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Abstract An iterative method is presented that allows one to retrieve the Green’s function originating
from a virtual source located inside a medium using reflection data measured only at the acquisition surface.
In addition to the reflection response, an estimate of the travel times corresponding to the direct arrivals is
required. However, no detailed information about the heterogeneities in the medium is needed. The iterative
scheme generalizes the Marchenko equation for inverse scattering to the seismic reflection problem. To
give insight in the mechanism of the iterative method, its steps for a simple layered medium are analyzed
using physical arguments based on the stationary phase method. The retrieved Green’s wavefield is shown
to correctly contain the multiples due to the inhomogeneities present in the medium. Additionally, a variant
of the iterative scheme enables decomposition of the retrieved wavefield into its downgoing and upgoing
components. These wavefields then enable creation of a ghost-free image of the medium with either cross
correlation or multidimensional deconvolution, presenting an advantage over standard prestack migration.

1. Introduction

One of the main goals of seismic imaging is to retrieve the location and amplitude of reflectors in the sub-
surface from reflection data acquired on the surface of the Earth. This is an important and challenging task
because an accurate image of the structures inside the Earth is needed to locate hydrocarbon reservoirs.

We discuss a new approach to retrieve the full-waveform Green’s function originating from a virtual source
located inside a medium using only reflection data measured at the acquisition surface. Existing meth-
ods, such as seismic interferometry [Bakulin and Calvert, 2006; Schuster, 2009], allow one to retrieve this
Green’s wavefield without any knowledge of the medium itself. Despite their advantages, these methods are
affected by two major drawbacks: (1) they require a receiver (or a source) at the location of the virtual source
(or receiver) in the subsurface and (2) they assume the medium is surrounded by sources (or receivers). Our
approach removes these constraints and is based on an extension of the one-dimensional theory proposed
by Broggini et al. [2011, 2012] and Broggini and Snieder [2012], both based, in turn, on earlier work by Rose
[2002]. They show that, given the reflection response of a one-dimensional layered medium, it is possible to
retrieve the response to a virtual source inside the medium, without having a receiver at the virtual source
location and without knowing the medium. Wapenaar et al. [2013] generalized this to three-dimensional
media. This new method consists of an iterative algorithm that transforms the reflection response (at the
acquisition surface) of an arbitrary medium into the wavefield generated by a virtual source inside the
unknown medium. This can be interpreted as a redatuming process. Apart from requiring the reflection
data measured at the surface, the proposed method also requires an estimate of the travel times of the
first arriving wave traveling from the virtual source location to receivers located at the acquisition surface.
These travel times are a key element of the method because they specify the location of the virtual source
in the subsurface. Consequently, the proposed method is not fully model independent. However, we do
not require any more knowledge of the medium parameters than standard primary imaging schemes. As
in seismic interferometry [Curtis et al., 2006, Schuster, 2009], our goal is to retrieve the response to a virtual
source inside an unknown medium, removing the imprint of a complex subsurface. This is helpful in situ-
ations where waves have traversed a strongly inhomogeneous overburden, e.g., subsalt [Sava and Biondi,
2004] and for near-surface imaging [Keho and Kelamis, 2012].

The main aim of this paper is to provide insight in the mechanism of the new method, by applying it to a
relatively simple configuration. Following the approach of Wapenaar et al. [2012a], we analyze the iterative
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Figure 1. Configuration with three dipping reflectors. The black dot indicates the location of the virtual source 𝐱VS. The black star-shaped

symbols indicate the locations of the mirror images of the virtual source. 𝐱(2,1)
VS is the mirror image of 𝐱(2)

VS with respect to the first reflector.
The white triangles denote the receivers at z = 0. The virtual source and its mirror images lie on the line z = zVS + x∕a, with zVS =
1500 m and a = 1∕7.

method for a layered configuration with three-parallel dipping reflectors characterized by variable density
and constant velocity. We use physical arguments based on the stationary phase method to show that the
method converges and allows for the retrieval of the wavefield originating from the virtual source loca-
tion. Then, we show that a variant of the iterative scheme allows us to decompose the retrieved Green’s
function into its downgoing and upgoing components. Finally, these decomposed wavefields are used
to create an internal multiple free image of the subsurface. This image is constructed using either sim-
ple cross correlations or multidimensional deconvolution and is compared to standard prestack migration
[Claerbout, 1985].

2. Stationary Phase Analysis

We discuss the proposed iterative scheme for a simple two-dimensional configuration. We use a geo-
metrical approach to the method of stationary phase to solve the Rayleigh-like integrals which yield the
reflected response to an arbitrary incident field. We explain each step of the iterative procedure and empha-
size the physical arguments that support our expectations for the method to converge to the virtual-
source response.

2.1. Configuration
We consider a model characterized by three parallel dipping reflectors in a lossless, constant-velocity,
variable-density medium as shown in Figure1. The proposed iterative scheme is, however, not restricted to a
medium where the velocity does not vary in space [Wapenaar et al., 2013]. We choose this particular config-
uration because well-known analytical equations describe the wavefields propagating in constant-velocity
media. The velocity of the medium is equal to c = 2000 m/s. We denote spatial coordinates as 𝐱 = (x, z).
The acquisition surface is located at z = 0 m and does not correspond to an actual reflector; hence,
it does not cause reflections. The reflector at the top is described by the equation z = z1 − ax with
z1 = 800 m and a = 1∕7. The black dot denotes the position of the virtual source, with coordinates
𝐱VS = (xVS, zVS) = (0, 1500) m. The middle and bottom reflectors are characterized by the same dipping
angle. For this reason, all mirror images of the virtual source are located on a line orthogonal to the reflec-
tors. All the points on this line satisfy the relation z = zVS + x∕a. The first, second, and third reflectors cross
this line at 𝐱1 = (−98, 814) m, 𝐱2 = (−42, 1206) m, and 𝐱3 = (35, 1745) m, respectively. The densities in the
four layers are 𝜌1 = 𝜌3 = 1000 kg/m3, 𝜌2 = 5000 kg/m3, and 𝜌4 = 3000 kg/m3, respectively. When a downgo-
ing wave reaches one of the boundaries separating layers with different density, it gives rise to reflected and
transmitted waves. The reflection and transmission coefficients are defined by rn = (𝜌n+1 − 𝜌n)∕(𝜌n+1 + 𝜌n)
and 𝜏+

n
= 1 + rn, respectively, where n = 1, 2, 3 denotes the layer. Similarly, the reflection and transmission

coefficients for upgoing waves are −rn and 𝜏−
n

= 1 − rn. Since the velocity is constant in this particu-
lar configuration, the reflection and transmission coefficients hold not only for normal incidence but for
all the angles of incidence. Note that the large contrast between the density of the layers causes strong
multiple reflections.
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Figure 2. Total field originated by a real source located at 𝐱VS, i.e., G(𝐱, 𝐱VS, t) ∗ s(t). This is the reference wavefield.

2.2. Primary Arrivals
We define the Green’s function G(𝐱, 𝐱S, t) as a wavefield that satisfies the wave equation LG = −𝜌𝛿(𝐱−𝐱S)

𝜕𝛿(t)
𝜕t

,

with L = 𝜌∇ ⋅ (𝜌−1∇) − c−2 𝜕2

𝜕t2 . According to de Hoop [1995], the Green’s function corresponds to the response
to an impulsive point source of volume injection rate located at xS. Figure 2 shows the total field originated
by a real source located at 𝐱VS, i.e., G(𝐱, 𝐱VS, t) ∗ s(t), where s(t) is a Ricker wavelet with a central frequency
of 15 Hz and ∗ denotes temporal convolution. This is the reference wavefield that we want to retrieve. It is
essential that s(t) is zero phase because the proposed method combines causal signals with time-reversed
ones; see section 2.5. Using the Fourier convention F̂(𝜔) = ∫ +∞

−∞ f (t) exp(−j𝜔t)dt, the frequency domain
Green’s function Ĝ(𝐱, 𝐱S, 𝜔) obeys the equation L̂Ĝ = −j𝜔𝜌𝛿(𝐱− 𝐱S), with L̂ = 𝜌∇ ⋅ (𝜌−1∇)+𝜔2∕c2. Here j is the
imaginary unit, and 𝜔 denotes the angular frequency. We decompose the Green’s function in its direct and
scattered components, Ĝ = Ĝd + Ĝs.

As mentioned in section 1, we need an estimate of the direct arrivals. For the simple configuration of
Figure 1, where there are only variations in density, the high-frequency approximation of the Fourier
transform of the direct Green’s function Gd(𝐱, 𝐱VS, t) is given by

Ĝd(𝐱, 𝐱VS, 𝜔) = 𝜏−
1
𝜏−

2
𝜌3 j𝜔

exp
{
−j(𝜔|𝐱 − 𝐱VS|∕c + 𝜇𝜋∕4)

}√
8𝜋|𝜔||𝐱 − 𝐱VS|∕c

, (1)

where 𝜇 = sign(𝜔) [Snieder, 2004]. Its temporal counterpart Gd(𝐱, 𝐱VS, t), convolved with s(t), is shown in
Figure 3. In Figure 3, we also define two travel time curves indicated by the solid black lines. The lower curve
describes the onset time of the direct arrivals, and the upper curve is defined as the time reversal of the
lower curve. These two curves allow us to define a window function

w(𝐱, t) = 1 between the solid black lines of Figure 3,

w(𝐱, t) = 0 elsewhere. (2)

This window function is a key component of the iterative scheme.
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Figure 3. Direct arrivals of the response to the virtual source 𝐱VS measured at the acquisition surface. The bottom solid black line
indicates the onset time of the direct arrivals. The top solid black line is the time-reversed version of the bottom black line.
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Figure 4. Initial incident wavefield (t < 0) and its reflection response (t > 0), both measured at z = 0. Initial incident wave-
field is a scaled version of the time reversal of Figure 3 (see equations (5) and (6)). We show the reflection response only until 2 s. The
solid black lines denote the onset time of the direct arrivals and its time-reversed counterpart. These black lines are repeated in the
subsequent figures.

2.3. Reflection Response
To retrieve the virtual-source response G(𝐱, 𝐱VS, t), we need the reflection response at the surface
R(𝐱R, 𝐱S, t) ∗ s(t) in addition to an estimate of the direct arrivals. We assume that the reflection data do not
include any multiples related to the acquisition surface. Additionally, the source wavelet should be decon-
volved from the reflection response. If surface-related multiples are present in the reflection data, then they
must be removed with an appropriate technique [Verschuur et al., 1992; Amundsen, 2001; Groenestijn and
Vershuur, 2009]. Following Wapenaar and Berkhout [1993] (equation (15a)), an expression for the reflection
response can be derived from a Rayleigh-type integral:

p̂−(𝐱R, 𝜔) = ∫
∞

−∞

2
j𝜔𝜌1

[
𝜕Ĝs(𝐱R, 𝐱, 𝜔)

𝜕z
p̂+(𝐱, 𝜔)

]
z=0

dx, (3)

where p̂+ and p̂− are the Fourier transform of the downgoing and upgoing wavefields, respectively. Hence,
in the frequency domain, we define the reflection response in terms of the scattering Green’s function Ĝs via

R̂(𝐱R, 𝐱S, 𝜔)ŝ(𝜔) =
2

j𝜔𝜌1

𝜕Ĝs(𝐱R, 𝐱S, 𝜔)
𝜕zS

ŝ(𝜔), (4)

for zR = zS = 0 and after multiplying both sides by the spectrum of the source wavelet s(t). According to
Berkhout [1987], R̂(𝐱R, 𝐱S, 𝜔)ŝ(𝜔) is equivalent to the pressure recorded at 𝐱R due to a unidirectional point
force source oriented in the vertical direction located at 𝐱S and multiplied by −2.

2.4. Initiating the Iterative Process
We define the initial incident downgoing wavefield at z = 0 as the inverse of the direct arrival of the trans-
mission response  d(𝐱VS, 𝐱, t), convolved with the wavelet s(t); hence, p+

0
(𝐱, t) = { d(𝐱VS, 𝐱, t)}−1 ∗ s(t).

This transmission response is related to the vertical derivatives of the direct Green’s function at z = 0 and
zVS (see K. Wapenaar et al., Green’s function retrieval from reflection data, in absence of a receiver at the
virtual source position, submitted to Journal of the Acoustical Society of America, 2014, Appendix A). For
the high-frequency regime, we approximate the inverse transmission response by a scaled version of the
time-reversed version of the direct Green’s function; hence,

p+
0
(𝐱, t) = Gd

0
(𝐱, 𝐱VS,−t) ∗ s(t), (5)

with

Gd
0
(𝐱, 𝐱VS, t) =

(
𝜏+

1
𝜏−

1
𝜏+

2
𝜏−

2

)−1
Gd(𝐱, 𝐱VS, t), (6)

where the amplitude scalar multiplying Gd compensates for the effect of transmission losses at the inter-
faces. The initial wavefield p+

0
(𝐱, t) is shown in Figure 4 with the label A. The subscript 0 of p+

0
(𝐱, t) indicates

the initial wavefield (or the 0th iteration).
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Figure 5. Analysis of the response of the first and second reflectors to the initial incident wavefield p+
0
(𝐱, t). (a) Stationary rays for

different receivers. The response of the first reflector seems to originate from 𝐱(1)
VS . (b) Stationary rays for different receivers. The response

of the second reflector seems to originate from 𝐱(2)
VS .

The reflected upgoing wavefield p−
0
(𝐱, t) is obtained by convolving the downgoing incident wavefield

p+
0
(𝐱, t) with the deconvolved reflection response and integrating over the source locations:

p−
0
(𝐱R, t) = ∫

∞

−∞

[
R(𝐱R, 𝐱, t) ∗ p+

0
(𝐱, t)

]
z=0

dx, (7)

for zR = 0. Equation (7) is the time domain version of the Rayleigh integral described by equation (3). We
discuss and solve this integral with geometrical arguments based on the method of stationary phase, and
we give a detailed mathematical derivation in the Appendix A. Figure 5 shows various rays for different
receiver locations. Note that the rays of the incident field (converging in 𝐱VS) and of the reflection response
(for the first reflector) have the same direction [see Wapenaar et al., 2010, Appendix]. For this reason, these
specific rays are said to be stationary. With simple geometrical arguments, it follows that these rays cross
each other at the mirror image of the virtual source with respect to the first reflector, i.e., at 𝐱(1)

VS . Hence,
the response of the first dipping reflector to the initial downgoing field appears to originate from a virtual
source located at 𝐱(1)

VS . This wavefield corresponds to r1Gd
0
(𝐱R, 𝐱

(1)
VS , t) ∗ s(t), the first term on the right-hand

side of equation (A21), and is shown as the event with label B in Figure 4. Following similar stationary phase
arguments, the response of the second reflector to the initial downgoing field apparently originates from
a mirror image of the virtual source with respect to the second reflector, i.e., at 𝐱(2)

VS . This response is equal
to 𝜏−

1
r2𝜏

+
1

Gd
0
(𝐱R, 𝐱

(2)
VS , t) ∗ s(t) and corresponds to the second term on the right-hand side of equation (A21)

(see the event with label C in Figure 4). However, the multiply reflected responses to the initial incident field
also apparently originate from mirror images of the virtual source, all located along the line z = zVS + x∕a
(see Figure 1). We derived these responses with the method of stationary phase; hence, they are free of
finite-aperture artifacts. We emphasize that the stationary phase analysis is not essential for the method, but
it is used here because the wavefields obey simple analytical expressions.

2.5. Iterative Process
We now discuss an iterative scheme, which uses the (k-1)th iteration of the reflection response p−

k−1
(𝐱, t) to

create the kth iteration of the incident field p+
k
(𝐱, t). The objective is to iteratively update the incident field in

such a way that, within the region between the upper and lower solid black lines shown in Figure 4, the field
becomes antisymmetric in time. The meaning of this criterion will be evident in the next section, where we
show how to retrieve G(𝐱, 𝐱VS, t). The method requires a combination of time reversal and windowing, and
the kth iteration of the incident field is defined by

p+
k
(𝐱, t) = p+

0
(𝐱, t) − w(𝐱, t)p−

k−1
(𝐱,−t), for 𝐱 at z = 0, (8)

where the time window w(𝐱, t) is defined by equation (2). The reflection response is then obtained using
equation (7), which we rewrite here as

p−
k
(𝐱R, t) = ∫

∞

−∞

[
R(𝐱R, 𝐱, t) ∗ p+

k
(𝐱, t)

]
z=0

dx, (9)

for 𝐱 and 𝐱R at z = 0. The first and second iterations of the incident and reflected fields are shown in Figures 6
and 7, respectively. The events of p+

1
(𝐱, t) labeled B and C in Figure 6 correspond to the events of p−

0
(𝐱, t)
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Figure 6. First iteration of the incident wavefield (t < 0) and its reflection response (t > 0), both measured at z = 0. The labels A−F
identify the first six events in the total field. We show the reflection response only until 2 s.

labeled C and B in Figure 4 (time reversed and multiplied by −1; see equation (8)). Similarly, the events of
p+

2
(𝐱, t) labeled B, C, and D in Figure 7 correspond to the events of p−

1
(𝐱, t) labeled F, E, and D in Figure 6 (time

reversed and multiplied by −1).

For this particular configuration, the kth iteration of the incident field (for k > 2) is similar to p+
2
(𝐱, t) and

is composed of four events, as shown in Figure 7 for t < 0. The events labeled A and D remain unchanged
in the iterative process. The other two events (labeled B and C) correspond to −A(2)

k Gd
0
(𝐱R, 𝐱

(2)
VS ,−t) ∗ s(t)

and −A(2,1)
k Gd

0
(𝐱R, 𝐱

(2,1)
VS ,−t) ∗ s(t), respectively. 𝐱(2,1)

VS is the mirror image of 𝐱(2)
VS with respect to the first

reflector. The coefficient A(2)
k varies at each iteration and is equal to the partial sum of the geometric series

b + by + by2 + by3 + by4 +· · ·+ byk where b = 𝜏+
1

r2𝜏
−
1

and y = r2
1
. The sum of the series converges because

y < 1 and yields

∞∑
k=0

byk = b
1 − y

= r2, (10)

where we used that 1 − r2
1
= 𝜏−

1
𝜏+

1
. The coefficient A(2,1)

k of the third event (labeled C in Figure 7) is equal
to −r1A(2)

k ; and hence, it converges to −r1r2. Figure 8 shows the thirtieth iteration, and within the solid black
lines, the wavefield is antisymmetric in time. This is the result we predicted when we described the itera-
tive method; in fact, the antisymmetry was the design criterion for the iterative scheme [Rose, 2001, 2002].
Wapenaar et al. [2012a] show that, for their simple configuration with one dipping layer, convergence is
reached after one iteration.

Figure 7. Second iteration of the incident wavefield (t < 0) and its reflection response (t > 0), both measured at z = 0. The labels A–G
identify the first seven events in the total field. We show the reflection response only until 2 s.
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Figure 8. Thirtieth iteration of the incident wavefield (t < 0) and its reflection response (t > 0), both measured at z = 0. Within the
solid black lines, the total field is antisymmetric in time and this particular feature was the design criterion for the iterative scheme. The
method has converged to the final result.

2.6. Green’s Function Retrieval From the Virtual Source
After showing that the method converges to the desired result, we define pk(𝐱, t) as the superposition of
the kth version of the incident and reflected wavefields: pk(𝐱, t) = p+

k
(𝐱, t) + p−

k
(𝐱, t). Figures 4, 6, 7, and

8 show pk(𝐱, t) at z = 0 for k = 0, 1, 2, and 30, respectively. For brevity, we define p(𝐱, t) = p30(𝐱, t). We
remind the reader that, within the solid black lines, the total field at z = 0 is antisymmetric in time, and this
particular feature was the design criterion for the iterative scheme. Consequently, if we sum the total field
and its time-reversed version, i.e., p(𝐱, t) + p(𝐱,−t), all events inside the time window cancel each other, as
shown in Figure 9. Note that p(𝐱, t) + p(𝐱,−t) also obeys the wave equation because we consider a lossless
medium. The causal part of this superposition corresponds to p−(𝐱, t) + p+(𝐱,−t), and the anticausal part is
equal to p+(𝐱, t) + p−(𝐱,−t), as shown in Figure 9 for t > 0 and t < 0, respectively. From a physical point
of view, time reversal changes the propagation direction. Hence, it follows that the causal part propagates
upward at z = 0 and the anticausal part propagates downward at z = 0. According to our theory [Wapenaar
et al., 2013], the causal and anticausal parts of Figure 9 are equal to G(𝐱, 𝐱VS, t) and G(𝐱, 𝐱VS,−t) for z = 0,
respectively. This can be understood with the following heuristic derivation. The first event of the causal
part of Figure 9 has the same arrival time as the direct arrival of the response to the virtual source at 𝐱VS

(Figure 3). If we combine this last observation with the fact that the causal part is upward propagating at
z = 0 and that the total field obeys the wave equation in the inhomogeneous medium and is symmetric, it
can be understood that the total field in Figure 9 is equal to G(𝐱, 𝐱VS, t) + G(𝐱, 𝐱VS,−t).

This reasoning does not depend on any particular feature of the configuration used in this analysis, and
according to our theory, it indeed holds for more general situations [Wapenaar et al., 2013]. We confirm its

Figure 9. Thirtieth iteration. Superposition of the total field and its time-reversed version after the method has converged.
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Figure 10. Superposition of the total field originated by a real source located at 𝐱VS (black line) and the wavefield retrieved by the
iterative scheme (white line). The two wavefields match perfectly.

validity for the response in Figure 9. Following the steps that led to the field shown in Figure 9, we find for
the causal part that

p−(𝐱, t) + p+(𝐱,−t) = 𝜏+
1
𝜏+

2
𝜏−

1
𝜏−

2

{
Gd

0
(𝐱, 𝐱VS, t) (11)

+ r3Gd
0
(𝐱, 𝐱(4)

VS , t) − r1r2Gd
0
(𝐱, 𝐱(5)

VS , t) − r2r3Gd
0
(𝐱, 𝐱(6)

VS , t)
− r1r2r3Gd

0
(𝐱, 𝐱(7)

VS , t) − r2(r2
1

r2 − r2
3
)Gd

0
(𝐱, 𝐱(8)

VS , t)…
}
∗ s(t),

with the virtual source position and its mirror images shown in Figure 1. For the configuration of Figure 1,
expression (11) is equal to the wavefield G(𝐱, 𝐱VS, t) ∗ s(t) originated from the virtual source and recorded at
the surface. The directly modeled response to the virtual source is shown in Figure 2 and matches the causal
part of the field shown in Figure 9. These two wavefields are superposed in Figure 10. This is also illustrated
in Figure 11, where we superposed the traces G(𝐱R0, 𝐱VS, t) ∗ s(t) and p−(𝐱R0, t)+p+(𝐱R0,−t), where 𝐱R0 = (0, 0).
For the total wavefield, we obtain

p(𝐱, t) + p(𝐱,−t) = Gh(𝐱, 𝐱VS, t) ∗ s(t), (12)

where Gh(𝐱, 𝐱VS, t) = G(𝐱, 𝐱VS, t) + G(𝐱, 𝐱VS,−t).

Note that G(𝐱, 𝐱VS,−t) satisfies the same wave equation as G(𝐱, 𝐱𝐕𝐒, t), i.e., LG(𝐱, 𝐱VS,−t) = −𝜌3𝛿(𝐱 −
𝐱VS)

𝜕𝛿(−t)
𝜕(−t)

= 𝜌3𝛿(𝐱 − 𝐱VS)
𝜕𝛿(t)
𝜕t

. Hence, Gh satisfies the homogeneous equation LGh = −𝜌3𝛿(𝐱 − 𝐱VS)
𝜕𝛿(t)
𝜕t

+ 𝜌3𝛿

(𝐱 − 𝐱VS)
𝜕𝛿(t)
𝜕t

= 0.

To show the convergence of the proposed method numerically, we compute the energy of pk(𝐱, t)+pk(𝐱,−t)
within the solid black lines as a function of the number of iterations:

Energy(k) =
∑

t

∑
𝐱

w(𝐱, t)
[

pk(𝐱, t) + pk(𝐱,−t)
]2
. (13)

This quantity is shown in Figure 12, and the energy inside the time window clearly converges to zero, as
confirmed by Figure 9. Note that this procedure is expected to converge because in each iteration the
reflected energy is smaller than the incident energy. We consider the proposed method as a correction
scheme that minimizes the energy within the region where the time window w(𝐱, t) equals 1. Finally, it

0.8 1 1.2 1.4 1.6 1.8 2
t (s)

A
m

pl
itu

de

Figure 11. Superposition of G(𝐱R0, 𝐱VS, t) ∗ s(t) (solid line) and p−(𝐱R0, t) + p+(𝐱R0,−t) (black circles) for 𝐱R0 = (0, 0). The two traces
match perfectly.

BROGGINI ET AL. ©2013. American Geophysical Union. All Rights Reserved. 432

http://dx.doi.org/10.1002/2013JB010544


Journal of Geophysical Research: Solid Earth 10.1002/2013JB010544

5 10 15 20 25 30
10−15

10−10

10−5

100

105

Iterations

E
ne

rg
y

Figure 12. Energy of pk(𝐱, t) + pk(𝐱,−t) within the region where the time window w(𝐱, t) equals 1 versus number of iterations k. A
logarithmic scale (base 10) is used for the Y axis.

should be noted that we initiated the scheme with p+
0
(𝐱, t), which, via equations (1), (5), and (6), requires

information on the travel time |𝐱 − 𝐱VS|∕c, as well as on the transmission coefficients of the interfaces and
the density of the third layer. When only travel time information is available, the transmission coefficients
and mass density in equations (1) and (6) need to be omitted. As a consequence, equation (12) will become

p(𝐱, t) + p(𝐱,−t) =
𝜏+

1
𝜏+

2

𝜌3

Gh(𝐱, 𝐱VS, t) ∗ s(t). (14)

This means that the scheme converges to the Green’s function, multiplied by a factor 𝜏+
1
𝜏+

2
∕𝜌3, which is of

course unknown.

3. Wavefield Decomposition

We first apply a simple source-receiver reciprocity argument, G(𝐱VS, 𝐱, t) ∗ s(t) = G(𝐱, 𝐱VS, t) ∗ s(t), and
define G(𝐱VS, 𝐱, t) ∗ s(t) as the wavefield originating from sources at the surface and observed by a virtual
receiver located at 𝐱VS. Following this reasoning, the wavefield in Figure 2 can be interpreted as the response
recorded at the location 𝐱VS, indicated by the black dot in Figure 1, due to sources indicated by the white
triangles.

To build an image of the reflectors, it is necessary to decompose the total Green’s function at the virtual
receiver located at 𝐱VS into its downgoing and upgoing components, G+(𝐱VS, 𝐱, t) ∗ s(t) and G−(𝐱VS, 𝐱, t) ∗
s(t), respectively. These wavefields are illustrated in Figure 13. To perform this decomposition, we consider a

Figure 13. Total wavefield at the virtual receiver located at 𝐱VS. The solid black rays correspond to G+(𝐱VS, 𝐱, t) ∗ s(t). The dashed black
rays correspond to G−(𝐱VS, 𝐱, t) ∗ s(t).
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Figure 14. Upgoing and downgoing wavefield decomposition. (top) G+(𝐱VS, 𝐱, t) ∗ s(t). (bottom) G−(𝐱VS, 𝐱, t) ∗ s(t).

variant of the iterative scheme, in which the subtraction in equation (8) is replaced by an addition [Wapenaar
et al., 2011a]:

q+
k
(𝐱, t) = q+

0
(𝐱, t) + w(𝐱, t)q−

k−1
(𝐱,−t), for 𝐱 at z = 0, (15)

where the time window w(𝐱, t) is defined by equation (2). Note that the 0th iteration of the downgoing
field q+

0
(𝐱, t) is equal to p+

0
(𝐱, t). As in the previous section, the reflection response is then obtained using

equation (9), which we rewrite here as

q−
k
(𝐱R, t) = ∫

∞

−∞

[
R(𝐱R, 𝐱, t) ∗ q+

k
(𝐱, t)

]
z=0

dx, for zR = 0. (16)

After convergence, we define two additional wavefields: psym(𝐱, t) = p(𝐱, t)+p(𝐱,−t) and pasym(𝐱, t) = q(𝐱, t)−
q(𝐱,−t) [Wapenaar et al., 2012b].

Finally, by combining the wavefields psym(𝐱, t) and pasym(𝐱, t) in two different ways, the Green’s function at 𝐱VS

is decomposed into downgoing and upgoing fields, according to

G+(𝐱VS, 𝐱, t) ∗ s(t) = 1
2

{
psym(𝐱, t) − pasym(𝐱, t)

}
, for t ≥ 0, (17)

and

G−(𝐱VS, 𝐱, t) ∗ s(t) = 1
2

{
psym(𝐱, t) + pasym(𝐱, t)

}
, for t ≥ 0. (18)

The decomposition of the wavefield observed at the virtual receiver located at 𝐱VS (Figure 10) is shown in
Figure 14. Figure 14 (top) corresponds to the downward propagating Green’s function G+(𝐱VS, 𝐱, t) ∗ s(t),
and Figure 14 (bottom) shows the upward propagating Green’s function G−(𝐱VS, 𝐱, t) ∗ s(t).

4. Imaging
4.1. Standard Prestack Imaging
We start by creating a reference image using a standard imaging technique [Claerbout, 1985]. Standard
prestack imaging and many other seismic imaging algorithms rely on the single scattering assumption.
This implies that the recorded wavefields do not include internal multiples (waves bouncing multiple times
between reflectors before reaching the receivers). When multiple reflections are present in the data, the
imaging algorithm incorrectly interprets them as ghost reflectors. An initial image, constructed using the
conventional approach, is shown in Figure 15a, and the arrows indicate some of the ghost reflectors present
in this standard image. Also, note that the amplitudes do not agree with the correct reflection coefficients.
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Figure 15. (a) Image of the reflectors obtained with standard prestack migration. The arrows indicate ghost images. (b) Image of
the reflectors obtained with the cross-correlation function C. (c) Image of the reflectors obtained with multidimensional deconvolu-
tion. (d) Comparison of the reflectivity at x = 0 m retrieved by standard prestack migration, cross correlation, and multidimensional
deconvolution with the true reflectivity (from top to bottom).

4.2. Imaging With Cross Correlation
If we repeat the decomposition process described in the previous section for virtual receivers 𝐱VS located on
many depth levels z = zi (e.g., the horizontal lines composed of black dots in Figure 16), we are able to create
a more accurate image of the medium. To perform this task, we compute the cross-correlation function C

C(𝐱VS, 𝐱VS, t) = ∫
∞

−∞

[
G−(𝐱VS, 𝐱, t) ∗ G+(𝐱VS, 𝐱,−t)

]
z=0

dx (19)

at every virtual receiver depth and evaluate the result at t = 0. This new image is shown in Figure 15b. As
in the standard prestack image, the actual reflectors have been reconstructed at the correct spatial loca-
tion, but now the image is free of internal multiple ghosts. This also holds for more general situations, not
only in simple configurations like the one analyzed in this paper (F. Broggini et al., Data-driven wave field
focusing and imaging with multidimensional deconvolution: Numerical examples for reflection data with
internal multiples, submitted to Geophysics, 2014). This is an improvement over the previous image, but the
retrieved amplitudes still do not agree with the true reflection coefficients. The amplitude of the first two

Figure 16. The black dots correspond to various virtual receiver locations 𝐱VS. Virtual receivers located on a constant depth level z = zi

are used to resolve
[

R(𝐱r , 𝐱, t)
]

z=zi
.
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reflectors should have the same magnitude and opposite polarity because r2 = −r1 (in this particular config-
uration), but the amplitude of the second reflector is smaller than the first one. Furthermore, the amplitude
of the third reflector should be 75% of that of the first reflector (r3 = 0.75r1), but the image shows that the
amplitude of the third reflector is considerably smaller than its expected value.

4.3. Imaging With Multidimensional Deconvolution
Now, we show that multidimensional deconvolution allows us to create an image with more accurate ampli-
tudes. As in imaging with cross correlation, we consider a constant depth level z = zi. The Green’s functions
at this constant depth level are related by

G−(𝐱r, 𝐱s, t) = ∫
∞

−∞

[
R(𝐱r, 𝐱, t) ∗ G+(𝐱, 𝐱s, t)

]
z=zi

dx, (20)

where R(𝐱r, 𝐱, t) is the reflection response to downgoing waves at z = zi of the truncated medium below
z = zi, 𝐱s is at z = 0, and 𝐱r is at z = zi. The truncated medium is equal to the true medium below the
depth level z = zi and is homogeneous above z = zi. Now, the reflectivity R(𝐱r, 𝐱, t) can be resolved from
equation (20) by multidimensional deconvolution (MDD)[Wapenaar et al.,2011b]. To achieve this result, we
first correlate both sides of equation (20) with the downgoing Green’s function and integrate over source
locations over the acquisition surface:

C(𝐱r, 𝐱′, t) = ∫
∞

−∞

[
R(𝐱r, 𝐱, t) ∗ Γ(𝐱, 𝐱′, t)

]
z=zi

dx, (21)

for 𝐱r and 𝐱′at z = zi,

where C is the cross-correlation function (as in the previous section but with noncoinciding coordinates)

C(𝐱r, 𝐱′, t) = ∫
∞

−∞

[
G−(𝐱r, 𝐱s, t) ∗ G+(𝐱′, 𝐱s,−t)

]
zs=0

dxs, (22)

and Γ is the point spread function [van der Neut et al., 2011]

Γ(𝐱, 𝐱′, t) = ∫
∞

−∞

[
G+(𝐱, 𝐱s, t) ∗ G+(𝐱′, 𝐱s,−t)

]
zs=0

dxs. (23)

We resolve R(𝐱r, 𝐱, t) from equation (21) for different depth levels z = zi and many virtual source locations,
as shown by the horizontal lines composed of black dots in Figure 16 and evaluate the result at t = 0 and
xr = x. Figure 15c shows the final result of the imaging process. As in the previous image, the reflectors have
been imaged at the correct spatial locations, but now the retrieved amplitudes agree with the true reflection
coefficients. The amplitudes of the first two reflectors have similar magnitude and opposite polarity, and the
amplitude of the third reflector is roughly 75% of that of the first reflector. The difference in the amplitudes
between the two images is clearly shown in Figure 15d, where we compare the reflectivity as a function of
depth at x = 0 m, retrieved by standard prestack migration, cross correlation, and multidimensional decon-
volution, with the true reflectivity. Multidimensional deconvolution acknowledges the multidimensional
nature of the seismic wavefield; hence, the internal multiples contribute to the restoration of the amplitudes
of the reflectors. Note that the deconvolution also compensates for unknown factors in the retrieved Green’s
function, such as in equation (14).

5. Conclusions

We discussed a generalization to two dimensions of the model-independent wavefield retrieval method of
Broggini et al. [2011, 2012]. Unlike the one-dimensional method, which uses the reflection response only,
the proposed multidimensional extension requires, in addition to the reflection response, independent
information about the first arrivals. The method can be easily extended to three dimensions.

The proposed data-driven procedure yields the Green’s function (including all internal multiples) originat-
ing from a virtual source, without needing a receiver at the virtual source location and without needing
detailed knowledge of the medium. The method requires (1) an estimate of the direct-arriving wavefront at
the surface originated from a virtual source in the subsurface and (2) the reflection impulse responses for
all source and receiver positions at the surface. The direct-arriving wavefront can be obtained by model-
ing in a macro model, from microseismic events [Artman et al., 2010], from borehole check shots, or directly
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from the data by, e.g., the common focus point method [Berkhout, 1997; Thorbecke, 1997; Haffinger and
Verschuur, 2012] when the virtual source is located at an interface. The required reflection responses are
obtained from conventional seismic reflection data after removal of the multiples due to the free surface
and after deconvolution for the source wavelet [Verschuur et al., 1992; Amundsen, 2001; Groenestijn and
Vershuur, 2009].

For a simple configuration with planar dipping reflectors, the stationary phase analysis gives a better
understanding of the two-dimensional iterative scheme and confirms that the method converges to the
virtual-source response. The analysis shows how the multiple-scattering coda of the retrieved wavefield is
extracted from the reflection data measured at the surface (which includes all the information about the
medium itself ).

A variant of the iterative scheme allows the decomposition of the retrieved Green’s function into its down-
going and upgoing components. These wavefields are then used to create different images of the medium
with cross correlation and multidimensional deconvolution. These two techniques show an improvement
over standard imaging and allow us to construct an image that is not affected by ghost images of the
reflectors. Additionally, multidimensional deconvolution yields an image whose amplitudes agree with the
correct reflection coefficients. This is due to the deconvolution process that correctly handles the internal
multiples and retrieves the correct amplitudes of the reflectors. We emphasize that, for the cross correlation
and multidimensional deconvolution results, the imaging process does not require any more knowledge of
the medium parameters than standard primary imaging schemes (which use a macro model).

The iterative scheme is equivalent to an integral equation. Inserting equation (8) into equation (9) and
assuming convergence (setting p−

k
= p−

k−1
and then dropping the subscript k) give

p−(𝐱R, t) = ∫
∞

−∞

[
R(𝐱R, 𝐱, t) ∗ p+

0
(𝐱, t)

]
z=0

dx − ∫
∞

−∞

[
R(𝐱R, 𝐱, t) ∗ {w(𝐱, t)p−(𝐱,−t)}

]
z=0

dx. (24)

This equation is the two-dimensional extension of the Marchenko equation in inverse scattering
[Agranovich and Marchenko, 1963]. The iterative scheme we propose, thus, implicitly solves the inverse
scattering problem. A proof for more general models is given by Wapenaar et al. [2013].

Appendix A: Stationary Phase Analysis

We use the method of stationary phase [Erdélyi, 1956, Bleistein and Handelsman, 1975] to evaluate equation
(7), which is repeated here for convenience

p−
0
(𝐱R, t) = ∫

∞

−∞

[
R(𝐱R, 𝐱, t) ∗ p+

0
(𝐱, t)

]
z=0

dx, (A1)

with zR = 0. In the frequency domain, this equation reads

p̂−
0
(𝐱R, 𝜔) = ∫

∞

−∞

[
R̂(𝐱R, 𝐱, 𝜔)p̂+

0
(𝐱, 𝜔)

]
z=0

dx, (A2)

where the incident downgoing field p̂+
0
(𝐱, 𝜔) is defined as p̂+

0
(𝐱, 𝜔) = (𝜏+

1
𝜏−

1
𝜏+

2
𝜏−

2
)−1{Ĝd(𝐱, 𝐱VS, 𝜔)ŝ(𝜔)}∗, with

the superscript asterisk denoting complex conjugation. Using equation (1) and using the fact that s(t) is
symmetric, we have in the high-frequency regime

p̂+
0
(𝐱, 𝜔) = −j𝜔

𝜌3

𝜏+
1 𝜏

+
2

exp{j(𝜔|𝐱 − 𝐱VS|∕c + 𝜇𝜋∕4)}√
8𝜋|𝜔||𝐱 − 𝐱VS|∕c

ŝ(𝜔), (A3)

with 𝜇 = sign(𝜔). For the reflection impulse response of the medium in Figure 1, we write

R̂(𝐱R, 𝐱, 𝜔) =
∞∑

n=1

R̂(n)(𝐱R, 𝐱, 𝜔), (A4)

where R̂(n) represents the nth event of the reflection response. Using equation (4) we obtain the following
high-frequency approximation

R̂(n)(𝐱R, 𝐱, 𝜔) =
A(n)z(n)

R|𝐱 − 𝐱(n)
R | j𝜔

c

exp{−j(𝜔|𝐱 − 𝐱(n)
R |∕c + 𝜇𝜋∕4)}√

2𝜋|𝜔||𝐱 − 𝐱(n)
R |∕c

. (A5)
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Figure A1. Stationary phase analysis of equation (A1). (a) Analysis of the response of the first reflector for a fixed receiver at 𝐱R . The
stationary point is denoted by x(1)

0
. (b) Stationary rays, like the one in Figure A1a, for different receivers. The response of the first reflector

(indicated by the label B in Figure 4) seems to originate from 𝐱(1)
VS . (c) Geometry underlying equations (A14) and (A18).

For R̂(1), i.e., the primary response of the first reflector, A(1) = r1 and x(1)
R is the mirror image of 𝐱R with respect

to the first reflector. For R̂(2), the primary response of the second reflector, A(2) = 𝜏−
1

r2𝜏
+
1

and 𝐱(2)
R is the mirror

image of 𝐱R in the second reflector. For R̂(3), the first multiple, A(3) = −𝜏−
1

r2
2

r1𝜏
+
1

and 𝐱(3)
R is the mirror image

of 𝐱R in the mirror image of the first reflector with respect to the second reflector, etc. For R̂(4), the primary
response of the third reflector, A(4) = 𝜏−

1
𝜏−

2
r3𝜏

+
2
𝜏+

1
and 𝐱(4)

R is the mirror image of 𝐱R in the third reflector.

First, we consider the response of the first reflector. Figure A1a shows a number of rays of R(1)(𝐱R, 𝐱, t), leav-
ing different sources at the surface, reflecting at the first reflector, and arriving at one and the same receiver
at 𝐱R. According to equation (A1), these reflection impulse responses are convolved with the initial incident
field, of which the rays are also shown in Figure A1a (these are the rays that converge at 𝐱VS). This convo-
lution product is stationary for the source at x(1)

0 , where the rays of the incident field and of the reflection
impulse response have the same direction. Figure A1b shows a number of such stationary rays for different
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receiver positions. With simple geometrical arguments, it follows that these rays cross each other at the mir-
ror image of the virtual source with respect to the first reflector, i.e., at 𝐱(1)

VS = (−196, 128). The travel times of
the convolution product are given by the lengths of the rays from 𝐱(1)

VS to the surface, divided by the velocity.
Hence, it is as if the response of the first reflector to the initial incident field originates from a source at 𝐱(1)

VS

(this is confirmed below). Similarly, the response of the second reflector to the initial incident field appar-
ently originates from a mirror image of the virtual source in the second reflector, i.e., at 𝐱(2)

VS = (−84, 912). The
multiple-reflected responses to the initial incident field also apparently originate from mirror images of the
virtual source, all located along the line z = zVS + x∕a, see Figure 1. For example, the first multiple apparently
originates from 𝐱(3)

VS = (28, 1696) (being the mirror image of 𝐱VS in the mirror image of the first reflector with
respect to the second reflector).

Equation (A2), with p̂+
0
(𝐱, 𝜔) and R̂(𝐱R, 𝐱, 𝜔) defined in equations (A3)–(A5), can be written as

p̂−
0
(𝐱R, 𝜔) =

∞∑
n=1

 (n), (A6)

with

 (n) = ∫
∞

−∞
f (x) exp{jk𝜙(x)}dx, (A7)

where k = 𝜔∕c,

f (x) =
𝜌3

𝜏+
1 𝜏

+
2

|𝜔|A(n)z(n)
R ŝ(𝜔)

4𝜋l1∕2
VS {l(n)R }3∕2

, 𝜙(x) = lVS − l(n)R , (A8)

with

lVS(x) = |𝐱 − 𝐱VS| = √
(x − xVS)2 + z2

VS, (A9)

l(n)R (x) = |𝐱 − 𝐱(n)
R | = √

(x − x(n)
R )2 + (z(n)

R )2. (A10)

According to the method of stationary phase [Erdélyi, 1956, Bleistein and Handelsman, 1975], we may
approximate  (n) for large |k| by

 (n) ≈
√

2𝜋|k𝜙′′(x(n)
0 )| f (x(n)

0 ) exp{j(k𝜙(x(n)
0 ) + 𝜇𝜋∕4)}, (A11)

where x(n)
0 is the stationary point, i.e, 𝜙′(x(n)

0 ) = 0. The derivatives of the phase are

𝜙′(x) =
x − xVS

lVS

−
x − x(n)

R

l(n)R

, (A12)

𝜙′′(x) =
z2

VS

l3
VS

−
(z(n)

R )2

{l(n)R }3
. (A13)

The point x(1)
0 depicted in Figure A1c obeys

x(1)
0 − xVS

zVS

=
x(1)

0 − x(1)
R

z(1)
R

. (A14)

Generalized for x(n)
0 , this gives

x(n)
0 =

xVSz(n)
R − x(n)

R zVS

z(n)
R − zVS

. (A15)
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Substituting this for x into equation (A12) gives 𝜙′(x(n)
0 ) = 0; hence, x(n)

0 is indeed the stationary point of 𝜙(x).
According to equations (A9) and (A10), we have

lVS(x
(n)
0 ) =

zVS

z(n)
R − zVS

|𝐱(n)
R − 𝐱VS|, (A16)

l(n)R (x(n)
0 ) =

z(n)
R

z(n)
R − zVS

|𝐱(n)
R − 𝐱VS|. (A17)

Above, we defined 𝐱(n)
VS as a mirror image of 𝐱VS, obtained in the same way as 𝐱(n)

R is obtained by mirroring 𝐱R.
This implies that

|𝐱(n)
R − 𝐱VS| = |𝐱R − 𝐱(n)

VS |. (A18)

This is illustrated for n = 1 in Figure A1c. Hence, equation (A11) gives (for large |k|)
 (n) ≈ j𝜔A(n) 𝜌3

𝜏+
1 𝜏

+
2

exp{−j(𝜔|𝐱R − 𝐱(n)
VS |∕c + 𝜇𝜋∕4)}√

8𝜋|𝜔||𝐱R − 𝐱(n)
VS |∕c

ŝ(𝜔). (A19)

Hence,

p̂−
0
(𝐱R, 𝜔) =

∞∑
n=1

 (n) =
∞∑

n=1

A(n)Ĝd
0
(𝐱R, 𝐱

(n)
VS , 𝜔)ŝ(𝜔), (A20)

with Ĝd
0
(𝐱R, 𝐱

(n)
VS , 𝜔) as defined in equation (6) but with the source at 𝐱(n)

VS . In the time domain, this becomes

p−
0
(𝐱R, t) =

∞∑
n=1

A(n)Gd
0
(𝐱R, 𝐱

(n)
VS , t) ∗ s(t); (A21)

see Figure 4 for t > 0.
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