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Diffusion, flow, and wave phenomena can each be captured by a
unified differential equation in matrix-vector form. This equation
forms the basis for the derivation of unified reciprocity theorems
for diffusion, flow and wave phenomena.
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could then be obtained, it does not truly solve the problem; so
tions of zero displacement amplitude are as strange as solutio
infinite pressure for this linear homogeneous problem. Thus,
stead of islets of nonsolution~infinite pressure! we would have
islets of zero-amplitude solutions.

The same applies to Chen and Bert’s results, in view of
similarities in the expressions for the perturbation pressures.

Conclusion
It is not known how the two sets of previous authors ha

overcome these difficulties and have presented full curves.3 It is of
course possible to ignore the islets of nonsolution and join
valid regions with a trusty French curve, thoughany solution
within the no-solution band is really questionable. Alternative
the previous authors may have used the device suggested b
reviewer. In either case a mathematical/physical difficulty exis

Fundamentally, the question is this: does the mathematical
ficulty have the physical meaning that flutter of arbitrary amp
tude in such cases is impossible, even though its existence s
physically reasonable? Of course, the whole analysis of the ph
cal system is highly idealized by ignoring viscous effects. Th
incorporation, however, is anything but trivial. Perhaps, as is o
the case, added realism will also overcome the mathematical
ficulties. This line of research is being pursued.

It was nevertheless thought that the research community sh
be made aware that the results of the 1970s analyses ma
flawed in some regions of the parameter space.
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As suggested by the same reviewer, at these points the fluid would then be

as a vibration absorber.
3All of those who actually did the calculations being unreachable.
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Introduction
Diffusion, flow, and wave phenomena can each be captured

the following differential equation in matrix-vector form:

A>
Du>

Dt
1Bu1Dxu5s, (1)

whereu5u(x,t) is a vector containing space and time-depend
field quantities,s5s(x,t) is a source vector,A5A(x) and B
5B(x) are matrices containing space-dependent material par
eters, andDx is a matrix containing the spatial differential oper
tors]/]x1 , ]/]x2 , and]/]x3 . Finally, D/Dt denotes the materia
time derivative, defined asD/Dt5]/]t1v•“5]/]t1vk]/]xk ,
where]/]t denotes the time derivative in the reference frame a
v5v(x) is the space-dependent flow velocity of the material;vk
denotes thekth component ofv. Throughout this paper the sum
mation convention applies to repeated subscripts; lowercase L
subscripts run from 1 to 3. The vectors and matrices in Eq.~1! are
further defined in the appendices for diffusion~Appendix A!,
acoustic wave propagation in moving fluids~Appendix B!, mo-
mentum transport~Appendix C!, and coupled elastodynamic an
electromagnetic wave propagation in porous solids~Appendix D!.
In this paper we use Eq.~1! as the basis for deriving unified
reciprocity theorems for these phenomena. In general, a recip
ity theorem interrelates the quantities that characterize two ad
sible physical states that could occur in one and the same dom
@1#. One can distinguish between convolution type and correla
type reciprocity theorems,@2#. Generally speaking, these tw
types of reciprocity theorems find their applications in forwa
and inverse problems, respectively. Both types of reciprocity th
rems will be derived for the field vectoru.

The Differential Equation in the Frequency Domain
Reciprocity theorems can be derived in the time domain,

Laplace domain and the frequency domain,@3#. Here we only
consider the frequency domain. We define the Fourier transf
of a time-dependent functionf (t) as f̂ (v)5*2`

` f (t)exp
(2jvt)dt, wherej is the imaginary unit andv denotes the angula
frequency. We apply the Fourier transform to all terms in Eq.~1!,
under the assumption that this equation is linear inu. Hence, we
only consider those cases in which the field quantities inu do not
appear in any of the matrices or operators in Eq.~1!. In particular,
this is why the termDu/Dt in the momentum transport Eq.~C7!
is replaced by]u/]t in ~C10!. Transforming Eq.~1! to the fre-
quency domain yields
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A~ j v1v•“ !û1Bû1Dxû5 ŝ, (2)

whereû5û(x,v) is the space and frequency-dependent field v
tor and ŝ5 ŝ(x,v) is the space and frequency-dependent sou
vector. The termv•“ should be dropped for linearized mome
tum transport~Appendix C! as well as for wave phenomena
nonmoving media~Appendix D!. Finally we remark that in a
number of cases matrixB contains temporal convolution kerne
in the time domain~Appendix B! or, equivalently, complex
frequency-dependent material parameters in the frequency do
~Appendices B and D!.

Modification of Gauss’ Divergence Theorem
The reciprocity theorem will be derived for a volumeV en-

closed by surface]V with outward pointing normal vectorn. Note
that ]V does not necessarily coincide with a physical bounda
Gauss’ divergence theorem plays a central role in the derivat
For a scalar fielda(x), this theorem reads

E
V

]a~x!

]xi
d3x5 R

]V
a~x!nid

2x, (3)

whereni denotes theith component ofn. In this section we will
modify this theorem for the differential operator matrixDx appear-
ing in Eqs. ~1! and ~2!. Note thatDx5Dx

T for all forms of Dx

appearing in the appendices~here superscriptT denotes matrix
transposition only; it does not denote operator transposition!. Let
DIJ denote the operator in rowI and columnJ of matrix Dx . The
symmetry ofDx implies DIJ5DJI . We define a matrixNx which
contains the components of the normal vectorn, organized in a
similar way as matrixDx , see the appendices for details. Hence
NIJ denotes the element in rowI and columnJ of matrix Nx , we
haveNIJ5NJI . For example, for matricesDx andNx in Eqs.~A3!
and ~A5! we haveD125D215]/]x1 and N125N215n1 . If we
now replace the scalar fielda(x) by aI(x)bJ(x), we may gener-
alize Eq.~3! to

E
V
DIJ@aI~x!bJ~x!#d3x5 R

]V
aI~x!bJ~x!NIJd2x, (4)

where the summation convention applies for repeated ca
Latin subscripts~which may run from 1 to 4, 12 or 22, dependin
on the choice of operatorDx). Applying the product rule for dif-
ferentiation and using the symmetry propertyDIJ5DJI , we ob-
tain for the integrand in the left-hand side of Eq.~4!

DIJ~aIbJ!5aIDIJbJ1~DJIaI !bJ5aTDxb1~Dxa!Tb, (5)

wherea andb are vector functions, containing the scalar functio
aI(x) and bJ(x), respectively. Rewriting the integrand in th
right-hand side of Eq.~4! in a similar way, we thus obtain

E
V
@aTDxb1~Dxa!Tb#d3x5 R

]V
aTNxbd2x. (6)

Finally we consider a variant of this equation. We replacea by
Ka, whereK is a diagonal matrix with the following property:

DxK52KD x , (7)

see the appendices for details. With this replacement, Eq.~6! be-
comes

E
V
@aTKD xb2~Dxa!TKb #d3x5 R

]V
aTKN xbd2x. (8)

Reciprocity Theorem of the Convolution Type
We consider two physical states in volumeV. The field quanti-

ties, the material parameters, the flow velocity as well as
source functions may be different in both states and they will
distinguished with subscriptsA and B ~of course the summation
146 Õ Vol. 71, JANUARY 2004
c-
rce
-

n

s

ain

ry.
ion.

if

ital
g

ns
e

the
be

convention does not apply for these subscripts!. We substituteûA
andûB for a andb in Eq. ~8!, apply Eq.~2! for statesA andB and
use the symmetry properties

AA
TK5KA A and BA

TK5KBA (9)

~see the appendices!. This yields

R
]V

ûA
TKN xuBd2x5E

V
@uA

TKŝB2sA
TKuBd3x

1E
V
uA

TK @ j v~AA2AB!1~BA2BB!#uBd3x

1E
V
@(~vA•“ !uA)TKA A

2uA
TKA B~vB•“ !]uBd3x. (10)

The first term in the last integral can be written as

~~vA•“ !uA
TKA AûB5“•~vAûA

TKA AuB

2ûA
TK

]~v i ,AAA!

]xi
uB2uA

TKA A~vA•“ !uB .

(11)

For diffusion ~Appendix A! the term](v i ,AAA)/]xi vanishes on
account of the equation of continuity. For acoustic wave propa
tion this term~with v i ,A replaced byv i ,A

0 , Appendix B! is negli-
gible in comparison with the spatial derivatives of the wave fie
ûA and ûB . For the other situations considered in the appendic
v i ,A is taken equal to zero. Hence, the term contain
](v i ,AAA)/]xi will be dropped. Substituting the remainder of th
right-hand side of Eq.~11! into Eq.~10! and applying the theorem
of Gauss for the term containing the divergence operator, yie

R
]V

ûA
TKN xûBd2x5E

V
@ ûA

TKŝB2 ŝA
TKûB#d3x

1E
V
ûA

TK @ j v~AA2AB!1~BA2BB!#ûBd3x

2E
V
ûA

TK @AA~vA•“ !1AB~vB•“ !#ûBd3x

1 R
]V

~ ûA
TKA AûB!vA"nd2x. (12)

This is the unified reciprocity theorem of the convolution type~we
speak of convolution type, because the multiplications in the
quency domain correspond to convolutions in the time domain!. It
interrelates the field quantities~contained inûA and ûB), the ma-
terial parameters~contained inAA , BA , AB , andBB), the flow
velocities (vA andvB) as well as the source functions~contained
in ŝA and ŝB) of statesA andB. The left-hand side is a boundar
integral which contains a specific combination of the field qua
tities of statesA andB at the boundary of the volumeV. The first
integral on the right-hand side interrelates the field quantities
the source functions inV. The second integral contains the diffe
ences of the medium parameters in both states; obviously
integral vanishes when the medium parameters in both state
identical. The third integral on the right-hand side contains
flow velocities inV; this integral vanishes when the medium p
rameters in both states are identical and the flow velocities in b
states are opposite to each other. The last integral on the r
hand side is a boundary integral containing the normal compon
of the flow velocity in stateA; it vanishes when this flow velocity
is tangential to the boundary]V. Depending on the type of appli
cation, statesA andB can be both physical states, or both mat
ematical states~e.g., Green’s states!, or one can be a physical stat
Transactions of the ASME
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representation integrals!. For further discussions on convolution
type reciprocity theorems in different fields of application we re
to Lyamshev@4#, De Hoop and Stam@1#, Fokkema and Van den
Berg @3#, Allard et al. @5#, Pride and Haartsen@6#, and Belinskiy
@7#.

Reciprocity Theorem of the Correlation Type

We substituteûA* andûB for a andb in Eq. ~6!, where* denotes
complex conjugation. Following the same procedure as in the
vious section, using the symmetry property

AA
H5AA , (13)

whereH denotes complex conjugation and transposition, we
tain

R
]V

ûA
HNxûBd2x5E

V
@ ûA

HŝB1 ŝA
HûB#d3x

1E
V
ûA

H@ j v~AA2AB!2~BA
H1BB!#ûBd3x

1E
V
ûA

H@AA~vA•“ !2AB~vB•“ !#ûBd3x

2 R
]V

~ ûA
HAAûB!vA"nd2x. (14)

This is the unified reciprocity theorem of the correlation type~we
speak of correlation type, because the multiplications in the
quency domain correspond to correlations in the time doma!.
The termûA

H contains ‘‘back-propagating’’ field quantities in sta
A, @2#. When we compare this reciprocity theorem with Eq.~12!,
we observe that, apart from the complex conjugation, the diag
matrix K is absent in all integrals and that some plus and mi
signs have been changed. In particular, the term (BA2BB) has
been replaced by (BA

H1BB), which means that the second integr
on the right-hand side no longer vanishes when the medium
rameters in both states are identical. Moreover, the term@AA(vA
•“)1AB(vB•“)# has been replaced by@AA(vA•“)2AB(vB
•“)#, which means that the third integral on the right-hand s
vanishes when the medium parameters contained in matrixA as
well as the flow velocities are identical in both states. For a d
cussion on the application of correlation-type reciprocity theore
to inverse problems we refer to Fisher and Langenberg@8# and De
Hoop and Stam@1#.

Conclusions
We have formulated a general differential equation in matr

vector form~equation~1!!, which applies to diffusion~Appendix
A!, acoustic wave propagation in moving fluids~Appendix B!,
momentum transport~Appendix C! and coupled elastodynami
and electromagnetic wave propagation in fluid-saturated po
solids~Appendix D!. For linear phenomena~which excludes non-
linear momentum transport! we have transformed the gener
equation from the time domain to the frequency domain~Eq. ~2!!.
Based on this general equation as well as the symmetry prope
~7!, ~9!, and~13! we have derived unified reciprocity theorems
the convolution type~Eq. ~12!! and of the correlation type~Eq.
~14!!, respectively.
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Appendix A

Mass Diffusion. The equation of continuity for speciesk in a
mixture of fluids reads

%
DY~k!

Dt
1

]Jj
~k!

]xj
5v̇~k!, (A1)

where Y(k) is the mass fraction of speciesk, Jj
(k) its mass flux

relative to the mixture,% is the mass density of the mixture an
v̇ (k) the mass production rate density of speciesk ~due to chemi-
cal reactions!. Fick’s first law of diffusion reads

Jj
~k!1%D~k!

]Y~k!

]xj
50, (A2)

where D(k) is the diffusion coefficient for speciesk. Equations
~A1! and ~A2! can be combined to yield Eq.~1!, with

u5S Y~k!

J1
~k!

J2
~k!

J3
~k!

D , s5S v̇~k!

0
0
0
D ,

(A3)

Dx51
0

]

]x1

]

]x2

]

]x3

]

]x1
0 0 0

]

]x2
0 0 0

]

]x3
0 0 0

2 ,

A5S % 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

D and

(A4)

B5S 0 0 0 0

0
1

%D~k!
0 0

0 0
1

%D~k!
0

0 0 0
1

%D~k!

D .

MatricesNx and K , appearing in the modified divergence the
rems~6! and ~8!, read

Nx5S 0 n1 n2 n3

n1 0 0 0

n2 0 0 0

n3 0 0 0

D and

(A5)

K5S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 21

D .

Note that matricesDx , A andB obey Eqs.~7!, ~9!, and~13!. Other
diffusion phenomena can be formulated in a similar way.
JANUARY 2004, Vol. 71 Õ 147
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Appendix B

Acoustic Wave Propagation in Moving Fluids. The linear-
ized equation of motion in a moving fluid reads

%
Dv i

Dt
1bv* v i1

]p

]xi
5 f i , (B1)

with

D

Dt
5

]

]t
1vk

0
]

]xk
, (B2)

wherep is the acoustic pressure,v i the particle velocity associate
to the acoustic wave motion~which is to be distinguished from th
flow velocity vk

0 in the operatorD/Dt), % the mass density of the
medium in equilibrium,f i the volume density of external force
andbv a causal loss function~* denotes a temporal convolution!.
The linearized stress-strain relation reads

1

K

Dp

Dt
1bp* p1

]v i

]xi
5q, (B3)

whereK is the bulk compression modulus,q the volume injection
rate density, andbp a causal loss function.

Equations~B1! and ~B3! can be combined to yield the gener
matrix-vector Eq.~1!, with D/Dt defined in Eq.~B2! and

u5S p
v1

v2

v3

D , s5S q
f 1

f 2

f 3

D ,

A5S 1

K
0 0 0

0 % 0 0

0 0 % 0

0 0 0 %

D and (B4)

B5S bp* 0 0 0

0 bv* 0 0

0 0 bv* 0

0 0 0 bv*

D .

Matrices Dx , Nx , and K are the same as in Appendix A. Th
symmetry properties described by Eqs.~7!, ~9!, and~13! are easily
confirmed. Finally, note that in the frequency domain formulatio
the temporal convolution kernelsbp(x,t)* andbv(x,t)* in matrix
B are replaced by complex frequency-dependent functi
b̂p(x,v) and b̂v(x,v), respectively.

Appendix C

Momentum Transport. The nonlinear equation of motion fo
a viscous fluid reads

%
Dv i

Dt
2

]t i j

]xj
5 f i , (C1)

wherev i is the particle velocity,t i j the stress tensor,% the mass
density, and f i the volume density of external force. Stoke
stress-strain rate relation reads

2t i j 1h i jkl

]vk

]xl
5pd i j , (C2)

where h i jkl is the anisotropic viscosity tensor andp the hydro-
static pressure. The viscosity tensor obeys the following symm
relationh i jkl 5h j ikl 5h i j lk 5hkli j . For isotropic fluids the viscos
ity tensor readsh i jkl 5h(22/3d i j dkl1d ikd j l 1d i l d jk), whereh is
148 Õ Vol. 71, JANUARY 2004
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the isotropic viscosity parameter. Equations~C1! and~C2! can be
combined to yield the general matrix-vector Eq.~1!. To this end
we first rewrite these equations as

%
Dv

Dt
2

]tj

]xj
5f, (C3)

2tj1hj l

]v

]xl
5pdj , (C4)

with

v5S v1

v2

v3

D , f5S f 1

f 2

f 3

D tj5S t1 j

t2 j

t3 j

D , dj5S d1 j

d2 j

d3 j

D and

(C5)

hj l 5S h1 j 1l h1 j 2l h1 j 3l

h2 j 1l h2 j 2l h2 j 3l

h3 j 1l h3 j 2l h3 j 3l

D .

Note that

hj l 5hl j
T (C6)

on account of the symmetry properties ofh i jkl . Hence, we obtain

Ā
Du

Dt
1B̄u1CDxu5 s̄, (C7)

with

u5S v
2t1

2t2

2t3

D , s̄5S f
pd1

pd2

pd3

D ,

Ā5S %I O O O

O O O O

O O O O

O O O O

D , B̄5S O O O O

O I O O

O O I O

O O O I

D , (C8)

C5S I O O O

O h11 h12 h13

O h21 h22 h23

O h31 h32 h33

D ,

Dx5S O D1 D2 D3

D1 O O O

D2 O O O

D3 O O O

D and

(C9)

Dj5S ]

]xj
0 0

0
]

]xj
0

0 0
]

]xj

D ,

for j 51, 2, 3,I being the 333 identity matrix andO the 333 null
matrix. Multiplication of all terms in Eq.~C7! by the inverse ofC
and linearization of the termDu/Dt yields

A
]u

]t
1Bu1Dxu5s, (C10)

with

A5C21Ā5Ā, B5C21B̄ and s5C21s̄. (C11)
Transactions of the ASME
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MatricesNx and K , appearing in the modified divergence the
rems~6! and ~8!, read

Nx5S O N1 N2 N3

N1 O O O

N2 O O O

N3 O O O

D and Nj5S nj 0 0

0 nj 0

0 0 nj

D ,

(C12)

for j 51, 2, 3 and

K5diag~1,21,21,21!, with 15~1,1,1!. (C13)

Based on the structure of the matricesĀ,B̄,C, Dx , andK as well
as the symmetry relation~C6!, we find that the symmetry proper
ties described by Eqs.~7!, ~9!, and~13! are obeyed.

Appendix D

Coupled Elastodynamic and Electromagnetic Wave Propa-
gation in Porous Solids. We briefly review the theory for elas
todynamic waves coupled to electromagnetic fields in a diss
tive inhomogeneous anisotropic fluid-saturated porous solid,@6,9#.
The linearized equations of motion read in the frequency dom
~using the vector notation introduced in Appendix C!

j v%bv̂s1 j v%fŵ2
] t̂ j

b

]xj
5 f̂ b, (D1)

j v%f v̂s1h k̂21~ŵ2L̂ Ê!1“ p̂5 f̂ f , (D2)

with ŵ5f( v̂f2 v̂s). Here v̂s and v̂f are the averaged solid an
fluid particle velocities associated to the wave motion,ŵ is the
filtration velocity, f the porosity,t̂ j

b the averaged bulk stress,p̂

the averaged fluid pressure, andÊ the averaged electric field
strength. The source functionsf̂b and f̂ f are the volume densitie
of external force on the bulk and on the fluid, respectively. T
constitutive parameters%b and %f are the anisotropic bulk and
fluid mass densities, respectively,@10#. In the following we as-
sume that these tensors are symmetric, according to%b5(%b)T

and%f5(%f)T, which is for example the case when the anisotro
is the result of parallel fine layering at a scale much smaller t
the wavelength. The complex frequency-dependent tensork̂ is the
dynamic permeability tensor of the porous material, withk̂5 k̂T,
and h is the fluid viscosity parameter. Finally, the comple
frequency-dependent tensorL̂ accounts for the coupling betwee
the elastodynamic and electromagnetic waves. In the follow
we will assume that this tensor is symmetric as well, according
L̂5L̂T ~Pride and Haartsen@6# discuss the conditions for thi
symmetry!.

The linearized stress-strain relations read

2 j v t̂j
b1cj l

] v̂s

]xl
1dj“"ŵ50, (D3)

j v p̂1dl
T

] v̂s

]xl
1M“"ŵ50, (D4)

with 0 a 331 null vector anddj andcj l defined similar asdj and
hj l in Eq. ~C5!, i.e., (dj ) i5di j , with di j 5dji , and (cj l ) ik5ci jkl ,
with ci jkl 5cjikl 5ci j lk 5ckli j . Note thatcj l 5cl j

T . M, di j andci jkl
are the stiffness parameters of the porous solid.

Maxwell’s electromagnetic field equations read

j veÊ1 Ĵ2“3Ĥ52 Ĵe, (D5)

j vmĤ1“3Ê52 Ĵm, (D6)

whereĤ is the averaged magnetic field strength,Ĵ the averaged
induced electric current density,e andm are the anisotropic per
mittivity and permeability, withe5eT andm5mT, andJe andJm
Journal of Applied Mechanics
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are source functions in terms of the external electric and magn
current densities. The induced electric current density is coup
to the elastodynamic wave motion, according to

Ĵ5ŝÊ2L̂ @“ p̂1 j v%f v̂s2 f̂ f #, (D7)

whereŝ is the complex frequency dependent conductivity, w
ŝ5ŝT. Substituting the constitutive relation~D7! into the Max-
well Eq. ~D5!, and addingL̂ times Eq.~D2! to Eq. ~D5! in order
to compensate for the term2L̂ @“ p̂1 j v%f v̂s2 f̂ f #, yields

j veÊ1~ŝ2hL̂ k̂21L̂ !Ê1hL̂ k̂21ŵ2“3Ĥ52 Ĵe. (D8)

Equations~D8! and~D6!, together with Eqs.~D1!, ~D2!, ~D3!, and
~D4! can be combined to yield

j vĀû1B̄û1CDxû5sC, (D9)

where

û5S û1

û2

û3

D , sC5S sC1

sC2

sC3

D , Ā5S Ā11 O O

O Ā22 Ā23

O Ā23
T Ā33

D ,

(D10)

B̄5S B̄11 O B̄13

O O O

2B̄13
T O B̄33

D ,

C5S I O O

O C22 C23

O C23
T C33

D and Dx5S D11 O O

O D22 O

O O D33

D ,

(D11)

where I and O are identity and null matrices of appropriate si
and

û15S Ê

Ĥ
D , û25S v̂s

2 t̂1
b

2 t̂2
b

2 t̂3
b

D , û35S ŵ
p̂ D ,

sC15S 2 Ĵe

2 ĴmD , sC25S f̂b

0
0
0
D , sC35S f̂ f

0 D , (D12)

Ā115S e O

O m
D , Ā225S %b O O O

O I O O

O O I O

O O O I

D ,

(D13)

Ā235S %f 0

O 0

O 0

O 0

D , Ā335S O 0

0T 1D ,
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B̄115S ~ŝ2hL̂ k̂21L̂ ! O

O O
D , B̄135S hL̂ k̂21 0

O 0
D ,

(D14)

B̄335S h k̂21 0

0T 0
D ,

C225S I O O O

O c11 c12 c13

O c21 c22 c23

O c31 c32 c33

D , C235S O 0

O d1

O d2

O d3

D ,

(D15)

C335S I 0

0T M
D ,

D115S O D0
T

D0 O
D , D05S 0 2

]

]x3

]

]x2

]

]x3
0 2

]

]x1

2
]

]x2

]

]x1
0

D ,

(D16)

D335S O “

“

T 0 D
andD22 equal toDx in Eq. ~C9!. Multiplying all terms in Eq.~D9!
by the inverse ofC finally yields

j vAû1Bû1Dxû5 ŝ, (D17)

with A5C21Ā, B5C21B̄5B̄ and ŝ5C21sC5sC. MatricesNx and
K , appearing in the modified divergence theorems~6! and ~8!,
read

Nx5S N11 O O

O N22 O

O O N33

D , N115S O N0
T

N0 O
D ,

(D18)

N05S 0 2n3 n2

n3 0 2n1

2n2 n1 0
D , N335S O n

nT 0D ,
150 Õ Vol. 71, JANUARY 2004
K5diag~21,1,1,21,21,21,1,21!, (D19)

and N22 equal toNx in Eq. ~C12!. Based on the structure of th
matricesĀ, B̄, C, Dx , andK as well as the symmetry relation
discussed above, we find that the symmetry properties descr
by Eqs.~7!, ~9!, and~13! are obeyed.

Finally, note that when the coupling tensorL̂ is zero, the matrix
B̄13 vanishes and hence equation~D9! decouples into the electro
magnetic wave equation for the wave vectorû1 and Biot’s po-
roelastic wave equation for the wave vector (û2

T ,û3
T)T, @11#. For a

nonporous solid the matricesĀ23 andC23 vanish as well, so Biot’s
wave equation reduces to the elastodynamic wave equation fo
wave vectorû2 . Obviously the symmetry properties described
Eqs.~7!, ~9!, and~13! are obeyed for the matrices appearing in t
electromagnetic wave equation, Biot’s poroelastic wave equa
and the elastodynamic wave equation, respectively.
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Kees Wapenaar and Jacob Fokkema
Matrix C defined in Appendices C and D is singular and hence
xpressions containing the inverse of C cannot be used as such.
he singularity is a consequence of the chosen organization of the
atrix-vector differential equation in these appendices. The field

ector u contains nine stress components of which only six are
ndependent. By removing the three redundant stress components
rom u and reorganizing the matrix-vector equation accordingly,
e obtain a matrix C that is invertible. The redefined matrices
=C−1A and B=C−1B in Appendices C and D obey symmetry

elations �9� and �13� in the body of the paper. Hence, the unified
eciprocity theorems �12� and �14� are valid for the modified

atrix-vector differential equation in these appendices. Explicit
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expressions for the modified matrices and vectors can be found
at http://geodus1.ta.tudelft.nl/PrivatePages/C.P.A.Wapenaar/
4_Journals/J.Appl.Mech/AppM_04.pdf.

We take this opportunity to indicate some printing errors in the
paper. The tildes below A and u in Eq. �1� should be removed.
Circumflexes should be added above all vectors u and s in Eqs.
�10� and �11�. A right-bracket � should be inserted after the first ûB
at the right-hand side of Eq. �10�. Right-parentheses � should be
inserted after ûA at the left-hand side of Eq. �11� and after the first
ûB at the right-hand side of Eq. �11�.

We thank Stefan Stijlen for bringing the singularity of matrix C
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