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05 , , \ , . , Diffusion, flow, and wave phenomena can each be captured by a
0 002 004 006 008 010 0.2 0.14 unified differential equation in matrix-vector form. This equation
U forms the basis for the derivation of unified reciprocity theorems
for diffusion, flow and wave phenomena.
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could then be obtained, it does not truly solve the problem; solintroduction
tions of zero displacement amplitude are as strange as solutions 06
infinite pressure for this linear homogeneous problem. Thus, iﬁ{
stead of islets of nonsolutiofinfinite pressurewe would have e
islets of zero-amplitude solutions. u

The same applies to Chen and Bert’s results, in view of the AD—;+BU+ Dyu=s, (1)
similarities in the expressions for the perturbation pressures.

iffusion, flow, and wave phenomena can each be captured by
following differential equation in matrix-vector form:

) whereu=u(x,t) is a vector containing space and time-dependent
Conclusion field quantities,s=s(x,t) is a source vectorA=A(x) and B
It is not known how the two sets of previous authors have B(x) are matrices containing space-dependent material param-

overcome these difficulties and have presented full cutveis.of ~ ters, andd, is a matrix containing the spatial differential opera-
course possible to ignore the islets of nonsolution and join th@rSd/ X1, d/9xz, andd/dxs. Finally, D/Dt denotes the material
valid regions with a trusty French curve, thoughy solution tme derivative, defined aB/Dt=d/dt+v-V=d/dt+ v/ X,
within the no-solution band is really questionable. Alternatively?hered/dt denotes the time derivative in the reference frame and
the previous authors may have used the device suggested byf&/(X) iS the space-dependent flow velocity of the materiql;
reviewer. In either case a mathematical/physical difficulty existg€notes théth component of. Throughout this paper the sum-
Fundamentally, the question is this: does the mathematical diation convention applies to repeated subscripts; lowercase Latin
ficulty have the physical meaning that flutter of arbitrary ampliUPSCripts run from 1 to 3. The vectors and matrices in(Exare
tude in such cases is impossible, even though its existence sed#fifier defined in the appendices for diffusi¢Appendix A),
physically reasonable? Of course, the whole analysis of the phyéF-OUS'“C wave propagation in moving fluiddppendix B, mo-
cai system is highly idealized by ignoring viscous effects. Thefpentum transportAppendix O, and coupled elastodynamic and
incorporation, however, is anything but trivial. Perhaps, as is oft&iectromagnetic wave propagation in porous sdldspendix D).
the case, added realism will also overcome the mathematical dfi- this paper we use Ed1) as the basis for deriving unified
ficulties. This line of research is being pursued. reciprocity theorems for these phenomena. In general, a reciproc-

It was nevertheless thought that the research community sholhgtheorem interrelates the quantities that characterize two admis-

be made aware that the results of the 1970s analyses maySH¥e physical states that could occur in one and the same domain,
flawed in some regions of the parameter space. [1]. One can distinguish between convolution type and correlation

type reciprocity theorems|2]. Generally speaking, these two
types of reciprocity theorems find their applications in forward
and inverse problems, respectively. Both types of reciprocity theo-
rems will be derived for the field vectar.

As suggested by the same reviewer, at these points the fluid would then behave
as a vibration absorber. . . . . .
3All of those who actually did the calculations being unreachable. The Differential Equatlon in the Frequency Domain
Reciprocity theorems can be derived in the time domain, the

Laplace domain and the frequency domdi8]. Here we only
References consider the frequency domain. We define the Fourier transform

[1] Lai, Y.-C., and Chow, C.-Y., 1973, “Stability of a Rotating Thin Elastic TubeOf a time-dependent functionf(t) as f(w)szwf(t)exp
Containing a Fluid Flow,” Zeitschrift fu angewande Mathematik und (—jwt)dt, wherej is the imaginary unit and denotes the angular

Mechanik,53, pp. 511-517. ' ) o frequency. We apply the Fourier transform to all terms in @9
[2] Srlmvasgn, A _V., 1971, .Flutter Arjaly5|s qf 'I’?otatlng Cylindrical Shells Im-,nder the assumption that this equation is linean.itdence, we
mersed in a Circular Helical Flowfield of Air,” AIAA J.9, pp. 394-400. only consider those cases in which the field quantities do not

[3] Dowell, E. H., Srinivasan, A. V., McLean, J. D., and Ambrose, J., 1974 . . . .
“Aeroelastic Stability of Cylindrical Shells Subjected to a Rotating Flow,” appear in any of the matrices or operators in ﬂm In particular,

AIAA J., 12, pp. 1644—1651. this is why the ternrDu/Dt in the momentum transport E¢C7)
[4] Chen, T. L. C., and Bert, C. W., 1977, “Dynamic Stability of Isotropic orlS replaced bWU/_’?t In (ClO). Transformlng Eq-(l) to the fre-
Composite-Material Cylindrical Shells Containing Swirling Fluid Flow,” quency domain yields
ASME J. Appl. Mech. 44, pp. 112—116ibid. 44, p. 513.
[5] Padoussis, M. P., 200FIuid-Structure Interactions: Slender Structures and  Contributed by the Applied Mechanics Division o AMERICAN SOCIETY OF
Axial Flow, 2, Elsevier, Oxford. MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 8,
2002; final revision, May 3, 2003. Associate Editor: D. A. Siginer.

Journal of Applied Mechanics Copyright © 2004 by ASME JANUARY 2004, Vol. 71 / 145



A(jo+v-V)0+Bl+D,0=5 (2) convention does not apply for these subscjiptée substituteti,

. . i and(g for aandb in Eqg. (8), apply Eq.(2) for statesA andB and
wherel=0(x, w) is the space and frequency-dependent field vegge the symmetry properties

tor and5=3(x,w) is the space and frequency-dependent source
vector. The termv-V should be dropped for linearized momen- AJK=KA, and BiK=KBj 9)
tum transport(Appendix Q as well as for wave phenomena in
nonmoving media(Appendix D. Finally we remark that in a
number of cases matri® contains temporal convolution kernels . ) oA T 3
in the time domain(Appendix B or, equivalently, complex UaKNyUgd™x= | [UpKSg—s Kugd®x
frequency-dependent material parameters in the frequency domain’ v

(Appendices B and D

(see the appendicesThis yields

+ f UAK[j w(Ap—Ag)+(Ba—Bg) Jugd®x
Vv

Modification of Gauss’ Divergence Theorem
o . . + | [((va-V)ua) TKA
The reciprocity theorem will be derived for a voluméen- oA A A

closed by surface) with outward pointing normal vectar. Note
that 91 does not necessarily coincide with a physical boundary. —UAKA (Vg V)] ugdPx. (10)
Gauss’ divergence theorem plays a central role in the derivatior];I ! . . )
For a scalar field(x), this theorem reads The first term in the last integral can be written as

da(x) ((Va- V)UATKA plg =V - (VAURKA U5

ax d®x= @ a(x)n;d?x, 3) 501 AL

} v
v I » _ALK¢UB_ULKAA(VA'V)UB.

wheren; denotes théth component of. In this section we will IXi

modify this theorem for the differential operator matiy appear- (11)
ing in Egs. (1) and (2). Note thatD,=D, for all forms of D,

appearing_ in the appendicébere superscript denotes r_natrix
transposition only; it does not denote operator transpogitiost tion this term(with v, , replaced binO,Av Appendix B is negli-

D,; denote the operator in rolvand columnJ of matrixD,. The "~ " . A : S i
symmetry ofD, implies D,;=D,, . We define a matriN, which glble in comparison with the spatial derivatives of the wave fields

contains the components of the normal veatprorganized in a Ua angﬂ%ék';%r tzzS;PetrOSit;s:ioonsH%%nCﬂdetrﬁg irt]etrhn? aggr?tg(ijri\(i:r?;
e - ; . i A . ,

e e i ceovens s st 06 )1, wil be ropped. Substu e remainder of e

hzlaJveNu: N;, . For example, for matriced, andN, in Eqsx.‘(A3) right-hand side of Eq11) into Eq.(lO) ar_1d applying the theore_m

and (A5) we haveD j,=D;=3d/dx, and Nyy=Ny=n,. If we of Gauss for the term containing the divergence operator, yields

now replace the scalar fiel(x) by a,(x)b;(x), we may gener- - A o
alize Eq.(3) to § uAKNXquzx:f[uAKsB—sAKuB]d3x
2% 14

For diffusion (Appendix A the termd(v; AA)/dX; vanishes on
account of the equation of continuity. For acoustic wave propaga-

Daxbxd3x=\tﬁaxbed2x, 4

fv IJ[ I( ) J( )] » I( ) J( ) 1J ( ) +fGAK[jw(AA—AB)+(BA—BB)]03d3X
where the summation convention applies for repeated capital Y

Latin subscript§which may run from 1 to 4, 12 or 22, depending . .
on the choice of operatdb,). Applying the product rule for dif- — | UAK[AA(VA- V) +Ag(Ve-V)]Upd"x
ferentiation and using the symmetry propeBy;=D;,, we ob- v
tain for the integrand in the left-hand side of Eg)

D;(ajby)=a;D;by+(Dya)by=a'Db+ (D)™,  (5)

wherea andb are vector functions, containing the scalar functionsghis is the unified reciprocity theorem of the convolution type
a,(x) and by(x), respectively. Rewriting the integrand in thespeak of convolution type, because the multiplications in the fre-

+ é (GXKAAGB)VAﬂde. (12)
v

right-hand side of Eq4) in a similar way, we thus obtain quency domain correspond to convolutions in the time doméin
interrelates the field quantitigsontained inli, and{g), the ma-

f[aTDXb+(DXa)Tb]d3x: 35 a'N,bdx. (6) terial parametergcontained inA,, Ba, Ag, andBg), the flow

v v velocities (/4 andvg) as well as the source functiofsontained

in 5, and%g) of statesA andB. The left-hand side is a boundary
integral which contains a specific combination of the field quan-
tities of statesA andB at the boundary of the volume The first
D,K=—-KD,, (7) integral on the right-hand side interrelates the field quantities and
the source functions iW. The second integral contains the differ-
ences of the medium parameters in both states; obviously this
integral vanishes when the medium parameters in both states are
T T 3 - ) identical. '_I'_he t_hird in_tegral on the _right-hand side cont_ains the

[a'KDb—(Dsa) Kb]d’x= ® a KN,bdx. (8)  flow velocities inV; this integral vanishes when the medium pa-

v » rameters in both states are identical and the flow velocities in both
. . . states are opposite to each other. The last integral on the right-
Reciprocity Theorem of the Convolution Type hand side is a boundary integral containing the normal component

We consider two physical states in voluiieThe field quanti- of the flow velocity in staté; it vanishes when this flow velocity
ties, the material parameters, the flow velocity as well as tligtangential to the bounda@). Depending on the type of appli-
source functions may be different in both states and they will lmation, state#\ andB can be both physical states, or both math-
distinguished with subscriptd and B (of course the summation ematical statege.g., Green’s statgsor one can be a physical state

Finally we consider a variant of this equation. We replacky
Ka, whereK is a diagonal matrix with the following property:

see the appendices for details. With this replacement(@de-
comes
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and the other a mathematical stdthe latter situation leads to Appendix A

representation integralsFor further discussions on convolution- o ) L o
type reciprocity theorems in different fields of application we refer Mass Diffusion.  The equation of continuity for speciésn a
to Lyamshe\[4], De Hoop and Starfil], Fokkema and Van den mixture of fluids reads

Berg[3], Allard et al.[5], Pride and Haartsef6], and Belinskiy DY g3
[7]. i BN

et tax Y (A1)
Reciprocity Theorem of the Correlation Type where Y® is the mass fraction of specids J™ its mass flux

We substitutdl};, andig for a andb in Eq. (6), wheré denotes relative to the mixturep is the mass density of the mixture and
complex conjugation. Following the same procedure as in the plfé(- ) the mass production rate density of spedidglue to chemi-

vious section, using the symmetry property cal reactions Fick’s first law of diffusion reads
H_ Yo
AR=Aa (13) 0+eDM— =0, ()

where™ denotes complex conjugation and transposition, we ob- i

tain where D® is the diffusion coefficient for specids Equations
(A1) and(A2) can be combined to yield Eq@l), with
35 QN G P f 08, + &0, 1
2% v

y (k) o®
I 0
+ f OA[j w(Aa—Ag) — (B +Bg)]0gd®x Lo Lo )
v R 0
(A3)
+fa,'i[AA(vA-V)—AB(VB-V)]aBon A
v 0 — — —
Xy Xy  OXg
- fﬁ (08 Al VandX. (14) 2 09 o o
av X,
This is the unified reciprocity theorem of the correlation type D= d '
speak of correlation type, because the multiplications in the fre- w90 0
quency domain correspond to correlations in the time domain 2
The termﬂ,’j contains “back-propagating” field quantities in state i 0 0 0
A, [2]. When we compare this reciprocity theorem with Etp), X3
we observe that, apart from the complex conjugation, the diagonal
matrix K is absent in all integrals and that some plus and minus o 0 0 O
signs have been changed. In particular, the teBR—<{Bg) has 0 00 O
been replaced bﬂ:‘F Bg), which means that the second integral A= and
on the right-hand side no longer vanishes when the medium pa- 0 0 00
rameters in both states are identical. Moreover, the {ekR(Va 0 0 0 O
-V)+Ag(vg-V)] has been replaced byAx(Va-V)—Ag(Vg (A4)
-V)], which means that the third integral on the right-hand side 0 0 0 0
vanishes when the medium parameters contained in matias
well as the flow velocities are identical in both states. For a dis- 0 L 0
cussion on the application of correlation-type reciprocity theorems oD®
to inverse problems we refer to Fisher and Langenpg&kgnd De
Hoop and Stanfi1]. B= 0 0o 1
oDW
Conclusions 1
We have formulated a general differential equation in matrix- 0 0 0 W

vector form(equation(1)), which applies to diffusiorfAppendix
A), acoustic wave propagation in moving fluiappendix B, MatricesN, and K, appearing in the modified divergence theo-
momentum transportAppendix Q and coupled elastodynamic rems(6) and(8), read

and electromagnetic wave propagation in fluid-saturated porous

solids(Appendix D. For linear phenomenavhich excludes non- 0 ng ny ng
linear momentum transportwe have transformed the general n, 0 0 0
equation from the time domain to the frequency doni&a. (2)). N,= and
Based on this general equation as well as the symmetry properties Nz
(7), (9), and(13) we have derived unified reciprocity theorems of ns 0 0 O
the convolution typgEq. (12)) and of the correlation typéEq. (A5)
(14)), respectively. 1 0 0 0
0 -1 0 0
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Appendix B the isotropic viscosity parameter. Equatiq@y) and(C2) can be

) o ) ] ) combined to yield the general matrix-vector Efy). To this end
Acoustic Wave Propagation in Moving Fluids. The linear- e first rewrite these equations as

ized equation of motion in a moving fluid reads

Do bv_ 97 (C3)
J =+ =f,
g—+bv*v+ P_+ (B1) °Dt o
9%,
. ov
with 7+ hy S =pa, (c4)
D J J i
+up— (82) with

Dt at  “kox,'

wherep is the acoustic pressure, the particle velocity associated ( vl)
V= ,

fy T3 6y
f=| fo|z=| 25|, &=| 9 and
fs T3 83j

to the acoustic wave motigmvhich is to be distinguished from the U2
flow velocity vE in the operatoD/Dt), ¢ the mass density of the Us (C5)
medium in equilibrium,f; the volume density of external force, Tin Mua M
andb’ a causal loss functiofx denotes a temporal convolutipn ! ! !
The linearized stress-strain relation reads hy=\| 72ju 72521 7253
1 Dp A 731 W3j21 73j3i
Kbt PPt =0 (B3)  Note that
whereK is the bulk compression modulugthe volume injection h; = hﬁ (C6)

rate density, antb® a causal loss function.

Equations(B1) and (B3) can be combined to yield the general on account of the symmetry propertiespfi, . Hence, we obtain

matrix-vector Eq.(1), with D/Dt defined in Eq.(B2) and —Du — _
A—— +Bu+CD,u=s, cn
Dt
p q
L | T with
Uo ! f2 ! v f
f
U3 3 e -7 —_ | péy
1 | T pa |
— 0 0 O
K T3 Pds
A=l 0 ¢ 0 O and B4) el O O O O 0 0O
0 0 ¢ O _ | O O O O _|/O I O O
A= = C8
0 0 0 ¢ O O O o oo 1 of ©®
pP* 0 0 0 O O O O O O O |
0 b O 0 I O O O
B= .
0 0 b O O hy; hyp hys
C=
0 0 0 bvx O hy hy hygl’
MatricesD,, N,, andK are the same as in Appendix A. The O hz hsp has
symmetry properties described by E¢8, (9), and(13) are easily
confirmed. Finally, note that in the frequency domain formulation, O Dy D; Ds
the temporal convolution kernet®(x,t)* andb?(x,t)* in matrix D, O O O
B are replaced by complex frequency-dependent functions Dy= Db O O O and
Q[P N 1 2
bP(x,w) andb’(x,w), respectively.
D; O O O (9)
Appendix C 9 0o o0
Momentum Transport. The nonlinear equation of motion for X
a viscous fluid reads d
Dj: 0 _ 0 ,
Dv; dm; —f c1 9Xj
° ot % (C1) 0 0
wherev; is the particle velocitys; the stress tensopg the mass 2
density, andf; the volume density of external force. Stoke'sor j=1, 2, 3,I being the X3 identity matrix andD the 3x3 null
stress-strain rate relation reads matrix. Multiplication of all terms in Eq(C7) by the inverse ofC
P and linearization of the terr@u/Dt yields
Uk
ik S =pdj, (C2) ou
! A— +Bu+D,u=s, (C10)
where 7;; is the anisotropic viscosity tensor apdthe hydro- at
static pressure. The viscosity tensor obeys the following symmetgyth
relation i = ;i1 = Mijik = 7kij - FOr isotropic fluids the viscos- o _
ity tensor readsy;j = n(— 2/35;; 8+ 551 + 5 5jk), Wheren is A=C A=A, B=C B and s=C's (Cl1)
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MatricesN, and K, appearing in the modified divergence theoare source functions in terms of the external electric and magnetic
rems(6) and(8), read current densities. The induced electric current density is coupled
to the elastodynamic wave motion, according to
O N;y N, Ng

n O
N, O O O ‘ T S N
_ —lo n o J=0E-L[Vp+jwo'V*—1'], (D7)
Ny N, O O O and N; . O, ,
n
j

where ¢ is the complex frequency dependent conductivity, with
(C12) o=o'. Substituting the constitutive relatigid7) into the Max-
for j=1, 2, 3 and well Eq. (D5), and adding times Eq.(D2) to Eq.(D5) in order
to compensate for the termL[Vp+jwe V5], yields

N, O O O

K=diag1,—-1,—1,—1), with 1=(1,1,1. (C13)

Based on the structure of the matriggs,C, D, andK as well joeE+(o— gLk 1)E+ yLk W—VxH=-3° (D8)
as the symmetry relatiofC6), we find that the symmetry proper-
ties described by Eq#7), (9), and(13) are obeyed. EquationgD8) and(D6), together with Eqs(D1), (D2), (D3), and
. D4) can be combined to yield
Appendix D ©4 y
Coupled Elastodynamic and Electromagnetic Wave Propa- ijfH*ng CDXQZQ (D9)

gation in Porous Solids. We briefly review the theory for elas-
todynamic waves coupled to electromagnetic fields in a diSSi%here
tive inhomogeneous anisotropic fluid-saturated porous @€l

The linearized equations of motion read in the frequency domain

(using the vector notation introduced in Appendix C o §1 A, O O
boys f 7] b (D1) 0=( 0|, s=|s|, A=| O A, Aml,
jwoPVP+jwe'W— — =17, D1 ) 2 -
x; 3 S3 O A}
R B ] A 23 A33 (DlO)
joo B+ gk Y(W—LE)+Vp=Ff", (D2) = o5 =
B B
with W= ¢(v'— ). Here?¥® and ¥’ are the averaged solid and _ 1 13
fluid particle velocities associatgd to the wave motidnis the = o o O],
filtration velocity, ¢ the porosi'[y,ﬂrjb the averaged bulk stresg, _g‘er 0 533
the averaged fluid pressure, aid the averaged electric field
strength. The source functioh® andf’ are the volume densities I o O D o o
of external force on the bulk and on the fluid, respectively. The 1
constitutive parameterg® and o' are the anisotropic bulk and C=| O Cz Cy and D,=| O Dyp O |,
fluid mass densities, respective[(10]. In the following we as- O Cl, Cyu O O Dy
sume that these tensors are symmetric, according”te(o®)” (D11)

ande’=(¢"T, which is for example the case when the anisotropy

is the result of parallel fine layering at a scale much smaller thgghere| and O are identity and null matrices of appropriate size
the wavelength. The complex frequency-dependent tengdthe  gng

dynamic permeability tensor of the porous material, vkithk”,

and 7 is the fluid viscosity parameter. Finally, the complex o
frequency-dependent tensbraccounts for the coupling between . - .
the elastodynamic and electromagnetic waves. In the following . |E P N W)
we will assume that this tensor is symmetric as well, according to U= A/ U= —AZ v U= P/’
L=LT (Pride and Haartsef6] discuss the conditions for this -
symmetry. 3
The linearized stress-strain relations read A
FoMVad e P 3f
—j A_ P .V W= a —-J 2 0 2 f
janf-i—cuaxl +d;V-W=0, (D3) s=| anl, &= . S= ), (D12)
-J 0 0
oo g OV ~ 0
pr+d|W+MV'W:O, (D4)
[
b
with 0 a 3x1 null vector andd; andc;; defined similar asj; and e 0 00
h]| n Eq (CS), l.e., (dJ)|:d|] , with dij:dji ,Tand (le)ik:CijkI s . e O . (e} | O O
W|th Cijkl :.Cjikl :Cijlk:Cklij . Note thatC“ :C” . M, d” and Cijkl Allz( ), A22— y
are the stiffness parameters of the porous solid. O nu 0 o0 1 O
Maxwell's electromagnetic field equations read O O 0O |
. s N A D13
joeE+J—VXH=—J° (D5) (b13)
. . of 0
jouH+VXE=—-J", D6
) jop ) (D6) - oo _ /o o
whereH is the averaged magnetic field strenglhthe averaged Arz= o ol Azz= o ,
induced electric current density,and u are the anisotropic per- 1
mittivity and permeability, withe=€" and u= ", andJ® andJ™ O 0
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—  [(e—glk~i) O} _
Bll_( o , Bia=
_ [kt 0
Bss=| ¢ ,
0 0
I O O O

Coo=

00O
Y
Y
N
Ny
w

| 0
Cas= of M)’
0
O D;
D= , = -—
11 D, O 0 IXg
J
Xy
O V
Das= vl 0

7]|:R71 0)
© O p1a
O 0
o d,
O dy|’
O 4/ (pig)
J
X Xy
J
O - T L
A%y
o
1 (D16)

andD,, equal toD, in Eq. (C9). Multiplying all terms in Eq.(D9)

by the inverse ofC finally yields

joAU+BU+ D=5,

with A=C A, B=C 'B=B and$=C"

(D17)

15=s. MatricesN, and

K , appearing in the modified divergence theorei®sand (8),

read
N (e} (e}
Sl N (@] © Ng
N, = , Np= )
X 22 11 N, O
O O  Na3 (D18)
0 -n n
3 2 O n
No: N3 0 —Ny |, N33: nT 0/
- n2 nl 0
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K=diag —1,1,1,—1,-1,-1,1,—-1), (D19)

andN,, equal toN, in Eq. (C12). Based on the structure of the
matricesA, B, C, D,, andK as well as the symmetry relations

discussed above, we find that the symmetry properties described

by Egs.(7), (9), and(13) are obeyed.

__Finally, note that when the coupling tendoiis zero, the matrix
B,; vanishes and hence equati@) decouples into the electro-
magnetic wave equation for the wave vectgrand Biot's po-
roelastic wave equation for the wave vect(“Jizr (og)T, [11]. For a
nonporous solid the matricés,; andC,3 vanish as well, so Biot's

wave equation reduces to the elastodynamic wave equation for the

wave vectorll,. Obviously the symmetry properties described by
Eqgs.(7), (9), and(13) are obeyed for the matrices appearing in the

electromagnetic wave equation, Biot's poroelastic wave equation

and the elastodynamic wave equation, respectively.
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Erratum: “Reciprocity Theorems for Diffusion, Flow, and Waves”
[Journal of Applied Mechanics, 2004, 71(1), pp. 145-150]

Kees Wapenaar and Jacob Fokkema

Matrix C defined in Appendices C and D is singular and hence
expressions containing the inverse of C cannot be used as such.
The singularity is a consequence of the chosen organization of the
matrix-vector differential equation in these appendices. The field
vector u contains nine stress components of which only six are
independent. By removing the three redundant stress components
from u and reorganizing the matrix-vector equation accordingly,
we obtain a matrix C that is invertible. The redefined matrices
A=C"'A and B=C™'B in Appendices C and D obey symmetry
relations (9) and (13) in the body of the paper. Hence, the unified
reciprocity theorems (12) and (14) are valid for the modified
matrix-vector differential equation in these appendices. Explicit
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expressions for the modified matrices and vectors can be found
at http://geodus].ta.tudelft.nl/PrivatePages/C.P.A.Wapenaar/
4_Journals/J.Appl.Mech/AppM_04.pdf.

We take this opportunity to indicate some printing errors in the
paper. The tildes below A and u in Eq. (1) should be removed.
Circumflexes should be added above all vectors u and s in Eqgs.
(10) and (11). A right-bracket ] should be inserted after the first i
at the right-hand side of Eq. (10). Right-parentheses ) should be
inserted after i, at the left-hand side of Eq. (11) and after the first
tiy at the right-hand side of Eq. (11).

We thank Stefan Stijlen for bringing the singularity of matrix C
to our attention.
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