVERSION

If we ignore for the moment the influence of the surface
on the measurements and we assume perfect dipole sources
and pressure detectors [D 7 (z5) =D (z,) =S (z,)

= 1], then the forward model (1a) simplifies to

P(zy) = X(24,20)
with

M
X(zo20) = Y W7 (20,2,,)R* (2, )W (2,,,2,).
m=1
If the objective of reflection imaging involves estimation of
R ™ (z,,), it can be seen from the above expression that the
downward propagation effects from z, to z,, and the upward
propagation effects from z,, to z, need be compensated. Or,
in mathematical terms, the propagation matrices
W+ (z,.,2,) and W ~ (z,,z,, ) need be inverted:

X(z,,2,,) =F 7 (2,,,20) X (20:20)F * (20,2, ) (4a)
with _
F=(z,.20) = [W™ (202,)] "' [W* (2,200 ]*
(4b)
F+(20!zm) = [w+ (zm’zO)] _IZ[W_(ZO,ZM)]*,
(4c)

where W is based on the macro model and where * denotes
complex conjugation.

In the seismic exploration inversion process (4a) is gen-
erally referred to as “redatuming.” From (4a) it follows that
the elements of X(z,,,z,,) can be written as

Xij (zm Zm ) = ; ; F,; (zm ’ZO)Xkl (ZO9ZO)F{7_ (ZO’zm )

(5a)
or, if we are interested in the diagonal elements only,

Xi(Zmi2m) = 3 3 F i (2,,20) X1y (20,20) F i (2052,
k! (Sb)
In practical solutions one generally chooses
F i (z,,2) = [I'_V.Z' (z,,529) ] *,
F il (202,) = [W (z02,) ] %,

which is consistent with the suggested approximations in
(4b) and (4c¢).
Note that for one-dimensional macro models numerical
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image formation involves a double deconvolution process.
Figure 1 gives a schematical illustration.

After the double inversion process (4) has been com-
pleted for all Fourier components of interest, reflectivity ma-
trix R* (z,,) needs to be computed from X(z,,,z,,). First,
let us look at the Radon transform of one row of X(z,,,2,,):

X(X:2s05p) = 3 Xyt (20,2, Y 7P, (6a)
k

where p is the ray parameter.

Expression (6a) represents the response of the medium
at grid point (x;,z,, ) in terms of plane waves. Realizing that
the inversion operators F~ and F* remove the propagation
effects (travel time and geometrical spreading) from the
measurements, the contribution of the inhomogeneities at
z,, in X(x,,2,, ,w;p) can be found at ¢ = 0, the contribution
from deeper depth levels (z>z,,) can be found at positive
times and the contribution from shallower depth levels
(z<z,,) can be found at negative times. Hence,

N
R * (X1y2m3p) = % S X(X,2,0,3P) (6b)
n=1
represents the angle-dependent reflection coefficient at grid
point(x;,z,,). Note that the inverse Fourier transform
(w—t=0), as given in (6b), may also be considered as an
averaging process where all contributions from z+#z,, are
averaged away. In practical situations averaging will occur
over a limited frequency range only, and weighted averaging
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FIG. 1. Image formation involves double matrix inversion or, for one-di-
mensional media, a double deconvolution process along the source and re-
ceiver coordinate.
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may be applied (noise considerations). Of course, the less
frequencies contribute to the average, the more the influence
from other depth levels (resolution considerations).

Now, the reflection matrix elements for one Fourier
component follow directly from (6b) by inverse Radon
transformation .

L
R‘_Z— (z,) =%2 R +(xi’zm;pl)e—jw(x;—xk)ﬁ'/, (6¢)
=1

where L is the number of ray parameters. Reflection coeffi-
cients R * (x,,2,,;p,) and matrix elements R ;| (z,,) are al-
ternative presentations for the angle-dependent reflection
property at (x;,z,,).

Note from (6c) that each diagonal element of the reflec-
tivity matrix equals an average reflection coefficient

L ~

Ri ) =7 3 R (uzip): (6d)
I=1

Note also that R ;} (z,,) can be easily computed directly

from redatuming result X(z,,,z,,):

N
REG) == S Xy(Znizm)s (6e)
N n=1

where the diagonal element X, (z,,,z,, ) represents one Four-
ier component (frequency w,) of the zero-offset (puls-
echo) response at grid point (x;,z,, ). As mentioned before,
R [ (z,,) is the quantity that is generally-aimed for in con-
ventional reflection imaging.

In seismic exploration image formation by double inver-
sion according to (5b) and averaging according to (6¢) is
called “seismic migration.”

Il. IMAGE FORMATION BY DOUBLE FOCUSING

In the aforegoing, numerical image formation was
achieved by eliminating the influence of the propagation ma-
trices W+ and W~ from P(z,) in a separate data processing
step, yielding the (angle-dependent) reflection properties at
each lateral position of depth level z,, as quantified by reflec-
tion matrix R+ (z,,).

In the following an alternative approach is followed by
designing the source array and detector array such that a
reflection image is directly obtained as part of the data acqui-
sition step.

(1) Choose the ith column of S * (z,), i.e., the source
array at lateral position x;, according to column vector
St (z,) such that

I, = W+ (Zm,ZO)S,-+ .(zo)s (7a)

where I, = e~ *""(0,...,0,1,0,...,0) 7 with 7,, being the aver-
age vertical travel time between the surface and the mth lev-
el. This means that with the ith experiment the ith lateral
position of depth level z,, is illuminated only. Therefore,
(7a) quantifies focusing at emission [Fig. 2(a)].

(2) Choose the ith row of D~ (z,), i.e., the detector
array at lateral position x;, according to row vector D;” (z,)
such that

I7=D; (z,)W "~ (20,2,,.)- (7b)

This means that with the ith experiment only the informa-
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FIG. 2. (a) Generalized focusing in emission; (b) generalized focusing in
detection.

tion of the ith lateral position of depth level z,, is received.
Therefore, (7b) quantifies focusing at reception [Fig.
2(b) 1.

One double focusing experiment according to (7a) and
(7b) yields for the inhomogeneities at z,,,:

X;i (20,20)
=D, (z,)
M
X( z w- (Zgs2y, )R (z, W+ (Zh:zo))s,-+ (z9)

h=1
= [D; (z29) W~ (202,,) ]R " (2,,)
X [W(2,,,20)S; (20) ] + €(z#2,,)
=R (z,)]; + €(z#2,,)
=R} (z,)e ¥4 e(z#2,,) (82)
or, after inverse Fourier transformation for ¢ = 27,, (“aver-

aging”),

3 N jw,T,
RF(z,) =% z X; (ZOyZo)eZJ " (8b)

n=1

In (8b) the contribution of
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L ﬁ €(z#z,,)e”"™
N n=1 "
represents the effect of limited resolution.

Note that, apart from resolution problems, the partially
focused contribution from inhomogeneities at z <z, canbe
found at ¢ < 27,,; the partially focused contribution from in-
homogeneities at z> z,, can be found at 7> 27,,. Note also
the similarity of (8b) and (6e).

The experiment should be repeated for each lateral posi-
tion and for each depth level of interest.

lll. IMAGE FORMATION FOR ZERO OFFSET DATA

In part I (Berkhout, 1993) we have shown that the
model of zero offset data (pulse-echo data) can be formulat-
ed as

M
Py (20) = Z wo(zo;zm R, (z,), 9

m=1

where P; (z,) contains the diagonal elements of
P~ (z,), Ry (z,,) contains the zero offset reflection coeffi-
cients at z,, and the elements of W, (z,,z,, ) contain the prod-
uct of the related elements of [WH*(z,,z,) ] T and
W~ (2,2,,).

It can be easily seen from (9) that redatuming of zero
offset data involves only one matrix inversion per depth level

PO_ (z,) = FO(zm ’zo)Po_ (20) (10a)
with
FO(zm ’ZO) = [wo(ZOyzm )] - ly

the inversion being carried out in some stable sense.
Computation of the zero-offset reflection coefficients
simplifies to

(10b)

1 N

R (x,2,,) =% Y Pg (X1,2,,0,). (11)
n=1

For the evaluation of [Wo(20,2,, )]~ ! let us consider a ho-

mogeneous medium. For a homogeneous medium with di-

pole sources and pressure detectors one row of W, ( Zp,Z,,) i

defined by (far-field expressions):

Wo(x,Az, ,0) = W?(x,Az,,,0)

. 2 )
=%—°"i - (2D),  (12a)

Wo(X,,V,AZm,w) = Wz(xyyyAzm ,(l))
= ﬁ)z o’ ks 3D
(217' 7 ¢ GD)
(12b)

with k=w/c,r= ,/x’ +AZ, (2D) or

r=yx>+y’+ Az, (3D) and cos ¢ = Az, /r. Note from
(12a) and (12b) the important property that the time delays

in W, equal the time delaysin W — (= W * ) if the velocity
cis replaced by ¢/2.

Vector equation (9) can be rewritten in the spatial
Fourier domain as a scalar equation
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M —~ ~
Py (kzgo) = Y Wy(kAz,,0)Rq (kz,,0),
m=1
(13a)

where k = (k,,0) for 2D and k = (%,,k, ) for 3D.
Using the stationary phase approach for the spatial
Fourier transform we obtain

= ki —jk Az
Wo(k,Azm,w) =ﬂ SJT e Ao (ZD):
@ Az,

(13b)
~ ik 2 Az
Wo(k,Azm,w) =£(81Tz)e ijAm (3D)’

o \87Az,
(13¢)
with
2
k, = (ﬂ) — k.
w

Note that W, equals the convolution of W~ with % + along
k (Berkhout, 1985, Chap. VI).

Similar to the multi-offset situation, the bandlimited in-
verse operator for zero-offset data is given by

Fo(k,Az,,,0) = W '(kAz,,0) for |k|<c/%,
(14a)
W, being given by (13b) and (13c).
Using again the stationary phase approach for the in-
verse spatial Fourier transform we obtain
Fy(x,Az,,,0) = — 2je¥* (2D), (14b)
Fy(x,p,Az, ,0) = — 4e¥*" (3D). (14¢)

Note that these expressions represent one row of
Fo(z,,20) = [Wo(20z,,)] ™"

IV. IMAGE RESTORATION

Perfect imaging results require

W (z,,20)F* (25,2,,) =1,

F~(z2,,,20)W ™ (20,2,,) = |.

Unfortunately, these results can never be reached in prac-
tice. We mention two fundamental reasons:

(1) Due to the limited spatial bandwidth of propagation
matrices W+ and W—, F* and F ~ do not exist and bandli-
mited versions must be used.

(2) Due to limitations of the macro model the propaga-
tion matrices W+ and W~ are not correct and the bandli-

mited inversion results will be further degraded, particularly
by phase residuals.

Mathematically,
W™ (z,.2))F* (202,,) =E™* (2,,), (15a)
F~(z,.20)W~ (20,2,,) =E~ (2,,), (15b)

F* and F~ being generally defined by (4b) and (4c).
If S+ (zy) and D ~ (z,) cannot be represented by unity
matrices, then
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[W™(z,,20)8 " (20) ]JF* (202,,) =E™" (2,,), (l16a)

F~(2,,20)[D ™ (20)W ™ (2p,2,,) ] =E " (2,,). (16b)
In (15) and (16) the bandlimited properties of E* and E ~
are determined by the bandlimited properties of (W *,87%)
and (D —,W™) and the phase properties of E* and E ~ are
determined by the phase differences between (W+,W )
and (W+,W~).

Note that in hypothetical situations E* and E ~ could

be unity matrices, but in practice they always represent band
matrices, causing so-called blurred images:

R(z,) =E~(z,)R* (z,,)E* (z,,) (17a)

or
RiG) =3 S Ez (2R @)E [ (2,) (17b)
k []

or, assuming a diagonal reflectivity matrix,

Ri(z) =S EXz)R} (z,) (18a)
J
with
E}=E;E;. (18b)

Equations (17) and (18) define the underlying equations for
the restoration process in acoustical reflection imaging.
Note that for laterally invariant media (18a) represents a
lateral convolution process for each temporal frequency
component.

V. IMAGING AS PART OF THE FULL INVERSION
PROCESS

So far the influence of the surface was neglected and
multiple scattering was ignored. In addition, it was assumed
that we were interested in the diagonal reflection coefficients
only. In the following reflection imaging will be set in a
broader context, allowing an easy comparison between im-
age formation and inversion techniques.

The full acoustical reflection inverse problem can be
subdivided in three principal steps (Fig. 3).

A. Surface-related pre-processing [Fig. 4(a)]

The data at the surface (z=z,) are decomposed in
down- and upgoing waves,

S (z5) =D (2,)8(z,), (19a)

P~ (2)=[D"(2)] 'P(z), (19b)
the influence of the source properties are eliminated,

X(zp29) =P~ (2))[S* (z9)] 7, (19¢)

and, optionally, the influence of the surface reflectivity is
removed

Xo(20:20) = [+ X(zpze)R 7 (25)] ~ ]x(zwzo),
(19d)

see Eq. (14) in part L.

B. Elimination of propagation effects [Fig. 4(b)]

The propagation effects of medium slice (z,,z,) are eli-
minated,
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A 4

surface-related
pre processing

\ 4

elimination of reflectivity
propagation effects image

\

target-related
data fitting

Y

Quantitative description
of target(s)

FIG. 3. Inversion of acoustic reflection measurements in terms of three
steps.

X(zy,2)) =F- (zlyzo)xo(zo,zo)f"' (20,21) (20a)
with

F*(zpz) = [W* (z,20)] !
and

F(z1,20) = [W (2021)] !

in some sense [see, e.g., (4b) and (4c)], the angle-depen-
dent reflection coefficients at the new depth level (z=2z,)
are computed by Radon transformation at ¢t = 0:

~

R * (x,z3p) = _]1\’ > (E X (z,,z,)e”“'"(x'_x*)p)
n k
(20b)

and, optionally, the influence of the new surface reflectivity
at z = z, is removed (internal scattering),

xo(zlle) = [I + x’(zpz1)ﬁ_ (21)] - lxl(21,2|),
(20c)

where
R-(z) = —R*(2),
X' (zp2) = [T~ (21~ '[X(z,2,) — R (2))]
X [T+ ()]
?“L(zl) =1 +ﬁ+(zl), and '?_(z,) =14+ ﬁ_(z,).

This step [Eqgs. (20a), (20b), and optionally, (20c)] is re-
peated for all depth levels of interest.

C. Target data fitting [Fig. 4(c)]

The reflection information (output of step 2) is used to
construct an initial model of the target. The initial model is
updated via an optimization algorithm by matching the sim-
ulated target response with the actually measured target re-

A. J. Berkhout and C. P. A. Wapenaar: Reflection imaging. Il 2021

¥€:€G:01 €202 18quedeQg G0



8z, , P(z,)

decomposition into one-way waves |— S+(z°) Pz

Y

deconvolution

> X(z,z)

A

elimination of surface-related
multiple scattering (optional)

l

Xo(757)

(a)

Xz

l

downward extrapolation

— X(z2mZm)

A

reflectivity computation — R*(z,,)

\

elimination of internal
multiple scattering (optional)

l

®) Xo(ZmyZm)

sponse. Nowadays there are many optimization algorithms
available, but we prefer the so-called Gauss—Newton ap-
proach (see, e.g., Gill ez al., 1981). The model of the target is
defined by tissue-oriented parameters (medical diagnos-
tics), defect-oriented parameters (ultrasonic inspection) or
litho-oriented parameters (seismic exploration). These dis-
cipline-oriented parameters need to be translated into veloc-
ity (cpscs) and density information before simulation can
start (Fig. 5). In the open literature very little attention is
paid to this important translation problem.

From the aforegoing we may conclude that reflection
imaging relates to step 2 in the inversion scheme, i.e., elimi-
nation of propagation effects, under the assumption that
multiple scattering energy and transmission losses are ne-
glected.

VI. CONCLUSIONS

(1) Acoustical reflection measurements are determined
by the combination of propagation and reflection effects of
the medium under investigation. Image formation can be
seen as the process that eliminates the propagation effects
from the measurements. The result is a spatial reflectivity
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FIG. 4. (a) Surface-related pre-processing; (b) elimination of propagation
effects (imaging); (c) target-related data fitting (characterization).

medical inspection seismics

litho-oriented
parameters

defect-oriented
parameters

tissue-oriented
parameters

A 4

translation into a spatial

> Cp Csip
distribution

A

A

wave equation
based simulation

simulated

target response
Pa(zo)

FIG. 5. Translation of the discipline-oriented model into an acoustic model.
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distribution (“‘structural image”), yielding information on
the local inhomogeneities.

(2) Mathematically, image formation can be formulat-
ed in terms of double matrix inversion; one inversion to com-
pensate for the downward propagation matrix and one in-
version to compensate for the upward propagation matrix.

(3) If angle-dependent reflectivity information is aimed
for, then an extra process is required in terms of Radon
transformation.

(4) Numerical image formation by double matrix inver-
sion can be translated into a physical measurement process
with double focusing; focusing is applied at emission to com-
pensate for the downward propagation effects and focusing
is applied at detection to compensate for the upward propa-
gation effects.

(5) Numerical image formation for zero-offset (or puls-
echo) data can be formulated in terms of single matrix inver-
sion. It is shown that for this type of data the inverse matrix
elements define simple phase shifts only.

(6) Full acoustical reflection inversion can be described
by three principal steps. In the first step the influence of the

2023 J. Acoust. Soc. Am., Vol. 93, No. 4, Pt. 1, April 1993

data acquisition surface is eliminated, including undesired
source and detector properties. In the second step the propa-
gation effects are eliminated, including multiple scattering.
In the third step the reflectivity information is translated
into material properties (“characterization”).

Numerical image formation may be considered as a sim-
plified version of the second step.
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