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For acoustic applications in which there is a ‘‘preferred direction of propagation’’~the axial
direction! it is useful to arrange the two-way and one-way wave equations into the same
matrix-vector formalism. In this formalism, axial variations of the wave vector are expressed in
terms of lateral variations of the same wave vector. The two-way wave vector contains the field
quantities pressure and velocity~axial component only!, whereas the one-way wave vector contains
waves propagating in the positive and negative axial direction. By exploiting the equivalent form of
the two-way and one-way matrix-vector equations, it appears to be possible to derive two-way and
one-way reciprocity theorems that have an equivalent form but a different interpretation. The main
differences appear in the boundary integrals for unbounded media, in the contrast terms, and~for the
correlation-type theorems! in the handling of evanescent waves. ©1996 Acoustical Society of
America.

PACS numbers: 43.20.Bi, 43.20.Rz@JEG#

INTRODUCTION

In several areas of acoustic research it is common use to
introduce a ‘‘preferred direction of propagation’’ and to ex-
ploit this preference in the construction of solutions of the
acoustic wave equation. Whereas in underwater acoustics the
preferred propagation direction ishorizontal, in seismic ap-
plications thevertical axis is generally chosen as the pre-
ferred direction. Throughout this paper the Cartesian position
coordinates are denoted by the vectorx5(x1 ,x2 ,x3) and the
x3 axis is chosen parallel to the preferred propagation direc-
tion. Hence, for underwater acousticsx3 denotes ‘‘range,’’
whereas it denotes ‘‘depth’’ for seismic applications. For
simplicity, in the following we speak for both applications of
theaxial coordinatex3 and thelateral coordinatesx1 andx2.

The aim of this paper is to derive and comparereciproc-
ity theorems for two-way and one-way wave vectors in con-
figurations with a direction of preference. In general, a reci-
procity theorem interrelates the quantities that characterize
two admissible physical states that could occur in one and
the same domain~de Hoop, 1988!. One can distinguish be-
tween convolution-type and correlation-type reciprocity
theorems~Bojarski, 1983!. Generally speaking, these two
types of reciprocity theorems find their applications in for-
ward and inverse problems, respectively. We start this paper
with a brief review of both types of scalar reciprocity theo-
rems.

In order to take account of the direction of preference, it
is useful to express the axial variations of some wave field
quantities in terms of the lateral variations of the same quan-
tities. First we introduce what we will call the ‘‘two-way
wave vector,’’ which contains the acoustic pressure and the
axial component of the particle velocity, and we derive reci-
procity theorems for this wave vector. When rewritten in

scalar form, they appear to be very similar to the above-
mentioned scalar reciprocity theorems, as might be expected.
The vector form, however, is better suited for a comparison
with the reciprocity theorems for, what we will call, the
‘‘one-way wave vector.’’

This one-way wave vector is introduced next; it contains
waves propagating in the positive and negative axial direc-
tion. Of course, when the medium parameters vary in the
axial direction, these waves are coupled. The reciprocity
theorems for the one-way wave vector are derived along the
same lines as the reciprocity theorems for the two-way wave
vector. Not surprisingly, they appear to have the same form.
Finally we discuss some similarities and differences between
these two classes of reciprocity theorems.

I. REVIEW OF RECIPROCITY THEOREMS

In this section we briefly review the scalar form of the
acoustic reciprocity theorems of the convolution type and of
the correlation type. We closely follow de Hoop~1988! and
Fokkema and van den Berg~1993!. The former author de-
rives reciprocity theorems in the time domain; the latter au-
thors in the time domain, the Laplace domain, and the fre-
quency domain. Here we only consider the frequency
domain.

A. Basic acoustic equations

In this subsection we give the basic equations for an
acoustic wave field in an inhomogeneous lossless fluid me-
dium. Throughout this paper we assume that the medium
parameters are ‘‘sufficiently smooth’’ functions of position
and time invariant. We define the Fourier transform with
respect to time (t) of a real function as

U~v!5E
2`

`

u~ t !exp~2 jvt !dt ~1!
a!Electronic mail: C.P.A. Wapenaar@CTG.TUDelft.NL
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and its inverse as

u~ t !5
1

p
ReS E

0

`

U~v!exp~ jvt !dv D , ~2!

where j is the imaginary unit andv denotes the angular
frequency. Note that we consider positive frequencies only.
In the remainder of this paper all functions are in the fre-
quency domain; thev dependency is not explicitly denoted.

In the space-frequency domain, the equations that gov-
ern linear acoustic wave propagation read

]kP1 jv%Vk5Fk ~3!

and

]kVk1 jvkP5Q, ~4!

whereP is the acoustic pressure,Vk is the particle velocity,
% is the volume density of mass,k is the compressibility,Fk

is the volume source density of volume force, andQ is the
volume source density of volume injection rate. The Latin
subscripts take on the values 1–3 and the summation con-
vention applies to repeated subscripts.

B. Reciprocity theorem of the convolution type

We introduce two acoustic states~i.e., wave fields, me-
dium parameters, and sources! that will be distinguished by
the subscriptsA andB. For these two states we consider the
interaction quantity ]k$PAVk,B2Vk,APB%. Applying the
product rule for differentiation, substituting Eqs.~3! and ~4!
for statesA andB, integrating the result over a volumeV
with boundary ]V and outward pointing normal vector
n5(n1 ,n2 ,n3) ~see Fig. 1!, and applying the theorem of
Gauss yields

E
]V

$PAVk,B2Vk,APB%nk d
2x

52 jvE
V

$PA~kB2kA!PB2Vk,A~%B2%A!Vk,B%d3x

1E
V

$PAQB2Vk,AFk,B1Fk,AVk,B2QAPB%d3x. ~5!

Equation~5! is Rayleigh’s reciprocity theorem of the convo-
lution type ~Rayleigh, 1878!. We speak of ‘‘convolution
type’’ since the products in the frequency domain~PAVk,B,
etc.! correspond to convolutions in the time domain.

We conclude this subsection by considering some spe-
cial cases.

Unbounded media: Consider the situation in which the
medium at and outside]V is unbounded, homogeneous, and
source-free in both states. Assume that the wave fields in
both states are causally related to the sources inV . Then, if
%A5%B andkA5kB at and outside]V , the boundary inte-
gral on the left-hand side of Eq.~5! vanishes~Bleistein,
1984; Fokkema and van den Berg, 1993!.

Field reciprocity: Assume that the above-mentioned
conditions are fulfilled and that%A5%B andkA5kB in V as
well. Then the first volume integral on the right-hand side of
Eq. ~5! vanishes. Furthermore, consider point sources in
statesA andB at xAPV andxBPV , respectively, according
to

QA~x!5qAd~x2xA!, Fk,A~x!5 f k,Ad~x2xA! ~6!

and

QB~x!5qBd~x2xB!, Fk,B~x!5 f k,Bd~x2xB!, ~7!

whered~x!5d(x1)d(x2)d(x3). Equation~5! thus yields

PA~xB!qB2Vk,A~xB! f k,B52 f k,AVk,B~xA!1qAPB~xA!.
~8!

For the special case thatqA5qB and f k,A5 f k,B50 this re-
duces to

PA~xB!5PB~xA!. ~9!

C. Reciprocity theorem of the correlation type

We consider the interaction quantity]k$PA*Vk,B

1 Vk,A* PB%, where* denotes complex conjugation. Following
the same procedure as in the previous subsection, we obtain

E
]V

$PA*Vk,B1Vk,A* PB%nkd
2x

52 jvE
V

$PA* ~kB2kA!PB1Vk,A* ~%B2%A!Vk,B%d3x

1E
V

$PA*QB1Vk,A* Fk,B1Fk,A* Vk,B1QA*PB%d3x.

~10!

Equation~10! is the reciprocity theorem of the correlation
type. We speak of ‘‘correlation type’’ since the products in
the frequency domain~PA*Vk,B , etc.! correspond to correla-
tions in the time domain.

Power conservation: When statesA andB are identical,
Eq. ~10! yields ~omitting the subscriptsA andB!

E
]V

$P*Vk1Vk*P%nk d
2x

5E
V

$P*Q1Vk*Fk1Fk*Vk1Q*P%d3x. ~11!

Equation~11! formulates the conservation of acoustic power.
For this reason, Eq.~10! is often referred to as the power
reciprocity theorem.

FIG. 1. Configuration for Rayleigh’s reciprocity theorem.
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D. Modified configuration

In the remainder of this paper we consider situations in
which the direction of preference is taken along thex3 axis.
A natural choice for the integration volumeV is shown in
Fig. 2. Its boundary]V consists of two planar surfaces per-
pendicular to thex3 axis and a cylindrical surface with its
axis parallel to thex3 axis. When convenient, we will rewrite
the volume integrals as

E
V

$•%d3x5E
a

b

dx3E
D

$•%d2xL , ~12!

wherea andb are thex3 coordinates of the planar surfaces,
D is a cross section ofV normal to thex3 axis, andxL
denotes the lateral coordinates, according toxL5(x1 ,x2).
The combination of the two planar surfaces will be denoted
by ]V 0; the cylindrical surface by]V 1. The outward-
pointing normal vector on]V 0 reads n5~0,0,n3!, with
n3521 and n3511, respectively; on ]V 1 it reads
n5(n1 ,n2,0).

For underwater acoustics thex3 axis is horizontal and
boundary conditions apply to~a part of! ]V 1. For seismic
situations thex3 axis is pointing downward and the radius of
]V 1 is infinite; boundary conditions may apply to~a part of!
]V 0. Both finite and infinite, surfaces]V 1 will be consid-
ered.

II. TWO-WAY WAVE EQUATION IN MATRIX-VECTOR
FORM

Given the fact that the direction of preference is taken
along thex3 axis, it is useful to reorganize Eqs.~1! and ~2!
such that the axial variations of the wave field are expressed
in terms of the lateral variations of the same wave field. To
this end we separate the axial derivatives]3P and]3V3 from
the lateral derivatives and we eliminateV1 andV2. The re-
sulting two equations forP andV3 are combined into one
matrix-vector equation, according to

]3Q5ÂQ1D. ~13!

The circumflex denotes andoperator containing the lateral
differentiation operators]1 and ]2. We refer to Eq.~13! as
the two-way wave equation. The two-way wave vectorQ

and the two-way source vectorD are defined as

Q5S PV3
D , D5S F3

Q2
1

jv
]aS 1% FaD D . ~14!

Greek subscripts take on the values 1 and 2. The two-way
operator matrixÂ is defined as

Â5S 0 2 jv%

2 jvK̂ 0 D , ~15!

where

K̂5k1
1

v2 ]aS 1% ]a• D . ~16!

III. ADJOINT TWO-WAY OPERATOR MATRIX

In the derivation of the reciprocity theorems for the two-
way wave vectorQ we will make use of the adjoint of the
two-way operator matrixÂ. In this section we first introduce
the adjoint of operatorK̂ and, subsequently, we use this
result to find the adjoint two-way operator matrix.

We define the inner product for two-dimensional square-
integrable complex-valued functions as follows:

^ f ,g&5E
D

f * ~xL!g~xL!d2xL , ~17!

where the domainD is a subset ofR2, according toD#R2.
We introduce the adjoint operatorK̂ † via

^ f ,K̂g&5^K̂ †f ,g&. ~18!

First we consider the situation thatD is bounded. From Eqs.
~16! and~17! and the theorem of Gauss we thus find for the
left-hand side of Eq.~18!

^ f ,K̂g&5E
D
S k f * g2

1

%v2 ~]a f * !~]ag! Dd2xL
1

1

v2 E
]D

1

r
~ f * ]ag!na dxL , ~19!

or

FIG. 2. Modified configuration for reciprocity theorems for situations with a direction of preference.
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^ f ,K̂g&5^K̂ * f ,g&

1
1

v2 E
]D

1

r
~ f * ]ag2g]a f * !na dxL , ~20!

where]D is the boundary ofD , with outward-pointing nor-
mal vectornL5(n1 ,n2). Hence, whenf andg satisfy homo-
geneous Dirichlet or Neumann boundary conditions, accord-
ing to

f5g50 or na]a f5na]ag50 on ]D , ~21!

we find from Eqs.~18! and ~20!

K̂ †5K̂ * , ~22!

or, since we consider a lossless medium~i.e., sincek and%
are real functions!,

K̂ †5K̂ . ~23!

The latter result implies thatK̂ is self-adjointwhen it is
defined on the space of functions that satisfy homogeneous
Dirichlet or Neumann boundary conditions on]D .

WhenD is unbounded,K̂ is again self-adjoint when it
is defined on a space of functions with ‘‘sufficient decay’’ at
infinity ~i.e., a properly chosen Sobolev space!.

Analogous to Eq.~17!, we define the inner product for
vector functions as follows:

^f,g&5E
D

fH~xL!g~xL!d2xL , ~24!

where H denotes complex conjugation and transposition.
Analogous to Eq.~18!, we introduce the adjoint of the two-
way operator matrixÂ, as defined in Eq.~15!, via

^f,Âg&5^Â†f,g&. ~25!

From the results above, we thus find that the adjoint two-way
operator matrix reads

Â†5ÂH, ~26!

assuming thatÂ is defined on a space of vector functions that
satisfy homogeneous Dirichlet or Neumann boundary condi-
tions on]D whenD is bounded, or that have sufficient de-
cay at infinity whenD is unbounded.

IV. RECIPROCITY THEOREMS FOR THE TWO-WAY
WAVE VECTOR

A. Two-way reciprocity theorem of the convolution
type

We derive the reciprocity theorem of the convolution
type for the two-way wave vectorQ. The two different states
will be distinguished by the subscriptsA andB. We consider
the interaction between the acoustic pressure in one state and
theaxial component of the particle velocity in the other state
and vice versa. To be more specific, we consider the inter-
action quantity

]3$PAV3,B2V3,APB%. ~27!

To simplify the notation, we rewrite this interaction quantity
as

]3$QA
TNQB%, ~28!

whereT denotes transposition and

N5S 0 1

21 0D . ~29!

Applying the product rule for differentiation, substituting the
two-way wave equation~13! for statesA andB, integrating
the result over the volumeV with boundary]V 0ø]V 1, as
introduced in Fig. 2, and applying the theorem of Gauss
yields the following two-way reciprocity theorem of the con-
volution type

E
]V 0

QA
TNQBn3 d

2xL

5E
V

$QA
TNÂBQB1~ÂAQA!TNQB%d3x

1E
V

$QA
TNDB1DA

TNQB%d3x. ~30!

Unlike in Eq.~5!, it is not directly clear that the first volume
integral on the right-hand side of Eq.~30! represents a ‘‘con-
trast term’’ that vanishes when the medium parameters in
both states are identical. On account of equations~12! and
~24!–~26!, however, we may write for the term containing
the transposed operator matrix

E
a

b

dx3E
D

~ÂAQA!TNQBd
2xL

5E
a

b

dx3E
D

QA
T~ÂA

TNQB!d2xL , ~31!

assuming thatQA andQB satisfy homogeneous Dirichlet or
Neumann boundary conditions on]D whenD is bounded or
that they have sufficient decay at infinity whenD is un-
bounded. Note that]D is a cross section of]V 1 for any x3
betweena andb. Hence, the above-mentioned homogeneous
Dirichlet or Neumann boundary conditions are fulfilled when
]V 1 is a free boundary or a rigid boundary~bear in mind that
V3 is the tangential velocity component at the cylindrical
surface!.

On account of Eq.~15! we have

ÂTN52NÂ. ~32!

Using ~31! as well as~32! in Eq. ~30! gives

E
]V 0

QA
TNQBn3 d

2xL

5E
V

QA
TND̂QB d

3x1E
V

$QA
TNDB1DA

TNQB%d3x, ~33!

where the contrast operatorD̂ is defined by

D̂5ÂB2ÂA . ~34!

This vector form of the two-way reciprocity theorem of the
convolution type will be compared later on with its one-way
counterpart. To conclude this subsection, we rewrite this
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theorem in scalar form by substituting Eqs.~14!, ~15!, ~29!,
and ~34!. We thus obtain

E
]V 0

$PAV3,B2V3,APB%n3 d
2xL

52 jvE
V

@PA~K̂B2K̂A!PB2V3,A~%B2%A!V3,B#d3x

1E
V
H PAFQB2

1

jv
]aS 1

%B
Fa,BD G2V3,AF3,B

1F3,AV3,B2FQA2
1

jv
]aS 1

%A
Fa,AD GPBJ d3x. ~35!

Note that this reciprocity theorem has a similar form as Eq.
~5!. The main difference is that the contrast function
(kB2kA) has been replaced by a contrast operator
~K̂B2K̂A! and that the lateral velocity components have
been eliminated. In Appendix B it is shown that the axial
velocity componentV3 can be eliminated as well by means
of a ‘‘Dirichlet-to-Neumann operator.’’

B. Two-way reciprocity theorem of the correlation
type

We derive the reciprocity theorem of the correlation
type for the two-way wave vectorQ. This time we consider
the interaction quantity

]3$PA*V3,B1V3,A* PB%. ~36!

To simplify the notation, we rewrite this interaction quantity
as

]3$QA
HKQB%, ~37!

where

K5S 0 1

1 0D . ~38!

Following a similar procedure as in the previous subsection,
using the integral property

E
a

b

dx3E
D

~ÂAQA!HKQB d
2xL

5E
a

b

dx3E
D

QA
H~ÂA

HKQB!d2xL ~39!

and the symmetry relation

ÂHK52KÂ , ~40!

yields

E
]V 0

QA
HKQBn3 d

2xL

5E
V

QA
HKD̂QB d

3x1E
V

$QA
HKDB1DA

HKQB%d3x, ~41!

where the contrast operatorD̂ is again given by Eq.~34!.
This vector form of the two-way reciprocity theorem of the
correlation type will be compared later on with its one-way
counterpart.

V. ONE-WAY WAVE EQUATION IN MATRIX-VECTOR
FORM

In this section we decompose the acoustic two-way
wave equation into a system of coupled equations for the
one-way wave fieldsP1 andP2, propagating in the positive
and negative axial direction, respectively. This decomposi-
tion is not uniquely defined~see Brekhovskikh, 1960, or
Coroneset al., 1983!. Here we follow an approach analogous
to the decomposition approach in laterally invariant media
~see Ursin, 1983, for an overview!. We introduce aone-way
wave vectorP and aone-way source vectorS, according to

P5 S P1

P2 D and S5SS1

S2 D . ~42!

In an axially invariant medium~i.e., a medium in which the
medium parameters do not depend on the axial coordinate
x3!, P

1 andP2 propagate independently, hence, for this situ-
ation P satisfies an equation of the same form as Eq.~13!,
with the antidiagonal operator matrixÂ replaced by a diag-
onal operator matrix2jvL̂, whereL̂ will be called theaxial
slownessoperator matrix. Our aim is to find an equation for
P of the form of Eq.~13! for an arbitrary inhomogeneous
medium in such a way that the operator matrix reduces again
to 2jvL̂ when the axial variations of the medium param-
eters vanish.

We introduce operator matricesL̂, L̂, and L̂21 that sat-
isfy the relation

Â52 jvL̂L̂L̂21, ~43!

in such a way thatL̂ is diagonal. For an extensive list of
references on the theoretical and numerical aspects of this
decomposition, see Fishmanet al. ~1987!. Some relevant re-
cent references are Wapenaar and Berkhout~1989!, de Hoop
~1992, 1996!, Coroneset al. ~1992!, and Fishman~1993!.
Upon substitution of Eq.~43!, together with

Q5L̂P and D5L̂S ~44!

into Eq. ~13!, we obtain after some straightforward manipu-
lations the following system of coupled one-way wave equa-
tions:

]3P5B̂P1S, ~45!

where the one-way operator matrixB̂ is defined as

B̂52 jvL̂1Û, ~46!

with the coupling operator matrixÛ defined as

Û52L̂21 ]3L. ~47!

In the following we refer to Eq.~45! simply as the one-way
wave equation. Note that in an axially invariant medium the
one-way operator matrixB̂ indeed reduces to2jvL̂, yield-
ing decoupled equations]3P

657 jvL̂P6, with L̂ defined
below. ~During the revision of this paper Dr. Fishman
pointed out that an exact equation of the same form can be
constructed for the total wavefield in inhomogeneous media,
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i.e., ]3P5Q̂P, whereQ̂ is called the ‘‘Dirichlet-to-Neumann
operator.’’ This is briefly discussed in Appendix B.!

Next, we analyze the decomposition introduced in Eq.
~43!. For convenience we recastÂ, as defined in Eq.~15!,
into a slightly different form, according to

Â5S 0 2 jv%

1

jv%1/2 ~Ĥ2%
21/2

• ! 0 D , ~48!

where

Ĥ25v2%1/2~K̂%1/2
• !, ~49!

or, upon substitution of Eq.~16!,

Ĥ25S v

c8D
2

1]a]a , ~50!

with

S v

c8D
2

5S v

c D 22 3~]a% !~]a% !

4%2 1
~]a]a% !

2%
, ~51!

and c5~k%!21/2 ~Wapenaar and Berkhout, 1989, Appendix
B; de Hoop, 1992!. Note thatĤ2, as defined in Eq.~50!,
represents theHelmholtz operator, with c8 being a modified
propagation velocity, according to Eq.~51!.

Due to the antidiagonal structure ofÂ, as defined in Eq.
~48!, the operator matricesL̂, L̂, andL̂21 have the following
structure:

L̂5S L̂ 0

0 2L̂
D ~52!

and

L̂5S L̂1 L̂1

L̂2 2L̂2
D , L̂215

1

2 S L̂121 L̂2
21

L̂1
21 2L̂2

21D , ~53!

where the scalar operatorsL̂, L̂1, andL̂2 satisfy the follow-
ing relations:

2 jv%52 jvL̂1L̂L̂2
21 ~54!

and

1

jv%1/2 ~Ĥ2%
21/2

• !52 jvL̂2L̂L̂1
21. ~55!

It can now be verified by substitution that forL̂, L̂1, L̂1
21,

L̂2, andL̂2
21 we may write

L̂5v21Ĥ1 , ~56!

L̂15S v%

2 D 1/2Ĥ1
21/2, L̂1

215S v

2 D 21/2

~Ĥ1
1/2%21/2

• !,

~57!

L̂25~2v% !21/2Ĥ1
1/2, L̂2

215~2v!1/2~Ĥ1
21/2%1/2

• !,
~58!

where thesquare-root operatorĤ1 is related to the Helm-
holtz operatorĤ2 according to

Ĥ25Ĥ1Ĥ1 . ~59!

Unlike operatorĤ2, the operatorsĤ1, L̂, L̂1, andL̂2 cannot
be written as polynomials in]a . Therefore these operators
are so-calledpseudo-differentialoperators ~Kumano-go,
1974; Fishman, 1992!. The reader who is interested in exact
and uniform approximate constructions of these operators as
well as a number of relevant estimates is referred to Fishman
~1992!, Fishmanet al. ~1996!, and de Hoop~1992, 1996!.

VI. ADJOINT ONE-WAY OPERATOR MATRIX

In the derivation of the reciprocity theorems for the one-
way wave vectorP we will make use of the adjoint of the
one-way operator matrixB̂. In this section we use the adjoint
of the square-root operatorĤ1 to find the adjoint one-way
operator matrix. We will assume thatĤ1 andB̂ are defined
on the same space asĤ2 and Â, respectively.

In Appendix A we derive

Ĥ1
†5Ĥ1* . ~60!

In a similar way, the following relations can be found for
L̂1
† and L̂2

† :

L̂1
†5 1

2~ L̂2
21!* ~61!

and

L̂2
†5 1

2~ L̂1
21!* . ~62!

Note that, unlike the Helmholtz operatorĤ2, the square-root
operatorĤ1 is not self-adjoint. However, in this and the next
section we will show that the properties~60!–~62! are suffi-
cient for deriving reciprocity theorems for the one-way wave
vector.

Using Eqs.~52!, ~56!, and~60! we obtain

L̂†5L̂H. ~63!

Hence, for a medium in which the parameters do not depend
on the axial coordinate, we find from Eqs.~46! and ~63!

B̂†5B̂H. ~64!

Based on the analogy with Eq.~26! ~i.e., Â†5ÂH! we may
expect that for this situation the one-way reciprocity theo-
rems are easily found. For arbitrarily inhomogeneous media,
however, the situation is more complicated, sinceÛ†ÞÛH

and thusB̂†ÞB̂H.
A careful reexamination of the derivation of the two-

way reciprocity theorem of the convolution-type~33! shows
that this theorem does not depend on the symmetry relations
~26! and~32! separately, but only on their combination, i.e.,
on

Â†52NÂ*N21. ~65!

We will now show that we can find a similar relation for the
one-way operator matrixB̂ for arbitrarily inhomogeneous
media. From the structure ofL̂, L̂, and L̂21, as defined in
Eqs.~52! and ~53!, as well as from Eqs.~60!–~62! we find

L̂†52NL̂*N21 ~66!

and

L̂†52N~ L̂21!*N21, ~67!
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or, equivalently,

~ L̂21!†52NL̂*N21, ~68!

with N defined in Eq.~29!. For the coupling operator matrix
Û, defined in Eq.~47!, we thus find

Û†52~]3L̂!†~ L̂21!†52N~]3L̂
21!* L̂*N21. ~69!

Using the property

O5]3~ L̂
21L̂!5~]3L̂

21!L̂1L̂21]3L̂, ~70!

whereO is the null matrix, this gives

Û†5N~ L̂21]3L̂!*N2152NÛ*N21. ~71!

From Eqs.~66! and~71! we thus find for the one-way opera-
tor matrix B̂, as defined in Eq.~46!,

B̂†52NB̂*N21. ~72!

Note that this relation is indeed analogous to the symmetry
property~65! of the two-way operator matrixÂ. In the next
section we will use Eq.~72! in the derivation of the one-way
reciprocity theorem of the convolution type.

A reexamination of the derivation of the two-way reci-
procity theorem of the correlation type~41! shows that this
theorem depends on the combination of the symmetry rela-
tions ~26! and ~40!, i.e., on

Â†52KÂK21. ~73!

A similar relation forB̂ cannot be given, even for the situa-
tion in which the medium parameters do not depend on the
axial coordinate. This implies that we cannot find an exact
one-way reciprocity theorem of the correlation type. As an
alternative, consider the following approximate symmetry re-
lations:

Ĥ1
†'Ĥ1 , ~74!

L̂1
†' 1

2~ L̂2
21!, ~75!

and

L̂2
†' 1

2~ L̂1
21!. ~76!

The approximation signs denote that evanescent waves are
ignored~see Appendix A!. Using these relations we find in a
similar way as above the following approximate symmetry
relations;

L̂†'JL̂J21, ~77!

L̂†'JL̂21K21, ~78!

Û†'2JÛJ21, ~79!

and

B̂†'2JB̂J21, ~80!

whereK is defined in Eq.~38! and

J5S 1 0

0 21D . ~81!

In the next section we will use Eq.~80! in the derivation of
an approximate one-way reciprocity theorem of the correla-
tion type.

VII. RECIPROCITY THEOREMS FOR THE ONE-WAY
WAVE VECTOR

A. One-way reciprocity theorem of the convolution
type

We derive the reciprocity theorem of the convolution
type for the one-way wave vectorP. The two different states
will be distinguished by the subscriptsA andB. Looking at
the analogous symmetry properties of the two-way and
one-way operator matrices~i.e., Â†52NÂ*N21 vs B̂†

52NB̂*N21!, an obvious choice for the interaction quantity
is, analogous to Eq.~28!,

]3$PA
TNPB% ~82!

or

]3$PA
1PB

22PA
2PB

1%. ~83!

Apparently, we consider the interaction between oppositely
propagating waves~see Fig. 3!. Applying the product rule for
differentiation, substituting the one-way wave equation~45!
for statesA andB, integrating the result over the volumeV
with boundary]V 0ø]V 1, as introduced in Fig. 2, applying
the theorem of Gauss, and using symmetry relation~72!
yields the following one-way reciprocity theorem of the con-
volution type:

E
]V 0

PA
TNPBn3 d

2xL

5E
V

PA
TND̂PBd

3x1E
V

$PA
TNSB1SA

TNPB%d3x, ~84!

where the contrast operatorD̂ is given by

D̂5B̂B2B̂A . ~85!

Since we used symmetry relation~72!, it is implicitly as-
sumed thatPA andPB satisfy homogeneous Dirichlet or Neu-
mann boundary conditions on]V 1 when V is bounded or
that they have sufficient decay at infinity when the radius of
]V 1 is infinite. These conditions are fulfilled forPA andPB
when they are fulfilled forQA andQB .

Several linear and nonlinear representations can be de-
rived from the one-way reciprocity theorem~84! by choosing
for statesA andB a Green’s state and the actual state, re-
spectively. In particular a 3-D ‘‘generalized primary repre-

FIG. 3. Both terms of the interaction quantity for the one-way reciprocity
theorem of the convolution type contain waves that propagate in opposite
directions.
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sentation’’ can be derived which forms the point of departure
for the derivation of~seismic! imaging techniques for finely
layered media~Wapenaar, 1996!.

We conclude this subsection by analyzing reciprocity
theorem~84! for some special cases.

Unbounded media:Consider the situation in which the
medium at and outside]V 0 is unbounded, homogeneous,
and source-free in both states. Assume that the wave fields in
both states are causally related to the sources inV . Then in
both states the wave fields are outgoing at]V 0 ~i.e.,
PA

15PB
150 for x35a andPA

25PB
250 for x35b! and it is

easily seen thatPA
TNPB5PA

1PB
22PA

2PB
150 at ]V 0, so the

boundary integral on the left-hand side of Eq.~84! vanishes.
Apparently it isnot required that the medium parameters at
and outside]V 0 are identical in both states, unlike the con-
ditions for the vanishing boundary integral in the two-way
reciprocity theorem. We come back to this later on.

Field reciprocity: Assume that the above-mentioned
conditions are fulfilled and that%A5%B andkA5kB inside
as well as outsideV . Then the first volume integral on the
right-hand side of Eq.~84! vanishes. Furthermore, consider
point sources in statesA andB atxAPV andxBPV , respec-
tively, according to

SA~x!5sAd~x2xA!5S sA1sA2D d~x2xA! ~86!

and

SB~x!5sBd~x2xB!5S sB1sB2D d~x2xB!. ~87!

Equation~84! thus yields

PA
T~xB!NsB52sA

TNPB~xA! ~88!

or

PA
1~xB!sB

22PA
2~xB!sB

152sA
1PB

2~xA!1sA
2PB

1~xA!.
~89!

For the special case thatsA
15sB

1 andsA
25sB

250 this reduces
to

PA
2~xB!5PB

2~xA! ~90!

~see Fig. 4!.

B. One-way reciprocity theorem of the correlation
type

We derive the reciprocity theorem of the correlation
type for the one-way wave vectorP. Looking at the analo-

gous symmetry properties of the two-way and one-way op-
erator matrices~i.e., Â†52KÂK21 vs B̂†'2JB̂J21!, an ob-
vious choice for the interaction quantity is, analogous to Eq.
~37!,

]3$PA
HJPB% ~91!

or

]3$~PA
1!*PB

12~PA
2!*PB

2%. ~92!

Apparently, again we consider the interaction between oppo-
sitely propagating waves@bear in mind that complex conju-
gation changes the propagation direction~see Fig. 5!#. Fol-
lowing a similar procedure as in the previous subsection
yields the following one-way reciprocity theorem of the cor-
relation type

E
]V 0

PA
HJPBn3 d

2xL

'E
V

PA
HJD̂PB d

3x1E
V

$PA
HJSB1SA

HJPB%d3x, ~93!

where the contrast operatorD̂ is again given by Eq.~85!. The
approximation sign denotes that evanescent waves are ig-
nored.

In a paper on one-way representations~Wapenaar, 1996!
we use reciprocity theorem~93! to derive approximate but
stable inverse propagators for one-way wave fields in arbi-
trarily inhomogeneous media. The stability of these inverse
propagators is due to the fact that the ‘‘erroneously handled’’
evanescent waves are suppressed instead of amplified. These
inverse propagators find their application in~seismic! imag-
ing techniques for moderately inhomogeneous and finely lay-
ered media. The main approximation due to the negligence
of the evanescent waves is a limitation of the maximum ob-
tainable lateral resolution~Berkhout, 1984; Wapenaaret al.,
1989!.

VIII. COMPARISON

In the previous sections we have derived the reciprocity
theorems for the two-way and one-way wave vectors inde-
pendent of each other. We will now investigate whether it is
possible to derive the one-way from the two-way reciprocity
theorems. According to Eq.~44! we haveQA5L̂APA and
QB5L̂BPB . Substitution on the left-hand side of the two-way
reciprocity theorem of the convolution-type~33! gives

FIG. 4. Field reciprocity for one-way sources and receivers.

FIG. 5. Both terms of the interaction quantity for the one-way reciprocity
theorem of the correlation type contain waves that propagate in opposite
directions.
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E
]V 0

QA
TNQBn3 d

2xL5E
]V 0

~ L̂APA!TNL̂BPBn3 d
2xL ,

~94!

or, using Eq.~67!,

E
]V 0

QA
TNQBn3 d

2xL52E
]V 0

PA
TNL̂A

21L̂BPBn3 d
2xL .

~95!

Similarly, using Eqs.~43!, ~44!, and~67! in the two terms on
the right-hand side of~33! yields

E
V

QA
TN$ÂB2ÂA%QB d

3x

5 jvE
V

PA
TN$L̂A

21L̂BL̂B2L̂AL̂A
21L̂B%PB d

3x ~96!

and

E
V

$QA
TNDB1DA

TNQB%d3x

52E
V

$PA
TNL̂A

21L̂BSB1SA
TNL̂A

21L̂BPB%d3x, ~97!

respectively. Note that the termsL̂A
21L̂B vanish when the

medium parameters in both states are identical. Hence, for
this situation it is seen from Eqs.~95!–~97! that there is a
‘‘one-to-one’’ correspondence between the individual terms
in the two-way and one-way reciprocity theorems. In es-
sence, this is how we originally derived one-way representa-
tions of the convolution type and of the correlation type
~Berkhout and Wapenaar, 1989; Wapenaaret al., 1989!.

Apparently, for the more general situation in which the
medium parameters in the two states are not identical, this
one-to-one correspondence is absent. This explains why the
conditions for the vanishing boundary integral are different
for the two-way and one-way reciprocity theorems.

Relations similar to~95!–~97! can be found for the reci-
procity theorems of the correlation type.

Obviously, the terms in the one-way reciprocity theo-
rems~84! and~93! have a more attractive form than those on
the right-hand sides of Eqs.~95!–~97!. In particular, the con-
trast termD̂5B̂B2B̂A52 jvL̂B1ÛB1 jvL̂A2ÛA has the
favorable property that it can be fully expressed in terms of
the coupling operator of stateB by choosingL̂A5L̂B and
ÛA5O, leaving D̂5ÛB . This property can be exploited in
the derivation of various representations for the one-way
wave vectorP ~Wapenaar, 1996!.

IX. CONCLUSIONS

We have analyzed the acoustic two-way and one-way
wave equations for applications in which there is a ‘‘pre-
ferred direction of propagation.’’ In particular we have de-
rived two-way and one-way reciprocity theorems of the con-
volution type and of the correlation type. Whereas the two-
way reciprocity theorems specify the relation between the
physical wave field quantities pressure and velocity in two

different acoustic states, the one-way reciprocity theorems
give a similar relation between the waves propagating in the
positive and negative axial direction in both states.

We have made the following observations:
Unbounded media: The boundary integral in the two-

way reciprocity theorem of the convolution type vanishes
when at and outside]V the medium is unbounded, homoge-
neous, and source-free in both states andkA5kB and
eA5eB ; the boundary integral in the one-way reciprocity
theorem of the convolution type vanishes also whenkAÞkB

andeAÞeB at and outside]V .
Contrast terms:The contrast terms in the two-way and

one-way reciprocity theorems are defined in terms of opera-
tors that vanish when the medium parameters in both states
are identical. Moreover, the contrast term in the one-way
reciprocity theorem can be reformulated in terms of the cou-
pling operator of one of the two states. This property can be
exploited in the derivation of various representations for the
one-way wave vectorP. These representations are the point
of departure for the derivation of several imaging techniques.

Approximations: The two-way reciprocity theorems of
the convolution and correlation type as well as the one-way
reciprocity theorem of the convolution type are exact. The
one-way reciprocity theorem of the correlation type ignores
evanescent waves. This ‘‘erroneous handling’’ of evanescent
waves facilitates the derivation of stable inverse wave field
propagators for arbitrary inhomogeneous media. These in-
verse propagators find their application in imaging tech-
niques. The main approximation due to the negligence of the
evanescent waves is a limitation of the maximum obtainable
lateral resolution.
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APPENDIX A: ADJOINT SQUARE-ROOT OPERATOR

In this Appendix we derive the adjoint square-root op-
erator Ĥ1

† . We only discuss the main steps; for a more
elaborate derivation see Grimbergenet al. ~1997! or Wap-
enaar and Grimbergen~1996!.

Throughout this Appendix we assume that the Helm-
holtz operatorĤ2 is defined on an appropriate space, so that
it is self-adjoint ~the conditions for the self-adjointness of
Ĥ2 are the same as those forK̂ !. The square-root operator
Ĥ1 will be defined on the same space, but it will appear not
to be self-adjoint.

We introduce thekernelH2 of the operatorĤ2 via

$Ĥ2g%~xL!5E
D

H2~xL ;xL8 !g~xL8 !d2xL8 . ~A1!

For notational convenience we drop thex3 dependency
throughout this Appendix.

As a result of the spectral theorem for self-adjoint op-
erators~Reed and Simon, 1972, 1979; Weidman, 1980!, the
kernelH2(xL ;xL8) can be expanded in terms of a complete
set of real-valuedorthonormal eigenfunctionsf and eigen-
valuesl, according to
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H2~xL ;xL8 !5(
i

f~ i !~xL!l if
~ i !~xL8 !, ~A2!

whenD is bounded~see Lu and McLaughlin, 1996, for a
similar expression!, or

H2~xL ;xL8 !5E
R2

f~xL ,k!l~k!f~xL8 ,k!d2k

1(
i

f~ i !~xL!l if
~ i !~xL8 !, ~A3!

whenD is unbounded. These expressions and other expres-
sions for kernels given below should be understood in the
sense of generalized functions. Positive and negativels cor-
respond to propagating and evanescent eigenmodes, respec-
tively.

Analogous to Eq.~A1!, we introduce the kernel of the
square-root operatorĤ1 via

$Ĥ1g%~xL!5E
D

H1~xL ;xL8 !g~xL8 !d2xL8 . ~A4!

Note that, on account of Eq.~59!,H2 andH1 are related to
each other according to

H2~xL ;xL8 !5E
D

H1~xL ;xL9 !H1~xL9 ;xL8 !d2xL9 . ~A5!

From Eqs. ~A2!, ~A3!, and ~A5! and the orthonormality
property of the eigenfunctionsf it now follows that for
H1(xL ;xL8) we may write

H1~xL ;xL8 !5(
i

f~ i !~xL!l i
1/2f~ i !~xL8 !, ~A6!

whenD is bounded, or

H1~xL ;xL8 !5E
R2

f~xL ,k!l1/2~k!f~xL8 ,k!d2k

1(
i

f~ i !~xL!l i
1/2f~ i !~xL8 !, ~A7!

when D is unbounded. UnlikeH2(xL ;xL8), the kernel
H1(xL ;xL8) is not purely real valued, sincel1/2 becomes
imaginary for negativel, i.e., for evanescent eigenmodes. As
a consequence, the square-root operatorĤ1 is not self-
adjoint.

From Eqs.~A2!, ~A3!, ~A6!, and ~A7! we find the fol-
lowing symmetry relations for the kernels ofĤ2 andĤ1:

H2~xL8 ;xL!5H2~xL ;xL8 ! ~A8!

and

H1~xL8 ;xL!5H1~xL ;xL8 !. ~A9!

Using the latter symmetry property, the adjoint square-root
operatorĤ1

† is found as follows:

^ f ,Ĥ1g&5E
D

f * ~xL!$Ĥ1g%~xL!d2xL

5E
D

f * ~xL!S E
D

H1~xL ;xL8 !g~xL8 !d2xL8 D d2xL
5E

D
S E

D

H1~xL8 ;xL! f * ~xL!d2xLD g~xL8 !d2xL8

5E
D

@$Ĥ1f * %~xL8 !#g~xL8 !d2xL85^Ĥ1* f ,g&

~A10!

or

Ĥ1
†5Ĥ1* . ~A11!

This expression plays a key role in the derivation of the
one-way reciprocity theorem of the convolution type.

Note that, when evanescent waves are ignored, we may
write

H1~xL8 ;xL!'H1* ~xL ;xL8 ! ~A12!

and, consequently,

Ĥ1
†'Ĥ1 . ~A13!

This expression is used in the derivation of an approximate
one-way reciprocity theorem of the correlation type.

APPENDIX B: RECIPROCITY, INVOLVING A
DIRICHLET-TO-NEUMANN OPERATOR

This Appendix has been added during the revision. Re-
cently interesting work has been done on reformulating the
Helmholtz equation as a first-order equation on the total
wave field alone, according to]3P5Q̂P, whereQ̂ is called
the ‘‘Dirichlet-to-Neumann operator’’~Fishmanet al., 1996;
Haines and de Hoop, 1996; Lu and McLaughlin, 1996!. In
this Appendix we modify this operator for variable density
~and variable compressibility! media and we use the results
to reformulate reciprocity theorem~35! in terms of the total
acoustic pressure alone.

For a source-free region, we introduce a modified
Dirichlet-to-Neumann operatorM̂ via

]3P52 jv%M̂P ~B1!

or

V35M̂P. ~B2!

Note thatM̂ is just a scaled version ofQ̂ , the scaling factor
being 2( jv%)21. It will turn out below that, for variable
density media,M̂ obeys a simple symmetry relation, which
is essential for the reformulation of the reciprocity theorem.

We derive an equation forM̂ by differentiating both
sides of Eq.~B2! with respect tox3, according to

]3V35~]3M̂!P1M̂ ]3P. ~B3!

Using ]3V352 jvK̂P, with K̂ defined in Eq.~16!, and
substituting Eq.~B1! on the right-hand side of Eq.~B3!, we
obtain
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2 jvK̂P5~]3M̂2 jvM̂%M̂!P, ~B4!

or

]3M̂52 jvK̂1 jvM̂%M̂. ~B5!

This nonlinear differential equation forM̂ has the form of a
Ricatti equation. It is usually supplemented with suitably
chosen initial conditions, so that its solutionM̂, substituted
in Eq. ~B1!, yields a system that is well-posed for marching
~Fishmanet al., 1996!.

In order to derive a symmetry relation forM̂ let us first
consider the special situation of a medium in which the pa-
rameters do not depend onx3. Then the left-hand side in Eq.
~B5! becomes zero and we thus obtain

M̂%M̂5K̂ , ~B6!

or, using Eq.~49!,

v2%1/2M̂%M̂%1/25Ĥ2 , ~B7!

or, using Eq.~59!,

v%1/2M̂%1/256Ĥ1 . ~B8!

Obviously for this situationM̂ obeys a symmetry relation of
the form of Eq.~A11!:

M̂†5M̂* . ~B9!

For arbitrary inhomogeneous media, Eq.~B5! can be solved
along the lines suggested by Lu and McLaughlin~1996!. It
thus follows thatM̂ can be fully expressed in terms of op-
erators that all obey symmetry relations of the form of Eq.
~A11!, which means that Eq.~B9! also holds for arbitrary
inhomogeneous media.

We will now use Eq.~B2! to eliminateV3 from reciproc-
ity theorem~35!. We define point sources of volume injec-
tion rate according to

QA~x!5qAd~x2xA!, QB~x!5qBd~x2xB! ~B10!

and we assumeFk,A5Fk,B50. The source pointsxA and/or
xB may be situated inside or outside]V 0. It depends, among
others, on the position of these source points how Eq.~B5! is
solved for both statesA andB ~for more details, see Fishman
et al., 1996!. Substituting Eqs.~B2! and~B10! into reciproc-
ity theorem~35!, using symmetry relation~B9!, yields

E
]V 0

PA$M̂B2M̂A%PBn3 d
2xL

52 jvE
V

PA$~K̂B2K̂A!

2M̂A~%B2%A!M̂B%PB d
3x

1PA~xB!qBx~xB!2qAx~xA!PB~xA!, ~B11!

wherex~x! is the characteristic function for volumeV . Note
that this reciprocity theorem is fully expressed in terms of

the total acoustic pressure. A further discussion is beyond the
scope of this paper.
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