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For acoustic applications in which there is a “preferred direction of propagatighg axial
direction it is useful to arrange the two-way and one-way wave equations into the same
matrix-vector formalism. In this formalism, axial variations of the wave vector are expressed in
terms of lateral variations of the same wave vector. The two-way wave vector contains the field
guantities pressure and velocigxial component only whereas the one-way wave vector contains
waves propagating in the positive and negative axial direction. By exploiting the equivalent form of
the two-way and one-way matrix-vector equations, it appears to be possible to derive two-way and
one-way reciprocity theorems that have an equivalent form but a different interpretation. The main
differences appear in the boundary integrals for unbounded media, in the contrast ter(f, ted
correlation-type theoremsn the handling of evanescent waves. 1®96 Acoustical Society of
America.

PACS numbers: 43.20.Bi, 43.20.R¥EG]

INTRODUCTION scalar form, they appear to be very similar to the above-
mentioned scalar reciprocity theorems, as might be expected.

In several areas of acoustic research it is common use tThe vector form, however, is better suited for a comparison
introduce a “preferred direction of propagation” and to ex- with the reciprocity theorems for, what we will call, the
ploit this preference in the construction of solutions of the*“one-way wave vector.”
acoustic wave equation. Whereas in underwater acoustics the This one-way wave vector is introduced next; it contains
preferred propagation direction ®rizontal in seismic ap- waves propagating in the positive and negative axial direc-
plications thevertical axis is generally chosen as the pre-tion. Of course, when the medium parameters vary in the
ferred direction. Throughout this paper the Cartesian positiomxial direction, these waves are coupled. The reciprocity
coordinates are denoted by the vecoter(x,,X,,X3) and the  theorems for the one-way wave vector are derived along the
X5 axis is chosen parallel to the preferred propagation direcsame lines as the reciprocity theorems for the two-way wave
tion. Hence, for underwater acoustikg denotes “range,” vector. Not surprisingly, they appear to have the same form.
whereas it denotes “depth” for seismic applications. ForFinally we discuss some similarities and differences between
simplicity, in the following we speak for both applications of these two classes of reciprocity theorems.
the axial coordinatex; and thelateral coordinates; andx,.

The aim of this paper is to derive and compeeeiproc-
ity theorems for two-way and one-way wave vectors in con{, REVIEW OF RECIPROCITY THEOREMS
figurations with a direction of preference. In general, a reci- ) ) . .
procity theorem interrelates the quantities that characterize [N this section we briefly review the scalar form of the
two admissible physical states that could occur in one an@coustic reciprocity theorems of the convolution type and of
the same domaifde Hoop, 1988 One can distinguish be- the correlation type. We closely follow de Ho¢p988 and
tween convolution-type and correlation-type reciprocity "okkema and van den Berd993. The former author de-
theorems(Bojarski, 1983. Generally speaking, these two Ves r_eC|proc_|ty theorems in the time domalr_l; the latter au-
types of reciprocity theorems find their applications in for-thors in the time domain, the Laplace domain, and the fre-
ward and inverse problems, respectively. We start this papéfu€ncy domain. Here we only consider the frequency
with a brief review of both types of scalar reciprocity theo- 40main.
rems. A. Basic acoustic equations

In order to take account of the direction of preference, it . . . : .
is useful to express the axial variations of some wave field In this subsection we give the basic equations for an

guantities in terms of the lateral variations of the same quan‘rflcOUStIC wave field in an inhomogeneous lossless fluid me-

tities. First we introduce what we will call the “two-way dium. ThI’OUghOL‘J‘t th'_s_ paper we as”sume _that the m_e_dlum
wave vector,” which contains the acoustic pressure and thgarameter_s are sufﬂmently_smooth fun_ct|ons of posmo_n
axial component of the particle velocity, and we derive reci—and time "?V‘i”am- We define _the Fourier transform with
procity theorems for this wave vector. When rewritten in "eSPect to timet) of a real function as

U(w)= f:u(t)exp(—jwt)dt 1)
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cial cases.
n Unbounded mediaConsider the situation in which the

—> We conclude this subsection by considering some spe-
;/l 1
0 i) - o
medium at and outsidé”"is unbounded, homogeneous, and

L3 source-free in both states. Assume that the wave fields in
both states are causally related to the sources’imhen, if
0,=0g and k= kg at and outside)7", the boundary inte-
gral on the left-hand side of Eq5) vanishes(Bleistein,

oV 1984; Fokkema and van den Berg, 1293
Field reciprocity Assume that the above-mentioned
conditions are fulfilled and that,= 05 andk,= kg in 7" as
FIG. 1. Configuration for Rayleigh’s reciprocity theorem. well. Then the first volume integral on the right-hand side of
Eq. (5 vanishes. Furthermore, consider point sources in
and its inverse as statesA andB atx, e 7" andxg e 7, respectively, according
1 . to
=7 Re( fo U(wexpjotido |, @ Qa(X)=0ad(x=Xa), Fya()=TeadX—%a)  (6)
where j is the imaginary unit and» denotes the angular and
frequency. Note that we consider positive frequencies only. Qu(X)=0gd(x—Xg), Fia(X)=frad(X—Xg), @

In the remainder of this paper all functions are in the fre-
quency domain; the dependency is not explicitly denoted. where &x)=8(x;) () 8(X3). Equation(5) thus yields

In the space-frequency domain, the equations that gov- _ __
ern linear acoustic wave propagation read Pa(Xg)ds~ Vika(Xs)fis fk,AVk,B(XA)+qAPB(XA2é)

KP+jweVi=Fy 4 For the special case thah=qg andf, o=, g=0 this re-
and duces to
WV tjoxkP=Q, 4 Pa(Xg) = Pg(Xa)- 9

whereP is the acoustic pressur¥, is the particle velocity, o _

o is the volume density of mass,is the compressibilityr, ~ C- Reciprocity theorem of the correlation type

is the volume source density of volume force, &ds the We consider the interaction quantity{P%Vy g
volume source density of volume injection rate. The Latin_ V# APg}, where* denotes complex conjugation. Following

subscripts take on the values 1-3 and the summation cofhe same procedure as in the previous subsection, we obtain
vention applies to repeated subscripts.

L%;{P;vk,ﬂv;‘APB}nkdzx
B. Reciprocity theorem of the convolution type

We introduce two acoustic statése., wave fields, me- = _jwf {P% (kg— KA)PB+VI§,A(QB—QA)Vk,B}d3X
dium parameters, and sourgdlat will be distinguished by 7

the subscript#\ andB. For these two states we consider the

interaction quantity 9, {PaVxg— Vi aPs}. Applying the +f {PAQg+ Vi AFk+Fi Vi g+ QaPgldx.
product rule for differentiation, substituting Eq8) and (4) 7

for statesA and B, integrating the result over a volumg (10
with boundary ¢7” and outward pointing normal vector
n=(ny,n,,n3) (see Fig. 1, and applying the theorem of
Gauss yields

Equation(10) is the reciprocity theorem of the correlation
type. We speak of “correlation type” since the products in
the frequency domaifP, V, g, etc) correspond to correla-
tions in the time domain.

Power conservationWhen stateg\ andB are identical,
Eq. (10) yields (omitting the subscripté& and B)

J'w*{ PaVics— VieaPelni d*x

=—] Pa(kg—xka)Pg—V — o) Vi p}d3x
wa];{ Alkg— ka)P— Vi a(@8— @A) Vi 8} f (P*V, VP, d?
a7

+f {PaQe—ViaFkptFraVis—QaPgld®x. (5

7 =f {P*Q+V{F+Fi Vit Q* Prdx. (11)
Equation(5) is Rayleigh’s reciprocity theorem of the convo- g

lution type (Rayleigh, 1878 We speak of “convolution Equation(11) formulates the conservation of acoustic power.
type” since the products in the frequency doméityVy g, For this reason, Eq.10) is often referred to as the power
etc) correspond to convolutions in the time domain. reciprocity theorem.
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FIG. 2. Modified configuration for reciprocity theorems for situations with a direction of preference.

D. Modified configuration and the two-way source vect@r are defined as

In the remainder of this paper we consider situations in Fi
which the direction of preference is taken along xyeaxis. Q=( P D= 1 1 (14)
A natural choice for the integration volumg&™ is shown in Vs) Q- o Ja 0 Fa) '

Fig. 2. Its boundary7” consists of two planar surfaces per-
pendicular to thexs axis and a cylindrical surface with its Greek subscripts take on the values 1 and 2. The two-way
axis parallel to thex; axis. When convenient, we will rewrite operator matrixA is defined as

the volume integrals as .
~ 0 —Jwo
b A=( L s, ) (15
| oo [Cax | (e 12 “jwi 0
7 a Z
) where
wherea andb are thex; coordinates of the planar surfaces, . L
2 is a cross section o normal to thex; axis, andx, 5,
. . ’ Jo=K+ ol = g |- 1
denotes the lateral coordinates, accordingxte- (X;,X,). T=K ? “(Q “ ) (16
The combination of the two planar surfaces will be denoted
by ¢77%; the cylindrical surface by?7";. The outward- |II. ADJOINT TWO-WAY OPERATOR MATRIX
pointing normal vector ond7’y reads n=(0,0n3), with
n=—1 and ny=+1, respectively; ong7; it reads In the derivation of the reciprocity theorems for the two-
n=(n;,n,,0). way wave vectolQ we will make use of the adjoint of the

For underwater acoustics thg axis is horizontal and two-way operator matrid. In this section we first introduce
boundary conditions apply téa part of 7. For seismic the adjoint of operator’Z” and, subsequently, we use this
situations thex; axis is pointing downward and the radius of result to find the adjoint two-way operator matrix.

477 is infinite; boundary conditions may apply ta part of We define the inner product for two-dimensional square-
47,. Both finite and infinite, surfaces”; will be consid-  integrable complex-valued functions as follows:

ered.
(f,g>=f( f* (x)g(x ) d?x , 17
Il. TWO-WAY WAVE EQUATION IN MATRIX-VECTOR .

FORM where the domair is a subset oR?, according toZCR?.

Given the fact that the direction of preference is taken We introduce the adjoint operato?’” via

along thexs axis, it is useful to reorganize Egél) and (2) (f,ﬁfg)z(ﬁﬂf,g}. (18
such that the axial variations of the wave field are expressed.

in terms of the lateral variations of the same wave field. ToF 'St we consider the situation thatis bounded. From Egs.
this end we separate the axial derivativeB and Vs from (16) and(17) and the theorem of Gauss we thus find for the

the lateral derivatives and we eliminaig andV,. The re- left-hand side of Eq(18)

sulting two equations foP and V3 are combined into one N 1
matrix-vector equation, according to (f,%'g)=f (Kf*g— 0a? (94F%)(0,9) | d?x,
g
95Q=AQ+D. (13) .
The circumflex denotes anoberator containing the lateral T2 Ly - (f*3,9)n, dx,, (19

differentiation operatorg; and d,. We refer to Eq.(13) as
the two-way wave equation. The two-way wave vecfpr or
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(f,.709)=(70*1.,9) 93{QaNQg}, (28)

1 f 1 " - g whereT denotes transposition and
+ - 9,9—9d,f*)n, dx., 20
w? ), p (17997901 )n, dx, (20 o 1
- S . N= . (29
wheredZ is the boundary of/, with outward-pointing nor- -1 0

mal vectorn, =(n,n,). Hence, wherf andg satisfy homo-
geneous Dirichlet or Neumann boundary conditions, accor
ing to

d,_A\pplying the product rule for differentiation, substituting the
two-way wave equatioil3) for statesA and B, integrating
the result over the volume” with boundaryd7 U7, as
f=9g=0 or ny,f=n,9,g=0 on 47, (21) introduced in Fig. 2, and applying the theorem of Gauss
we find from Eqs.(18) and (20) yieldg the following two-way reciprocity theorem of the con-
~ R volution type
NAEN AN (22)

. . L . T 2
or, since we consider a lossless medi(ira., sincex and ¢ L%, QaNQgn; d°x
are real functions 0

S 23 - f {QENAG Qe+ (AxQa) NQs}d

The latter result implies that? is self-adjointwhen it is

defined on the space of functions that satisfy homogeneous T T 3

Dirichlet or Neumann boundary conditions éf'. * JV{QANDBdI— DaNQg}d™x. (30)
When Z is unbounded,’Z" is again self-adjoint when it o o ) .

is defined on a space of functions with “sufficient decay” at Unlike in Eq.(5), it is not directly clear that the first volume

infinity (i.e., a properly chosen Sobolev space integral on the right-hand side of E@O) rep.resents a ‘“con- .
Analogous to Eq(17), we define the inner product for trast term” that vanishes when the medium parameters in
vectorfunctions as follows: both states are identical. On account of equatid® and
(24)—(26), however, we may write for the term containing
<f’g>:f fH(x)g(x)d?x, , (24) the transposed operator matrix
9

b -

T 2
where " denotes complex conjugation and transposition.fa dx3jy(AAQA) NQgdx,
Analogous to Eq(18), we introduce the adjoint of the two-

way operator matrib, as defined in Eq(15), via b AT )
R R =] dx3| Qa(AANQg)dX_, (31
(f,Ag)=(A'f,g). (25) a 2
From the results above, we thus find that the adjoint two-way@ssuming thaQ, and Qg satisfy homogeneous Dirichlet or
operator matrix reads Neumann boundary conditions é&¥ whenZ is bounded or
A~y that they have sufficient decay at infinity when is un-
A=A, (260 pounded. Note that is a cross section af7; for any xs

assuming thaé is defined on a space of vector functions thatbetweera andb. Hence, the above-mentioned homogeneous
Satisfy homogeneous Dirichlet or Neumann boundary CondiD|r|Ch|et or Neumann boundary conditions are fulfilled when

tions ond~ when & is bounded, or that have sufficient de- 971 is a free boundary or a rigid boundatyear in mind that
cay at infinity when” is unbounded. V; is the tangential velocity component at the cylindrical

surface.
On account of Eq(15) we have
IV. RECIPROCITY THEOREMS FOR THE TWO-WAY

Ap s
WAVE VECTOR A'N=—NA. (32)
A. Two-way reciprocity theorem of the convolution Using (31) as well as(32) in Eq. (30) gives

type

T
We derive the reciprocity theorem of the convolution LWOQANQB% d?x
type for the two-way wave vect@. The two different states
will be distinguished by the subscripfsandB. We consider
the interaction between the acoustic pressure in one state and
the axial component of the particle velocity in the other state . .
and vice versa. To be more specific, we consider the intervhere the contrast operatdris defined by

action quantity A=Ag—A,. (34

93{PaV3p~V3aPa}. @7 This vector form of the two-way reciprocity theorem of the
To simplify the notation, we rewrite this interaction quantity convolution type will be compared later on with its one-way
as counterpart. To conclude this subsection, we rewrite this

= f . QANAQg d3x+ f {QANDg+DANQg}d%x, (33)
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theorem in scalar form by substituting E¢&4), (15), (29), V. ONE-WAY WAVE EQUATION IN MATRIX-VECTOR
and(34). We thus obtain FORM

f {PAVas—VaaPalng d2x In this _sect.ion we decompose the acoust_ic two-way
gyt A28 TIATBITE AL wave equation into a system of coupled equations for the
one-way wave field® ™ andP~, propagating in the positive
and negative axial direction, respectively. This decomposi-
tion is not uniquely definedsee Brekhovskikh, 1960, or
Coronest al, 1983. Here we follow an approach analogous

~~i0 | [PA(Fa HnPo—Von(0o— 0aVasldx

1 1 o . . : .
+J {PA Qe— ﬁa(— Fog }_V%F&B to the dgcomposmon approac_h in Ia_terally invariant media
7 Jo OB (see Ursin, 1983, for an overvigwWe introduce ane-way

1 1 wave vectolP and aone-way source vectd, according to
+F3aV3p— | Qa— — (7a(— Fana PB] d®x.  (35) + St
Jo @a p— _
=|p- and S= 5 - (42

Note that this reciprocity theorem has a similar form as Eq.

(5. The main difference is that the contrast function|y an axially invariant mediuni.e., a medium in which the
(kg—ky) has been replaced by a contrast operatofneqiym parameters do not depend on the axial coordinate
(Zg— %) and that the lateral velocity components havexa), P* andP"~ propagate independently, hence, for this situ-
been eliminated. In Appendix B it is shown that the axial 3tion p satisfies an equation of the same form as @4
velocity componen¥/; can be eliminated as well by means ;i the antidiagonal operator mqtrﬁ( replaced by a diag-

of a “Dirichlet-to-Neumann operator.” onal operator matrix-j w A, whereA will be called theaxial
B. Two-way reciprocity theorem of the correlation slownessperator matrix. Our aim is to find an equation for
type P of the form of Eq.(13) for an arbitrary inhomogeneous

medium in such a way that the operator matrix reduces again
to —jwA when the axial variations of the medium param-
eters vanish. o R

We introduce operator matrice, L, andL ! that sat-

We derive the reciprocity theorem of the correlation
type for the two-way wave vectdp. This time we consider
the interaction quantity

93{PAV3p+V3aPs}- (36) isfy the relation
To simplify the notation, we rewrite this interaction quantity A= _jwl:[“:ﬂ, (43)
as
9o{ QK Og!, 3 in such a way thatA is diagonal. For an _extensive list of .
3 QaKQe} S references on the theoretical and numerical aspects of this
where decomposition, see Fishmat al. (1987). Some relevant re-
0 1 cent references are Wapenaar and Berkkb@89, de Hoop
K:( ) (39) (1992, 1996, Coroneset al. (1992, and Fishman(1993.
10 Upon substitution of Eq(43), together with

Following a similar procedure as in the previous subsection,

using the integral property Q=LP andD=LS (44)

b A H 5 into Eqg. (13), we obtain after some straightforward manipu-
J’a dxs L(AAQA) KQg dx, lations the following system of coupled one-way wave equa-
tions:
b -

= Ja dxs LQX(A/TKQB)dZXL (39 dsP=BP+S, (45)
and the symmetry relation where the one-way operator matiis defined as

AHK=—KA, (40) B=—jwA+O, (46)
yields

with the coupling operator matri® defined as
J:;]‘ QKKQBng, d2XL é: _ |:—1 asL. (47)
0

. In the following we refer to Eq(45) simply as the one-way
= J‘]'Q:KAQB d3x+ J‘W{QEKDB"' DAKQg}dx, (41)  wave equation. Note that in an axially invariant medium the
A one-way operator matriB indeed reduces te-jwA, yield-
where the contrast operatdx is again given by Eq(34). ing decoupled equationsP~ =¥ jwAP~, with A defined
This vector form of the two-way reciprocity theorem of the below. (During the revision of this paper Dr. Fishman
correlation type will be compared later on with its one-way pointed out that an exact equation of the same form can be
counterpart. constructed for the total wavefield in inhomogeneous media,
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ie., (93P=£)‘P, Where&‘ is called the “Dirichlet-to-Neumann Unlike operator,%/z, the operators%fl, f\, IA_l, andIA_2 cannot

operator.” This is briefly discussed in Appendix)B.

be written as polynomials i@,. Therefore these operators

Next, we analyze the decomposition introduced in Eqare so-called pseudo-differential operators (Kumano-go,

(43). For convenience we recaét, as defined in Eq(15),
into a slightly different form, according to

0 —jwe
A=l 1 . : (48)
o *1/2' O
m(%z@ )
where
Hy= w20 YA o2, (49)
or, upon substitution of Eq16),
~ w 2
.7/2=(? + 3040, (50)
with
2 2 3(d,0)(d, 3,404,
(3) :(g> 3 Q)(2 0) , (Jadal) 51)
C c 40 20

and c=(xe) Y2 (Wapenaar and Berkhout, 1989, Appendix

B; de Hoop, 1992 Note that.77,, as defined in Eq(50),
represents thelelmholtz operatgrwith ¢’ being a modified
propagation velocity, according to E(h1).

Due to the antidiagonal structure Af as defined in Eq.
(48), the operator matricea, L, andL ~* have the following
structure:

(52

(L Ly 1Lt Lt
L=| ~ Sl Lt=s Al A (53
L, —L, N I
where the scalar operatofs, ﬂl, andﬂ2 satisfy the follow-
ing relations:

—joe=—jolLAL;* (54)
and
1 > o~ 12 iU AL L
W(/J/ZQ )=—ij2AL1 (55)

Jwe

It can now be verified by substitution that far, I:1, I:[ L
L,, andL,* we may write

A= 174, (56)
12 -1/2
~ 01% - ~_ w IS _
(57)
|:2: (Zwe)—uz}/ﬂz' |:2—1: (Zw)1/2(t%/;1/291/2' ),
(58)

where thesquare-root operator}%l is related to the Helm-

holtz operator7, according to
Hog= 0.9, (59)
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1974; Fishman, 1992The reader who is interested in exact
and uniform approximate constructions of these operators as
well as a number of relevant estimates is referred to Fishman
(1992, Fishmanet al. (1996, and de Hood1992, 1996.

VI. ADJOINT ONE-WAY OPERATOR MATRIX

In the derivation of the reciprocity theorems for the one-
way wave vectoP we will make use of the adjoint of the
one-way operator matri. In this section we use the adjoint
of the square-root operato#; to find the adjoint one-way
operator matrix. We will assume tha¥’; andB are defined
on the same space a&, and A, respectively.

In Appendix A we derive

=% (60)

In a similar way, the following relations can be found for
L] andL}:

Li=4L,YH* 61)

and

Li=HLiH*. 62)
Note that, unlike the Helmholtz operaté?f‘z, the square-root
operator.7, is not self-adjoint. However, in this and the next
section we will show that the properti€é80)—(62) are suffi-
cient for deriving reciprocity theorems for the one-way wave

vector.
Using Egs.(52), (56), and(60) we obtain

AT=AM (63)

Hence, for a medium in which the parameters do not depend
on the axial coordinate, we find from Eqg6) and(63)

BT=gH. (64)

Based on the analogy with E6) (i.e., AT=A") we may
expect that for this situation the one-way reciprocity theo-
rems are easily found. For arbitrarily inhomogeneous media,
however,_the_situation is more complicated, sif@&+0"
and thusBT#B",

A careful reexamination of the derivation of the two-
way reciprocity theorem of the convolution-ty(6&3) shows
that this theorem does not depend on the symmetry relations
(26) and(32) separately, but only on their combination, i.e.,
on

AT=—NA*N"1, (65)

We will now show that we can find a similar relation for the
one-way operator matriB for arbitrarily inhomogeneous
media. From the structure of, L, andL~?, as defined in
Egs.(52) and(53), as well as from Eqg60)—(62) we find

AT=—NA*N"1 (66)
and

LT=—N(L H*NL, (67)

C. P. A. Wapenaar: Reciprocity for wave vectors 3513



or, equivalently,
(L-HT=—NL*N", (69)

with N defined in Eq(29). For the coupling operator matrix
O, defined in Eq(47), we thus find

O'=—(95L) (L 1) T= —N(gsL H*L*N~2, (69)
Using the property

O=35(L™1L)=(gsL " HL+L asL, (70)
whereO is the null matrix, this gives

OT=N(L 195L)*N"1= —NO*N"L. (72)

From Eqs(66) and(71) we thus find for the one-way opera-
tor matrix B, as defined in Eq46),

Bf=—NB*N"L. (72

Note that this relation is indeed analogous to the symmetry,

property(65) of the two-way operator matriA. In the next
section we will use Eq(72) in the derivation of the one-way
reciprocity theorem of the convolution type.

A reexamination of the derivation of the two-way reci-
procity theorem of the correlation tygdl) shows that this

interaction
r—/\—v
- +
P A T l P B

Ly

}

interaction
/_'/L\
+ -—
P A | TP B

vl

no interaction

FIG. 3. Both terms of the interaction quantity for the one-way reciprocity
theorem of the convolution type contain waves that propagate in opposite
directions.

In the next section we will use E@480) in the derivation of
an approximate one-way reciprocity theorem of the correla-
tion type.

VIl. RECIPROCITY THEOREMS FOR THE ONE-WAY
WAVE VECTOR

A. One-way reciprocity theorem of the convolution
ype

We derive the reciprocity theorem of the convolution
type for the one-way wave vect® The two different states
will be distinguished by the subscriptsandB. Looking at
the analogous symmetry properties of the two-way and

theorem depends on the combination of the symmetry relg®ne-way operator matricesi.e., AT=—NA*N"' vs B'

tions (26) and (40), i.e., on
A= —KAK L. (73)

A similar relation forB cannot be given, even for the situa-

—NB*N™%), an obvious choice for the interaction quantity
is, analogous to E(28),

J5{PANPg} (82)

tion in which the medium parameters do not depend on th&"

axial coordinate. This implies that we cannot find an exact
one-way reciprocity theorem of the correlation type. As an

alternative, consider the following approximate symmetry re
lations:

I~ (74

LI=4L,h, (75)
and

LI~30L7h. (76)

The approximation signs denote that evanescent waves a

ignored(see Appendix A Using these relations we find in a

similar way as above the following approximate symmetry

relations;

AT=JAJL, 77)

LT=~Jl 1K1, (78)

6'~-36J71, (79
and

Bf~—JBJ L, (80)
whereK is defined in Eq(38) and

1 0
3=, _1). (8D
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93{PAPg —PAPg}. (83)

Apparently, we consider the interaction between oppositely

propagating wavegsee Fig. 3. Applying the product rule for
differentiation, substituting the one-way wave equati4b)

for statesA andB, integrating the result over the volume&
with boundaryd7,Ud7";, as introduced in Fig. 2, applying
the theorem of Gauss, and using symmetry relatiég)
yields the following one-way reciprocity theorem of the con-
volution type:

J PANPgn3 d?x,
@70

= f PANAPgd3x+ f {PANS+ SINPgld3x,  (84)
5 -
where the contrast operat&r is given by

Since we used symmetry relatigi@2), it is implicitly as-
sumed thaP, andPg satisfy homogeneous Dirichlet or Neu-
mann boundary conditions of?; when 7" is bounded or
that they have sufficient decay at infinity when the radius of
d77; is infinite. These conditions are fulfilled fét, andPg
when they are fulfilled foQ, and Qg .

Several linear and nonlinear representations can be de-
rived from the one-way reciprocity theorgi®4) by choosing
for statesA andB a Green’s state and the actual state, re-
spectively. In particular a 3-D “generalized primary repre-
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FIG. 4. Field reciprocity for one-way sources and receivers.

sentation” can be derived which forms the point of departur
for the derivation of(seismig imaging techniques for finely

layered medidWapenaar, 1996

interaction interaction
N —

e PE (P A P
| \J Y |

no interaction

FIG. 5. Both terms of the interaction quantity for the one-way reciprocity
theorem of the correlation type contain waves that propagate in opposite
directions.

ggous symmetry properties of the two-way and one-way op-

erator matricegi.e., A'T=—KAK *vsB'~—-JBJ 1), an ob-
vious choice for the interaction quantity is, analogous to Eq.

We conclude this subsection by analyzing reciprocity(37)'

theorem(84) for some spemgl cases. _ 53{P/TJPB} (91)
Unbounded mediaConsider the situation in which the
medium at and outsidé7, is unbounded, homogeneous, or
and source-free in both states. Assume that the wave fields in _ _
53{(PX)* Pg_(PA)* PB}' (92)

both states are causally related to the sourceg’iThen in
both states the wave fields are outgoing &, (i.e.,
PA=Pg =0 for x;=a andP, =Pz =0 for x3=b) and it is
easily seen thaPANPz=PPg —P,P3 =0 at 7, so the
boundary integral on the left-hand side of Eg&4) vanishes.

Apparently, again we consider the interaction between oppo-
sitely propagating wavebear in mind that complex conju-
gation changes the propagation directisee Fig. 5. Fol-
lowing a similar procedure as in the previous subsection

Apparently it isnot required that the medium parameters atyields the following one-way reciprocity theorem of the cor-
and outside?7’; are identical in both states, unlike the con- relation type

ditions for the vanishing boundary integral in the two-way

reciprocity theorem. We come back to this later on.

Field reciprocity: Assume that the above-mentioned

conditions are fulfilled and thag ,= 05 and k,= kg inside

as well as outside”. Then the first volume integral on the
right-hand side of Eq(84) vanishes. Furthermore, consider

point sources in states andB atx, e 7 andxg e 7, respec-
tively, according to

Sa(X) = SpS(x—Xa) = ( 22) 5(x=%y) (86
and

SB<x>=s35<x—xB>=<zz) 5(x—Xp). (®7
Equation(84) thus yields

PA(X8)NSs = — SiNPg(Xa) (88)

or

Pa(Xg)Sg — Pa(Xg)Sg = —Sa Pg (Xa) + 54 Pg (Xa).
(89

For the special case thaf =sj ands, =sg =0 this reduces

to
Pa(Xg)=Pg(Xa) (90

(see Fig. 4

B. One-way reciprocity theorem of the correlation
type

f PhIPgn; d?x,
a7y

%LVPKJAPB d3x+ L{PQJSBJF SHIPgld3x, (93
where the contrast operatAris again given by Eq85). The
approximation sign denotes that evanescent waves are ig-
nored.

In a paper on one-way representatioéapenaar, 1996
we use reciprocity theoren®3) to derive approximate but
stableinverse propagators for one-way wave fields in arbi-
trarily inhomogeneous media. The stability of these inverse
propagators is due to the fact that the “erroneously handled”
evanescent waves are suppressed instead of amplified. These
inverse propagators find their application(seismi¢ imag-
ing techniques for moderately inhomogeneous and finely lay-
ered media. The main approximation due to the negligence
of the evanescent waves is a limitation of the maximum ob-
tainable lateral resolutiofBerkhout, 1984; Wapenaat al.,
1989.

VIIl. COMPARISON

In the previous sections we have derived the reciprocity
theorems for the two-way and one-way wave vectors inde-
pendent of each other. We will now investigate whether it is
possible to derive the one-way from the two-way reciprocity
theorems. According to Eq44) we haveQp=L,P, and

We derive the reciprocity theorem of the correlation Qg=LgPg . Substitution on the left-hand side of the two-way

type for the one-way wave vect®. Looking at the analo-
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reciprocity theorem of the convolution-tyg83) gives

C. P. A. Wapenaar: Reciprocity for wave vectors 3515



T o N S ) d?fferent_ a_coustic states, the one-way reciprocity _the(_)rems

J'WbQANQan dox = J(;WO(LAPA) NLgPgn3 d“x, give a similar relation between the waves propagating in the
(94) positive and negative axial direction in both states.

We have made the following observations:

or, using Eq.(67), Unbounded mediaThe boundary integral in the two-
way reciprocity theorem of the convolution type vanishes
f QXNQan d?x = _f PXNﬁllﬁapans d?x, . when at and outsidé7” the medium is unbounded, homoge-
7 7 neous, and source-free in both states afgd=«g and

(95  e,=eg; the boundary integral in the one-way reciprocity

Similarly, using Eqs(43), (44), and(67) in the two terms on theorem of the convolution type vanishes also wkek «g

the right-hand side of33) yields ande,#eg at and outside)7”. _
Contrast terms:The contrast terms in the two-way and

. one-way reciprocity theorems are defined in terms of opera-
J;/QXN{AB—AA}QB d3x tors that vanish when the medium parameters in both states
are identical. Moreover, the contrast term in the one-way
. TAgA A A A s reciprocity theorem can be reformulated in terms of the cou-
_wai/.PAN{LA LeAg—AaLa Lg}Pg d°x (96)  pling operator of one of the two states. This property can be
exploited in the derivation of various representations for the
and one-way wave vectoP. These representations are the point
of departure for the derivation of several imaging techniques.
Approximations The two-way reciprocity theorems of
the convolution and correlation type as well as the one-way
reciprocity theorem of the convolution type are exact. The
_ _f {P}Nl:glliBSBJrS}Nﬂ;lliBPB}d3x, (97) one-way reciprocity th(_eorem of the correlgtion type ignores
7 evanescent waves. This “erroneous handling” of evanescent
respectively. Note that the ter mns,glliB vanish when the Waves facilitates the derivation of stable inverse wave field

medium parameters in both states are identical. Hence, fdarropagators for arbitrary inhomogeneous media. These in-

this situation it is seen from Eq$95)—(97) that there is a verse propagators find their application in imaging tech-
nigques. The main approximation due to the negligence of the

“one-to-one” correspondence between the individual terms . S : .
: : : evanescent waves is a limitation of the maximum obtainable
in the two-way and one-way reciprocity theorems. In es- .
o . : lateral resolution.

sence, this is how we originally derived one-way representa-
tions of the convolution type and of the correlation typeACKNOWLEDGMENTS
(Berkhout and Wapenaar, 1989; Wapeneial., 1989.

Apparently, for the more general situation in which the The author would like to thank Dr. L. Fishman and F. J.
medium parameters in the two states are not identical, thiBessing for their constructive comments.
one-to-one correspondence is absent. This explains why the
conditions for the vanishing boundary integral are differentAPPENDIX A: ADJOINT SQUARE-ROOT OPERATOR
for the two-way and one-way reciprocity theorems. hi di derive the adioi

Relations similar td95)—(97) can be found for the reci- In this Appendix we derive the adjoint square-root op-

procity theorems of the correlation type. erator.%{. We c_)nly discus_s the main steps; for a more
Obviously, the terms in the one-way reciprocity theo- elaborate der!vatlon see Grimbergenal. (1997 or Wap-

rems(84) and(93) have a more attractive form than those on€haar and Grimberge(1996.

the right-hand sides of Eq95)—(97). In particular, the con- Throughout th|s Append|x we assume that the Helm-
trast termA=Bg—B,=—jwAg+Og+jwA,—O, has the _hqltz operat.oy%/z is deflneq'on an appropriate space, so that
favorable property that it can be fully expressed in terms oft is self-adjoint (the conditions for the self-adjointness of
the coupling operator of sta® by choosingA,=Ag and o are the same as those fat). The squarg-ro_ot operator
0,=0, leaving A=0g. This property can be exploited in 77, will be defined on the same space, but it will appear not

the derivation of various representations for the one-way© Pe self-adjoint.

f W{QXNDBJr DANQg}d3x

wave vectorP (Wapenaar, 1996 We introduce theékernel .77, of the operator}/2 via
. = | Falx ixDa(x)dx] .
X CONCLUSIONS (000 = | x xDga A1)

We have analyzed the acoustic two-way and one-wayor notational convenience we drop thg dependency
wave equations for applications in which there is a “pre-throughout this Appendix.
ferred direction of propagation.” In particular we have de- As a result of the spectral theorem for self-adjoint op-
rived two-way and one-way reciprocity theorems of the con-erators(Reed and Simon, 1972, 1979; Weidman, 1980e
volution type and of the correlation type. Whereas the twokernel.77,(x, ;x;) can be expanded in terms of a complete
way reciprocity theorems specify the relation between theset ofreal-valuedorthonormal eigenfunctiong and eigen-
physical wave field quantities pressure and velocity in twovalues\, according to
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-%/2(X|_;X|,_):Ei SV (xON (X)), (A2) <fv—%/19>:f{/f*(XL){}[//lg}(XL)dZXL

when & is bounded(see Lu and McLaughlin, 1996, for a :f fx f (% X! N2y’ | 42
similar expressioy or 7 (*0) f/'J/l(XL'X")g(X")d x|
T ix)= | SO RN (K) (], Kk)d? ke =JV( J(/%&(Xﬁ;xL)f*(xL)dZXL)g(XL)d2XL
R i ~
+ 20 V0N (X)), (A3) = J(/[{.%f*}(xL)]g(xodzxL:<%1*f,g>
o8 ; (A10)
when & is unbounded. These expressions and other expres-
sions for kernels given below should be understood in ther
sense of generahzed_ functions. Positive an_d negativeor- }‘I:}/’{ . (A11)
respond to propagating and evanescent eigenmodes, respec-
tively. This expression plays a key role in the derivation of the
Analogous to Eq(Al), we introduce the kernel of the one-way reciprocity theorem of the convolution type.
square-root operator7; via Note that, when evanescent waves are ignored, we may
write
{740} (x) = f A9 a3 (A4) T X))~ T (X)) (A12)
and, consequently,
Note that, on account of E@59), .77, and.7; are related to }/I*}/l (AL13)

each other according to
This expression is used in the derivation of an approximate

/ , c N S (! " one-way reciprocity theorem of the correlation type.
.,%z(x,_;x,_)=f(/.%1(x|_,x,_).%l(xL,x,_)dzxL. (A5) y reciprocity yp

From Egs.(A2), (A3), and (A5) and the orthonormality APPENDIX B: RECIPROCITY, INVOLVING A
property of the eigenfunctiong it now follows that for DIRICHLET-TO-NEUMANN OPERATOR

(XL ix() we may write This Appendix has been added during the revision. Re-
cently interesting work has been done on reformulating the
T4(xix) =2 dD(xON (], (A6)  Helmholtz equation as a first-order equation on the total

i

wave field alone, according @P=/P, where/ is called
the “Dirichlet-to-Neumann operator(Fishmanet al., 1996;

when & is bounded, or Haines and de Hoop, 1996; Lu and McLaughlin, 1996
this Appendix we modify this operator for variable density
T (X, ;Xﬁ):f dXL NV ) (x| )02k (and variable compres;ibilf;ynedia ar)d we use the results
R2 to reformulate reciprocity theoref35) in terms of the total

_ . acoustic pressure alone.
+ 2 dVOON (X)), (A7) For a source-free region, we introduce a modified
! Dirichlet-to-Neumann operatorZ via

when & is unbounded. Unlike.7,(x,;x[), the kernel dsP=—jwo. /P (B1)
J1(x_;x|) is not purely real valued, since? becomes

imaginary for negativa,, i.e., for evanescent eigenmodes. As or

a consequence, the square-root operaidy is not self- ng(/:/gp. (B2)
adjoint. N ~

: From Eqgs.(A2), (A3), (A6), and (A7) we find the fol- Note that 7 is just a scaled version @, the scaling factor

lowing symmetry relations for the kernels o¥, and. 7, : being —(jwe) . It will turn out below that, for variable
density media, 7 obeys a simple symmetry relation, which

To(X X)) = To(X X)) (A8) is essential for the reformulation of the reciprocity theorem.
We derive an equation farZ by differentiating both
and sides of Eq.B2) with respect tax;, according to
X 30 = T x). (A9) 9aV'a= (9. /)P +.7 33P. (B3)

Using (?3V3=—jwﬁz§‘P, with % defined in Eqg.(16), and
Using the latter symmetry property, the adjoint square-roosubstituting Eq(B1) on the right-hand side of E¢B3), we
operator.7Z} is found as follows: obtain
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— W HP=(d5 /. 0. TP, (B4) the total acoustic pressure. A further discussion is beyond the

scope of this paper.
or

O MW=~ + ] W0 M. (B5) Berkhout, A. J.(1984. Seismic ResolutiofGeophysical Press, Londpn
. . . . . ~ Berkhout, A. J., and Wapenaar, C. P.(A989. “One-way versions of the
This nonlinear differential equation forZ has the form of a Kirchhoff integral,” Geophysic$4, 460—467.

Ricatti equation. It is usually supplemented with suitablyBleistein, N.(1984. Mathematical Methods for Wave Phenome#aa-
chosen initial conditions, so that its solutior¥, substituted ~_demic, Orlanda

. . ] . Bojarski, N. N.(1983. “Generalized reaction principles and reciprocity
in Eq. (B1), yields a system that is well-posed for marching theorems for the wave equations, and the relationship between the time-

(Fishmanet al., 1996. . advanced and time-retarded fields,” J. Acoust. Soc. &#.281—285.
In order to derive a symmetry relation foZ let us first ~ Brekhovskikh, L. M.(1960. Waves in Layered MedigAcademic, New
consider the special situation of a medium in which the pa-_Yor®)-

. . Corones, J. P., Davison, M. E., and Krueger, R(1283. “Direct and
rameters do not depend ag. Then the left-hand side in Eq. inverse scattering in the time domain via invariant imbedding equations,”

(B5) becomes zero and we thus obtain J. Acoust. Soc. Am74, 1535-1541.
~ - ~ Corones, J. P., Kristensson, G., Nelson, P., and Setli1®®2. Invariant
RN =T, (B6) Imbedding and Inverse ProblentSIAM, Philadelphia.
. de Hoop, A. T.(1988. “Time-domain reciprocity theorems for acoustic
or, using Eq.(49), wave fields in fluids with relaxation,” J. Acoust. Soc. A4, 1877—
A A - 1882.
wzgllzu/%gb/%Qm: Ty, (B7) de Hoop, M. V.(1992. “Directional decomposition of transient acoustic

. wave fields,” Ph.D. thesis, Delft University of Technology, Delft.
or, using Eq'(59)’ de Hoop, M. V.(1996. “Generalization of the Bremmer coupling series,”
12 nli2_ 4 oy J. Math. Phys37, 3246-3282.

wQ=nQ A0 (B8) Fishman, L.(1992. “Exact and operator rational approximate solutions of
Obviously for this situationz obeys a symmetry relation of the Helmholtz: Weyl composition equation in underwater acoustics—The
he f f Eq.(A11): guadratic profile, J. Math. Phy83, 1887-1914.
the form of Eq. : Fishman, L.(1993. “One-way wave propagation methods in direct and
inverse scalar wave propagation modeling,” Radio 28(5), 865—-876.

’:;/T_ - *
M= (Bg) Fishman, L., Gautesen, A. K., and Sun,(Z996. “An exact, well-posed,
. : : one-way reformulation of the Helmholtz equation with application to di-
For arbltrar'y Inhomerneous media, E35) can be solved rect and inverse wave propagation modeling,” New Perspectives on
along the lines suggested by Lu and McLaugh996. It Problems in Classical and Quantum Physieslited by A. W. Saez and

thus follows that 7 can be fully expressed in terms of op- P. P. Delsantd¢Gordon and Breach, Newark
erators that all obey symmetry relations of the form of Eq_Fishman, L., McCoy, J. J., and Wales, S.(C987. “Factorization and path

. . integration of the Helmholtz equation: Numerical algorithms,” J. Acoust.
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