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Diffusion, flow and wave phenomena can each be captured by a unified differential equation in
matrix-vector form. This equation forms the basis for the derivation of unified reciprocity theorems
for diffusion, flow and wave phenomena.

PACS numbers:

I. INTRODUCTION

Diffusion, flow and wave phenomena can each be cap-
tured by the following differential equation in matrix-
vector form

A
Du

Dt
+ Bu + Dxu = s, (1)

where u = u(x, t) is a vector containing space- and time-
dependent field quantities, s = s(x, t) is a source vec-
tor, A = A(x) and B = B(x) are matrices containing
space-dependent material parameters and Dx is a ma-
trix containing the spatial differential operators ∂/∂x1,
∂/∂x2 and ∂/∂x3. Finally, D/Dt denotes the material
time derivative, defined as D

Dt
= ∂

∂t
+v ·∇ = ∂

∂t
+vk

∂
∂xk

,

where ∂/∂t denotes the time derivative in the reference
frame and v = v(x) is the space-dependent flow veloc-
ity of the material; vk denotes the kth component of v.
Throughout this paper the summation convention ap-
plies to repeated subscripts; lower-case Latin subscripts
run from 1 to 3. The vectors and matrices in equation (1)
are further defined in the appendices for diffusion (Ap-
pendix A), acoustic wave propagation in moving fluids
(Appendix B), momentum transport (Appendix C), elas-
todynamic wave propagation in solids (Appendix D) elec-
tromagnetic diffusion and wave propagation (Appendix
E), and coupled elastodynamic and electromagnetic wave
propagation in porous solids (Appendix F). In this pa-
per we use equation (1) as the basis for deriving unified
reciprocity theorems for these phenomena. In general, a
reciprocity theorem interrelates the quantities that char-
acterize two admissible physical states that could occur
in one and the same domain [1]. One can distinguish be-
tween convolution type and correlation type reciprocity
theorems [2]. Generally speaking, these two types of reci-
procity theorems find their applications in forward and
inverse problems, respectively. Both types of reciprocity
theorems will be derived for the field vector u.

∗This paper was originally published in 2004 in A.S.M.E. Journal
of Applied Mechanics, Vol. 71, 145-150. This new version con-
tains improved appendices, but the body of the paper remained
unchanged (except that the references to the appendices have been
updated and some printing errors have been corrected).

II. THE DIFFERENTIAL EQUATION IN THE

FREQUENCY DOMAIN

Reciprocity theorems can be derived in the time do-
main, the Laplace domain and the frequency domain [3].
Here we only consider the frequency domain. We define
the Fourier transform of a time-dependent function f(t)

as f̂(ω) =
∫ ∞

−∞
f(t) exp(−jωt)dt, where j is the imagi-

nary unit and ω denotes the angular frequency. We apply
the Fourier transform to all terms in equation (1), under
the assumption that this equation is linear in u. Hence,
we only consider those cases in which the field quantities
in u do not appear in any of the matrices or operators in
equation (1). In particular, this is why the term Du/Dt
in the momentum transport equation (C15) is replaced
by ∂u/∂t in (C20). Transforming equation (1) to the
frequency domain yields

A

(

jω + v · ∇

)

û + Bû + Dxû = ŝ, (2)

where û = û(x, ω) is the space- and frequency dependent
field vector and ŝ = ŝ(x, ω) is the space- and frequency
dependent source vector. The term v · ∇ should be
dropped for linearized momentum transport (Appendix
C) as well as for wave phenomena in non-moving me-
dia (Appendices D − F). Finally we remark that in a
number of cases matrix B contains temporal convolution
kernels in the time domain (Appendix B) or, equivalently,
complex frequency-dependent material parameters in the
frequency domain (Appendices B and F).

III. MODIFICATION OF GAUSS’

DIVERGENCE THEOREM

The reciprocity theorem will be derived for a volume
V enclosed by surface ∂V with outward pointing normal
vector n. Note that ∂V does not necessarily coincide with
a physical boundary. Gauss’ divergence theorem plays a
central role in the derivation. For a scalar field a(x), this
theorem reads

∫

V

∂a(x)

∂xi

d3
x =

∮

∂V

a(x)ni d2
x, (3)

where ni denotes the ith component of n. In this section
we will modify this theorem for the differential operator
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matrix Dx appearing in equations (1) and (2). Note that
Dx = D

T
x

for all forms of Dx appearing in the appendices
(here superscript T denotes matrix transposition only; it
does not denote operator transposition). Let DIJ denote
the operator in row I and column J of matrix Dx. The
symmetry of Dx implies DIJ = DJI . We define a ma-
trix Nx which contains the components of the normal
vector n, organized in a similar way as matrix Dx, see
the appendices for details. Hence, if NIJ denotes the
element in row I and column J of matrix Nx, we have
NIJ = NJI . For example, for matrices Dx and Nx in
equations (A4) and (A6) we have D12 = D21 = ∂/∂x1

and N12 = N21 = n1. If we now replace the scalar field
a(x) by aI(x)bJ (x), we may generalize equation (3) to

∫

V

DIJ [aI(x)bJ (x)] d3
x =

∮

∂V

aI(x)bJ (x)NIJ d2
x, (4)

where the summation convention applies for repeated
capital Latin subscripts (which may run from 1 to 4, 6, 9
or 19, depending on the choice of operator Dx). Applying
the product rule for differentiation and using the symme-
try property DIJ = DJI , we obtain for the integrand in
the left-hand side of equation (4)

DIJ (aIbJ) = aIDIJbJ + (DJIaI)bJ

= a
T
Dxb + (Dxa)T

b, (5)

where a and b are vector functions, containing the scalar
functions aI(x) and bJ(x), respectively. Rewriting the
integrand in the right-hand side of equation (4) in a sim-
ilar way, we thus obtain

∫

V

[aT
Dxb + (Dxa)T

b] d3
x =

∮

∂V

a
T
Nxbd2

x. (6)

Finally we consider a variant of this equation. We replace
a by Ka, where K is a diagonal matrix with the following
property

DxK = −KDx, (7)

see the appendices for details. With this replacement,
equation (6) becomes

∫

V

[aT
KDxb − (Dxa)T

Kb] d3
x =

∮

∂V

a
T
KNxbd2

x.

(8)

IV. RECIPROCITY THEOREM OF THE

CONVOLUTION TYPE

We consider two physical states in volume V. The
field quantities, the material parameters, the flow veloc-
ity as well as the source functions may be different in both
states and they will be distinguished with subscripts A
and B (of course the summation convention does not ap-
ply for these subscripts). We substitute ûA and ûB for

a and b in equation (8), apply equation (2) for states A
and B and use the symmetry properties

A
T
AK = KAA and B

T
AK = KBA (9)

(see the appendices). This yields

∮

∂V

û
T
AKNxûB d2

x =

∫

V

[

û
T
AKŝB − ŝ

T
AKûB

]

d3
x

+

∫

V

û
T
AK

[

jω(AA − AB) + (BA − BB)
]

ûB d3
x +

∫

V

[

(

(vA · ∇)ûA

)T
KAA − û

T
AKAB(vB · ∇)

]

ûB d3
x.

(10)

The first term in the last integral can be written as

(

(vA · ∇)ûA

)T
KAAûB = ∇ ·

(

vAû
T
AKAAûB

)

−û
T
AK

∂(vi,AAA)

∂xi

ûB − û
T
AKAA(vA · ∇)ûB . (11)

For diffusion (Appendix A) the term ∂(vi,AAA)/∂xi van-
ishes on account of the equation of continuity. For
acoustic wave propagation this term (with vi,A replaced
by v0

i,A, Appendix B) is negligible in comparison with
the spatial derivatives of the wave fields ûA and ûB .
For the other situations considered in the appendices,
vi,A is taken equal to zero. Hence, the term contain-
ing ∂(vi,AAA)/∂xi will be dropped. Substituting the
remainder of the right-hand side of equation (11) into
equation (10) and applying the theorem of Gauss for the
term containing the divergence operator, yields

∮

∂V

û
T
AKNxûB d2

x =

∫

V

[

û
T
AKŝB − ŝ

T
AKûB

]

d3
x

+

∫

V

û
T
AK

[

jω(AA − AB) + (BA − BB)
]

ûB d3
x

−

∫

V

û
T
AK

[

AA(vA · ∇) + AB(vB · ∇)
]

ûB d3
x

+

∮

∂V

(

û
T
AKAAûB

)

vA · nd2
x. (12)

This is the unified reciprocity theorem of the convolution
type (we speak of convolution type, because the multipli-
cations in the frequency domain correspond to convolu-
tions in the time domain). It interrelates the field quan-
tities (contained in ûA and ûB), the material parameters
(contained in AA, BA, AB and BB), the flow velocities
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(vA and vB) as well as the source functions (contained
in ŝA and ŝB) of states A and B. The left-hand side is a
boundary integral which contains a specific combination
of the field quantities of states A and B at the bound-
ary of the volume V. The first integral on the right-hand
side interrelates the field quantities and the source func-
tions in V. The second integral contains the differences
of the medium parameters in both states; obviously this
integral vanishes when the medium parameters in both
states are identical. The third integral on the right-hand
side contains the flow velocities in V; this integral van-
ishes when the medium parameters in both states are
identical and the flow velocities in both states are oppo-
site to each other. The last integral on the right-hand
side is a boundary integral containing the normal com-
ponent of the flow velocity in state A; it vanishes when
this flow velocity is tangential to the boundary ∂V. De-
pending on the type of application, states A and B can
be both physical states, or both mathematical states (e.g.
Green’s states), or one can be a physical state and the
other a mathematical state (the latter situation leads to
representation integrals). For further discussions on con-
volution type reciprocity theorems in different fields of
application we refer to Lyamshev [4], De Hoop and Stam
[1], Fokkema and Van den Berg [3], Allard et al. [5],
Pride and Haartsen [6] and Belinskiy [7].

V. RECIPROCITY THEOREM OF THE

CORRELATION TYPE

We substitute û
∗
A and ûB for a and b in equation

(6), where ∗ denotes complex conjugation. Following the
same procedure as in the previous section, using the sym-
metry property

A
H
A = AA, (13)

where H denotes complex conjugation and transposition,
we obtain

∮

∂V

û
H
A NxûB d2

x =

∫

V

[

û
H
A ŝB + ŝ

H
A ûB

]

d3
x

+

∫

V

û
H
A

[

jω(AA − AB) − (BH
A + BB)

]

ûB d3
x

+

∫

V

û
H
A

[

AA(vA · ∇) − AB(vB · ∇)
]

ûB d3
x

−

∮

∂V

(

û
H
A AAûB

)

vA · nd2
x. (14)

This is the unified reciprocity theorem of the correlation
type (we speak of correlation type, because the multi-
plications in the frequency domain correspond to cor-
relations in the time domain). The term û

H
A contains

‘back-propagating’ field quantities in state A, [2]. When

we compare this reciprocity theorem with equation (12),
we observe that, apart from the complex conjugation,
the diagonal matrix K is absent in all integrals and
that some plus and minus signs have been changed. In
particular, the term (BA − BB) has been replaced by
(BH

A + BB), which means that the second integral on
the right-hand side no longer vanishes when the medium
parameters in both states are identical. Moreover, the
term

[

AA(vA · ∇) + AB(vB · ∇)
]

has been replaced by
[

AA(vA ·∇)−AB(vB ·∇)
]

, which means that the third
integral on the right-hand side vanishes when the medium
parameters contained in matrix A as well as the flow ve-
locities are identical in both states. For a discussion on
the application of correlation type reciprocity theorems
to inverse problems we refer to Fisher and Langenberg
[8] and De Hoop and Stam [1].

VI. CONCLUSIONS

We have formulated a general differential equation in
matrix-vector form [equation (1)], which applies to diffu-
sion (Appendix A), acoustic wave propagation in moving
fluids (Appendix B), momentum transport (Appendix
C), elastodynamic wave propagation in solids (Appendix
D) electromagnetic diffusion and wave propagation (Ap-
pendix E) and coupled elastodynamic and electromag-
netic wave propagation in fluid-saturated porous solids
(Appendix F). For linear phenomena (which excludes
non-linear momentum transport) we have transformed
the general equation from the time domain to the fre-
quency domain [equation (2)]. Based on this general
equation as well as the symmetry properties (7), (9) and
(13) we have derived unified reciprocity theorems of the
convolution type [equation (12)] and of the correlation
type [equation (14)], respectively.
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APPENDIX A: MASS DIFFUSION

The equation of continuity for species k in a mixture
of fluids reads

ρ
DY (k)

Dt
+

∂J
(k)
j

∂xj

= ω̇(k), (A1)

where Y (k) is the mass fraction of species k, J
(k)
j its mass

flux relative to the mixture, ρ is the mass density of the
mixture and ω̇(k) the mass production rate density of
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species k (due to chemical reactions). Fick’s first law of
diffusion reads

J
(k)
j + ρD(k) ∂Y (k)

∂xj

= 0, (A2)

where D(k) is the diffusion coefficient for species k. Elimi-

nating J
(k)
j from equations (A1) and (A2) yields the mass

diffusion equation, according to

ρ
DY (k)

Dt
−

∂

∂xj

(

ρD(k) ∂Y (k)

∂xj

)

= ω̇(k). (A3)

On the other hand, equations (A1) and (A2) can be com-
bined to yield equation (1), with

u =











Y (k)

J
(k)
1

J
(k)
2

J
(k)
3











, s =









ω̇(k)

0
0
0









,Dx =









0 ∂
∂x1

∂
∂x2

∂
∂x3

∂
∂x1

0 0 0
∂

∂x2
0 0 0

∂
∂x3

0 0 0









,

(A4)

A =







ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






and B =









0 0 0 0
0 1

ρD(k) 0 0

0 0 1
ρD(k) 0

0 0 0 1
ρD(k)









.

(A5)
Matrices Nx and K, appearing in the modified diver-
gence theorems (6) and (8), read

Nx =







0 n1 n2 n3

n1 0 0 0
n2 0 0 0
n3 0 0 0






and K =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






.

(A6)
Note that matrices Dx, A and B obey equations (7), (9)
and (13). Other diffusion phenomena can be formulated
in a similar way.

APPENDIX B: ACOUSTIC WAVE

PROPAGATION IN A MOVING FLUID

The linearized equation of motion in a moving fluid
reads

ρ
Dvi

Dt
+ bv

∗ vi +
∂p

∂xi

= fi, (B1)

with

D

Dt
=

∂

∂t
+ v0

k

∂

∂xk

, (B2)

where p is the acoustic pressure, vi the particle veloc-
ity associated to the acoustic wave motion (which is to
be distinguished from the flow velocity v0

k in the operator
D/Dt), ρ the mass density of the medium in equilibrium,
fi the volume density of external force and bv a causal

loss function (∗ denotes a temporal convolution). The
spatial variations of the flow velocity are assumed small
in comparison with those of the particle velocity of the
acoustic wave field, i.e. ∂v0

i /∂xj << ∂vi/∂xj (this as-
sumption can be relaxed, but then the equations become
more involved [9]). The linearized stress-strain relation
reads

κ
Dp

Dt
+ bp

∗ p +
∂vi

∂xi

= q, (B3)

where κ is the compressibility, q the volume injection rate
density and bp a causal loss function.

Eliminating vi from equations (B1) and (B3) for the
lossless situation (bv = bp = 0), yields the acoustic wave
equation, according to

D

Dt

(

κ
Dp

Dt

)

−
∂

∂xi

(1

ρ

∂p

∂xi

)

= −
∂

∂xi

(fi

ρ

)

+
Dq

Dt
. (B4)

On the other hand, equations (B1) and (B3) can be com-
bined to yield the general matrix-vector equation (1),
with D/Dt defined in equation (B2) and

u =







p
v1

v2

v3






, s =







q
f1

f2

f3






,A =







κ 0 0 0
0 ρ 0 0
0 0 ρ 0
0 0 0 ρ







and B =







bp∗ 0 0 0
0 bv∗ 0 0
0 0 bv∗ 0
0 0 0 bv∗






. (B5)

Matrices Dx, Nx and K are the same as in Appendix A.
The symmetry properties described by equations (7), (9)
and (13) are easily confirmed. Finally, note that in the
frequency domain formulation, the temporal convolution
kernels bp(x, t)∗ and bv(x, t)∗ in matrix B are replaced

by complex frequency-dependent functions b̂p(x, ω) and

b̂v(x, ω), respectively.

APPENDIX C: MOMENTUM TRANSPORT

The non-linear equation of motion for a viscous fluid
reads [10, 11]

ρ
Dvi

Dt
−

∂τij

∂xj

= fi, (C1)

where vi is the particle velocity, τij the stress tensor, ρ
the mass density and fi the volume density of external
force. The stress tensor is symmetric, i.e., τij = τji.

Stoke’s stress-strainrate relation reads

−τij + ηijkl

∂vk

∂xl

= pδij , (C2)
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where ηijkl is the anisotropic viscosity tensor and p the
hydrostatic pressure. The viscosity tensor obeys the fol-
lowing symmetry relation

ηijkl = ηjikl = ηijlk = ηklij . (C3)

For isotropic fluids the viscosity tensor reads

ηijkl =
(

ζ −
2
3η

)

δijδkl + η
(

δikδjl + δilδjk

)

, (C4)

where η is the dynamic viscosity coefficient and ζ a vol-
ume viscosity coefficient (or second viscosity). From en-
ergy considerations it follows that η is positive and from
entropy considerations that ζ is positive [12]. Eliminating
τij from equations (C1) and (C2) yields the Navier-Stokes
equation, according to

ρ
Dvi

Dt
−

∂

∂xi

(

(

ζ −
2
3η

) ∂vk

∂xk

)

−
∂

∂xj

[

η
( ∂vi

∂xj

+
∂vj

∂xi

)

]

= fi −
∂p

∂xi

, (C5)

or, for constant η and ζ,

ρ
Dv

Dt
−

(

ζ + 1
3η

)

∇(∇ · v) − η∇2
v + ∇p = f , (C6)

where

v =





v1

v2

v3



 and f =





f1

f2

f3



 . (C7)

On the other hand, equations (C1) and (C2) can be com-
bined to yield the general matrix-vector equation (1). To
this end we first rewrite these equations as

ρ
Dv

Dt
− Dατα = f , (C8)

−τα + hαβDβv = pδα, (C9)

(lower case Greek subscripts take on the values 1 and 2),
where

τ 1 =





τ11

τ22

τ33



 , τ 2 =





τ23

τ31

τ12



 , (C10)

δ1 =





1
1
1



 , δ2 =





0
0
0



 , (C11)

h11 =





η1111 η1122 η1133

η1122 η2222 η2233

η1133 η2233 η3333



 ,h12 =





η1123 η1131 η1112

η2223 η2231 η2212

η3323 η3331 η3312





(C12)

h21 = h
T
12, h22 =





η2323 η2331 η2312

η2331 η3131 η3112

η2312 η3112 η1212



 , (C13)

and

D1 =





∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3



 ,D2 =





0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

∂
∂x2

∂
∂x1

0



 .

(C14)
Hence, we obtain

Ā
Du

Dt
+ B̄u + CDxu = s̄, (C15)

with

u =





v

−τ 1

−τ 2



 , s̄ =





f

pδ1

0



 , (C16)

Ā =





ρI O O

O O O

O O O



 , B̄ =





O O O

O I O

O O I



 , (C17)

C =





I O O

O h11 h12

O h21 h22



 ,Dx =





O D1 D2

D1 O O

D2 O O



 ,(C18)

I being the 3 × 3 identity matrix and O the 3 × 3 null
matrix. For the isotropic situation we have

h11 =





ζ + 4
3η ζ −

2
3η ζ −

2
3η

ζ −
2
3η ζ + 4

3η ζ −
2
3η

ζ −
2
3η ζ −

2
3η ζ + 4

3η



 ,h22 =





η 0 0
0 η 0
0 0 η



 ,

(C19)
and h12 = h21 = O. The determinant of C equals 12ζη5.
Since η > 0 and ζ > 0 the inverse of C exists for the
isotropic situation. Whether the inverse of C exists in
general for anisotropic fluids remains to be investigated.
Multiplication of all terms in equation (C15) by the in-
verse of C and linearization of the term Du/Dt yields

A
∂u

∂t
+ Bu + Dxu = s, (C20)

with

A = C
−1

Ā = Ā, B = C
−1

B̄ and s = C
−1

s̄.
(C21)

Matrices Nx and K, appearing in the modified diver-
gence theorems (6) and (8), read

Nx =





O N1 N2

N1 O O

N2 O O



 , (C22)

N1 =





n1 0 0
0 n2 0
0 0 n3



 ,N2 =





0 n3 n2

n3 0 n1

n2 n1 0



 (C23)
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and

K = diag(1,−1,−1), with1 = (1, 1, 1). (C24)

Based on the structure of the matrices Ā, B̄, C, Dx and
K we find that the symmetry properties described by
equations (7), (9) and (13) are obeyed.

APPENDIX D: ELASTODYNAMIC WAVE

PROPAGATION IN A SOLID

The linearized equation of motion in solids reads [13–
15]

ρ
∂vi

∂t
−

∂τij

∂xj

= fi, (D1)

where vi is the particle velocity associated to the elasto-
dynamic wave motion, τij the stress tensor, ρ the mass
density of the medium in equilibrium and fi the volume
density of external force. The stress tensor is symmetric,
i.e., τij = τji.

Hooke’s linearized stress-strain relation reads

−
∂τij

∂t
+ cijkl

∂vk

∂xl

= cijklhkl, (D2)

where hkl is the external deformation rate, with hkl =
hlk, and cijkl is the anisotropic stiffness tensor. The stiff-
ness tensor obeys the following symmetry relation [16]

cijkl = cjikl = cijlk = cklij . (D3)

For isotropic solids this tensor reads

cijkl = λδijδkl + µ(δikδjl + δilδjk), (D4)

where λ and µ are the Lamé parameters. Eliminating τij

from equations (D1) and (D2), using equation (D4) and
taking hkl = 0, yields the elastodynamic wave equation,
according to

ρ
∂2vi

∂t2
−

∂

∂xi

(

λ
∂vk

∂xk

)

−
∂

∂xj

[

µ
( ∂vi

∂xj

+
∂vj

∂xi

)

]

=
∂fi

∂t
,

(D5)
or, for constant λ and µ,

ρ
∂2

v

∂t2
− (λ + 2µ)∇(∇ · v) + µ∇×∇× v =

∂f

∂t
, (D6)

with

v =





v1

v2

v3



 and f =





f1

f2

f3



 . (D7)

On the other hand, equations (D1) and (D2) can be com-
bined to yield the general matrix-vector equation (1).

To this end we first rewrite these equations (for the
anisotropic situation) as

ρ
∂v

∂t
− Dατα = f (D8)

and

−
∂τα

∂t
+ cαβDβv = cαβhβ (D9)

(lower case Greek subscripts take on the values 1 and 2),
where

τ 1 =





τ11

τ22

τ33



 , τ 2 =





τ23

τ31

τ12



 , (D10)

h1 =





h11

h22

h33



 , h2 =





2h23

2h31

2h12



 , (D11)

c11 =





c1111 c1122 c1133

c1122 c2222 c2233

c1133 c2233 c3333



 , c12 =





c1123 c1131 c1112

c2223 c2231 c2212

c3323 c3331 c3312





(D12)

c21 = c
T
12, c22 =





c2323 c2331 c2312

c2331 c3131 c3112

c2312 c3112 c1212



 , (D13)

and

D1 =





∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3



 ,D2 =





0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

∂
∂x2

∂
∂x1

0



 .

(D14)
Hence, we obtain

Ā
∂u

∂t
+ CDxu = s̄, (D15)

with

u =





v

−τ 1

−τ 2



 , s̄ =





f

c1βhβ

c2βhβ



 , Ā =





ρI O O

O I O

O O I



 ,

(D16)

C =





I O O

O c11 c12

O c21 c22



 ,Dx =





O D1 D2

D1 O O

D2 O O



 , (D17)

I being the 3 × 3 identity matrix and O the 3 × 3 null
matrix. Note that C is a symmetric real-valued matrix.
From energy considerations it follows that it is positive
definite [15], hence its inverse exists. Multiplying all
terms in equation (D15) by the inverse of C yields

A
∂u

∂t
+ Dxu = s, (D18)
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with

A = C
−1

Ā and s = C
−1

s̄, (D19)

or

A =





ρI O O

O s11 2s12

O 2s21 4s22



 , s =





f

h1

h2



 , (D20)

with

s11 =





s1111 s1122 s1133

s1122 s2222 s2233

s1133 s2233 s3333



 , s12 =





s1123 s1131 s1112

s2223 s2231 s2212

s3323 s3331 s3312





(D21)

s21 = s
T
12, s22 =





s2323 s2331 s2312

s2331 s3131 s3112

s2312 s3112 s1212



 , (D22)

where the sijkl are the elements of the compliance tensor,
with sijkl = sjikl = sijlk = sklij . Note that

cijklsklmn = sijklcklmn =
1

2
(δimδjn + δinδjm). (D23)

For an isotropic solid we have

c11 =





λ + 2µ λ λ
λ λ + 2µ λ
λ λ λ + 2µ



 , c22 =





µ 0 0
0 µ 0
0 0 µ



 ,

(D24)

c21 = c
T
12 = O, (D25)

and

s11 =





Λ + 2M Λ Λ
Λ Λ + 2M Λ
Λ Λ Λ + 2M



 , s22 =





M 0 0
0 M 0
0 0 M



 ,

(D26)

s21 = s
T
12 = O, (D27)

with

Λ = −
λ

(3λ + 2µ)2µ
, M =

1

4µ
. (D28)

Matrices Nx and K, appearing in the modified diver-
gence theorems (6) and (8), read

Nx =





O N1 N2

N1 O O

N2 O O



 , (D29)

N1 =





n1 0 0
0 n2 0
0 0 n3



 ,N2 =





0 n3 n2

n3 0 n1

n2 n1 0



 (D30)

and

K = diag(1,−1,−1), with1 = (1, 1, 1). (D31)

Based on the structure of the matrices Ā, C, Dx and
K we find that the symmetry properties described by
equations (7), (9) and (13) are obeyed.

APPENDIX E: ELECTROMAGNETIC

DIFFUSION AND WAVE PROPAGATION

The Maxwell equations for electromagnetic phenomena
read [15, 17]

ǫ
∂E

∂t
+ σE −∇× H = −J

e, (E1)

µ
∂H

∂t
+ ∇× E = −J

m, (E2)

where E and H are the electric and magnetic field
strengths, ǫ, µ and σ are the permittivity, permeabil-
ity and conductivity, respectively and, finally, J

e and J
m

are source functions in terms of the external electric and
magnetic current densities. Eliminating the magnetic
field strength H from equations (E1) and (E2) yields the
electromagnetic wave equation, according to

σ
∂E

∂t
+ ǫ

∂2
E

∂t2
+∇×

( 1

µ
∇×E

)

= −
∂J

e

∂t
−∇×

( 1

µ
J

m
)

.

(E3)
Note that first and second order time derivatives occur in
this equation, which means that this equation accounts
for diffusion as well as wave propagation. On the other
hand, equations (E1) and (E2) can be combined to

A
∂u

∂t
+ Bu + Dxu = s, (E4)

with

u =

(

E

H

)

, s =

(

−J
e

−J
m

)

,A =

(

ǫI O

O µI

)

,B =

(

σI O

O O

)

,

(E5)

Dx =

(

O D
T
0

D0 O

)

,D0 =





0 −
∂

∂x3

∂
∂x2

∂
∂x3

0 −
∂

∂x1

−
∂

∂x2

∂
∂x1

0



 , (E6)

with I being the 3×3 identity matrix and O the 3×3 null
matrix. Matrices Nx and K, appearing in the modified
divergence theorems (6) and (8), read

Nx =

(

O N
T
0

N0 O

)

,N0 =





0 −n3 n2

n3 0 −n1

−n2 n1 0



 , (E7)

K = diag(−1,1), 1 = (1, 1, 1). (E8)

The symmetry properties described by equations (7), (9)
and (13) are easily confirmed.

APPENDIX F: COUPLED ELASTODYNAMIC

AND ELECTROMAGNETIC WAVE

PROPAGATION IN POROUS SOLIDS

We briefly review the theory for elastodynamic waves
coupled to electromagnetic fields in a dissipative inhomo-
geneous anisotropic fluid-saturated porous solid [6, 18].
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The linearized equations of motion read in the frequency
domain (using the vector notation introduced in Ap-
pendix D)

jωρb
v̂

s + jωρf
ŵ − Dατ̂ b

α = f̂
b, (F1)

jωρf
v̂

s + ηk̂−1
(

ŵ − L̂Ê

)

+ ∇p̂ = f̂
f , (F2)

with ŵ = φ(v̂f − v̂
s). Here v̂

s and v̂
f are the averaged

solid and fluid particle velocities associated to the wave
motion, ŵ is the filtration velocity, φ the porosity, τ̂ b

α the
averaged bulk stress (organized as in equation (D10)), p̂

the averaged fluid pressure and Ê the averaged electric
field strength. Matrix Dα contains the spatial differential
operators and is defined in equation (D14). The source

functions f̂
b and f̂

f are the volume densities of exter-
nal force on the bulk and on the fluid, respectively. The
constitutive parameters ρb and ρf are the anisotropic
bulk and fluid mass densities, respectively [19]. In the
following we assume that these tensors are symmetric,
according to ρb = (ρb)T and ρf = (ρf )T , which is for
example the case when the anisotropy is the result of
parallel fine layering at a scale much smaller than the

wavelength. The complex frequency-dependent tensor k̂

is the dynamic permeability tensor of the porous mate-

rial, with k̂ = k̂
T , and η is the fluid viscosity param-

eter. Finally, the complex frequency-dependent tensor
L̂ accounts for the coupling between the elastodynamic
and electromagnetic waves. In the following we will as-
sume that this tensor is symmetric as well, according to
L̂ = L̂

T (Pride and Haartsen [6] discuss the conditions
for this symmetry).

The linearized stress-strain relations read

−jωτ̂ b
α + cαβDβv̂

s + dα∇ · ŵ = 0, (F3)

jωp̂ + d
T
αDαv̂

s + M∇ · ŵ = 0, (F4)

with

d1 =





d11

d22

d33



 , d2 =





d23

d31

d12



 , (F5)

cαβ defined in equations (D12) and (D13) and 0 a 3 × 1
null vector. M , dij and cijkl are the real-valued stiffness
parameters of the fluid-saturated porous solid.

Maxwell’s electromagnetic field equations read

jωǫÊ + Ĵ − ∇ × Ĥ = −Ĵ
e, (F6)

jωµĤ + ∇ × Ê = −Ĵ
m, (F7)

where Ĥ is the averaged magnetic field strength, Ĵ the
averaged induced electric current density, ǫ and µ are the
anisotropic permittivity and permeability, with ǫ = ǫT

and µ = µT , and J
e and J

m are source functions in terms

of the external electric and magnetic current densities.
The induced electric current density is coupled to the
elastodynamic wave motion, according to

Ĵ = σ̂Ê − L̂

[

∇p̂ + jωρf
v̂

s
− f̂

f
]

, (F8)

where σ̂ is the complex frequency dependent conductiv-
ity, with σ̂ = σ̂T . Substituting the constitutive relation
(F8) into the Maxwell equation (F6), and adding L̂ times
equation (F2) to equation (F6) in order to compensate

for the term −L̂[∇p̂ + jωρf
v̂

s − f̂
f ], yields

jωǫÊ+
(

σ̂−ηL̂k̂
−1

L̂

)

Ê+ηL̂k̂
−1

ŵ−∇×Ĥ = −Ĵ
e. (F9)

Equations (F9) and (F7), together with equations (F1),
(F2), (F3) and (F4) can be combined to yield

jωĀû + B̄û + CDxû = ˆ̄s, (F10)

where

û =





û1

û2

û3



 , ˆ̄s =





ˆ̄s1
ˆ̄s2
ˆ̄s3



 , Ā =





Ā11 O O

O Ā22 Ā23

O Ā
T
23 Ā33



 ,

B̄ =





B̄11 O B̄13

O O O

−B̄
T
13 O B̄33



 , (F11)

C =





I O O

O C22 C23

O C
T
23 C33



 and Dx =





D11 O O

O D22 O

O O D33



 ,

(F12)
where I and O are identity and null matrices of appro-
priate size and

û1 =

(

Ê

Ĥ

)

, û2 =





v̂
s

−τ̂ b
1

−τ̂ b
2



 , û3 =

(

ŵ

p̂

)

,

ˆ̄s1 =

(

−Ĵ
e

−Ĵ
m

)

, ˆ̄s2 =





f̂
b

0

0



 , ˆ̄s3 =

(

f̂
f

0

)

, (F13)

Ā11 =

(

ǫ O

O µ

)

, Ā22 =





ρb
O O

O I O

O O I



 ,

Ā23 =





ρf
0

O 0

O 0



 , Ā33 =

(

O 0

0
T 1

)

, (F14)

B̄11 =

(

(σ̂ − ηL̂k̂
−1

L̂) O

O O

)

, B̄13 =

(

ηL̂k̂
−1

0

O 0

)

,

B̄33 =

(

ηk̂−1
0

0
T 0

)

, (F15)
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C22 =





I O O

O c11 c12

O c21 c22



 ,C23 =





O 0

O d1

O d2



 ,

C33 =

(

I 0

0
T M

)

, (F16)

D11 =

(

O D
T
0

D0 O

)

,D0 =





0 −
∂

∂x3

∂
∂x2

∂
∂x3

0 −
∂

∂x1

−
∂

∂x2

∂
∂x1

0



 ,

D33 =

(

O ∇

∇
T 0

)

(F17)

and D22 equal to Dx in equation (D17). Note that C in
equation (F12) is a symmetric real-valued matrix. From
energy considerations it follows that it is positive definite
[6, 15], hence its inverse exists. Multiplying all terms in
equation (F10) by the inverse of C finally yields

jωAû + Bû + Dxû = ŝ, (F18)

with A = C
−1

Ā, B = C
−1

B̄ = B̄ and ŝ = C
−1ˆ̄s =

ˆ̄s. Matrices Nx and K, appearing in the modified diver-
gence theorems (6) and (8), read

Nx =





N11 O O

O N22 O

O O N33



 ,N11 =

(

O N
T
0

N0 O

)

,

N0 =





0 −n3 n2

n3 0 −n1

−n2 n1 0



 ,N33 =

(

O n

n
T 0

)

, (F19)

K = diag(−1,1,1,−1,−1,1,−1), (F20)

and N22 equal to Nx in equation (D29). Based on the
structure of the matrices Ā, B̄, C, Dx and K as well as
the symmetry relations discussed above, we find that the
symmetry properties described by equations (7), (9) and
(13) are obeyed.

Finally, note that when the coupling tensor L̂ is zero,
the matrix B̄13 vanishes and hence equation (F10) de-
couples into the electromagnetic wave equation for the
wave vector û1 and Biot’s poroelastic wave equation for
the wave vector (ûT

2 , ûT
3 )T , [20]. For a non-porous solid

the matrices Ā23 and C23 vanish as well, so Biot’s wave
equation reduces to the elastodynamic wave equation for
the wave vector û2. Obviously the symmetry proper-
ties described by equations (7), (9) and (13) are obeyed
for the matrices appearing in the electromagnetic wave
equation, Biot’s poroelastic wave equation and the elas-
todynamic wave equation, respectively.
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