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ABSTRACT

Wapenaar, C.P.A., 2003. Reciprocity theorems for seismoelectric waves. Journal of Seismic
Exploration, 12: 103-112.

We derive reciprocity theorems of the convolution type and of the correlation type for
seismoelectric waves in dissipative inhomogeneous anisotropic fluid-saturated porous solids. They
find their applications in forward and inverse seismoelectric wave problems, respectively. A special
application of the reciprocity theorem of the convolution type leads to source-receiver reciprocity
relations for a seismoelectric experiment. The reciprocity theorem of the correlation type yields as
a special result the power balance for seismoelectric waves.

When the coupling tensor in the underlying equations vanishes, the reciprocity theorems
decouple to theorems for decoupled elastodynamic and electromagnetic wave fields in porous solids.
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INTRODUCTION

In this paper we derive reciprocity theorems for coupled elastodynamic
and electromagnetic waves (also known as seismoelectric waves) in dissipative
inhomogeneous anisotropic fluid-saturated porous solids. In general, a
reciprocity theorem interrelates the quantities that characterize two admissible
physical states that could occur in one and the same domain (de Hoop and Stam,
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1988). One can distinguish between convolution type and correlation type
reciprocity theorems (Bojarski, 1983). Generally speaking, these two types of
reciprocity theorems find their applications in forward and inverse problems,
respectively. An extensive overview of reciprocity and its applications in seismic
exploration is given by Fokkema and van den Berg (1993).

For the theory of seismoelectric wave propagation, we lean upon the work
of Pride (1994). The main results are summarized in the next section. A
reciprocity theorem of the convolution type for seismoelectric waves has
previously been formulated by Pride and Haartsen (1996). Their reciprocity
theorem interrelates two seismoelectric states in one and the same dissipative
inhomogeneous anisotropic porous solid. In this paper we generalize this by
considering different medium parameters in the two states [analogous to de
Hoop (1987) for electromagnetic waves and de Hoop and Stam (1988) for
elastodynamic waves in dissipative solids]. Hence, we obtain an extra integral
containing the contrast parameters (i.e., the difference between the medium
parameters in both states). This is relevant for example for the derivation of
wave field representations containing these contrast parameters [like the
Neumann series expansion, analogous as discussed by Fokkema and van den
Berg (1993) for acoustic waves]. Another extension in this paper compared with
the work of Pride and Haartsen (1996) is the derivation of a reciprocity theorem
of the correlation type for seismoelectric waves, again for the situation of
different medium parameters in both states. This is relevant for the derivation
of inverse algorithms [analogous to de Hoop and Stam (1988) and Wapenaar and
Haimé (1990) for elastodynamic waves].

BASIC EQUATIONS IN THE FREQUENCY DOMAIN

Reciprocity theorems can be derived in the time domain, the Laplace

domain and the frequency domain. In this paper we only consider the frequency
domain.

In this section we review the space-frequency domain equations for
seismoelectric waves in a dissipative inhomogeneous anisotropic fluid-saturated
porous solid. The Cartesian coordinate vector will be denoted as x = (x,,X,,X;)
and time as t. We use a subscript notation for vectorial and tensorial quantities
and Einstein’s summation convention applies to repeated subscripts.

We define the Fourier transform with respect to time of a real function
as

==

i(w) = I u(t)exp(—jwt)dt (1)
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and its inverse as

(-]

) = (UDR | wexploide] 2)

0

where j is the imaginary unit, w the angular frequency and R denotes that the
real part is taken.

The linearised equations of motion for elastodynamic waves coupled to
electromagnetic waves in a dissipative anisotropic fluid-saturated porous solid
read in the space-frequency domain

bt jebiw; — 97 = £, (3)
jebl® +  jwpt (%, — L, E) + 8;p =, @

with
= (¥ — V) . 5)

Here ¥} = ¥j(x,w) and ¥] = ¥|(x,w) are the averaged solid and fluid particle
velocities associated to the wave motion, \?\fJ = W;(X,w) is the filtration velocity,

= ¢(x) the porosity, 7, = %'fj(x w) the averaged bulk stress, p = p(X,w) the
averaged fluid pressure dIld Ek = B (x, w) the averaged electric field strength.
The source functions £* = f(x,w) and f" = fi(x,w) are the volume densities
of external force on the bulk and on the ﬂuld respectively. The constitutive
parameters pf = p}(X,w) and pjj = pj(X,w) are the bulk and fluid mass
densities, respectively. They are complex and frequency-dependent to account
for anelastic losses (de Hoop, 1995). Moreover, they are defined as anisotropic
tensors, which follows from effective medium theory (Schoenberg and Sen,
1983). In the following we assume that these tensors are symmetric, according
to pf = @}, and p; = pj (this is for example the case when the effective
anisotropy is a result of parallel fine layering at a scale much smaller than the
wave]ength) For 1sotrop1c media these parameters reduce to 5}, = 5°;; and pj;
= p'6;;. The tensor p* ', = pj(x,w) is a complex frequency- dependem inertia
tensor for the relative fluid motion, obeymg the symrnetry relation p" it ,6‘,3).
For an isotropic medium it reduces to pJ, =p 6j1, with pF /ka where n =
n(x) is the fluid viscosity parameter and k = k(x,w) the dynamic permeability.
Finally, the complex frequency-dependent function L, = L,(x,w) accounts for
the coupling between the elastodynamic and electromagnetic waves. In the
following we will assume that this tensor is symmetric, according to L,k 2 By
[Pride and Haartsen (1996) discuss the conditions for this symmetry]. It reduces
to L, = L&, in isotropic media.
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The linearised stress-strain relations read
—_]w’}i + é-ljk,a!\n’ﬁ + éijak\i’k = 0 ) (6)
jop + C, 8% + MW, = 0 , (7)

where &, = &(X.0), Cij = i(x,w) and M = M(x,w) are the complex
frequency-dependent anisotropic stiffness parameters of the porous solid. Their
symmetry properties are ¢, = €y = & = &y and C;; = C, . For isotropic
porous solids these tensors read

Cij = [KG — (2/3)Gy18, O+ Gfr(éikaji + 0,04) (8)

and C = C&;; j- The isotropic parameters KG, Gy, C and M can be expressed
in terms of Biot’s parameters N, A, Q and R (Biot and Willis, 1957; Walton
and Digby, 1987), according to

A~

Ko — 23)G, =A +20 +R, G, =N,

C =(Q + R)o, M =R/¢%. 9)

Maxwell’s electromagnetic field equations read

jOJ]F)i + ji - Eijkajl:lk = _jf ) (10)

jWEk + Ekjiaj]::i = *j? , (11)
where I:Ik =H «(X,w) is the averaged magnetic field strength, 13 15 i(X,w) and
Bk = B,(x,w) are the averaged electric and magnetic flux den51ty, J (x,w)
is the averaged induced electric current density, J" = Je(x w) and J'" =] Mx,w)
are source functions in terms of external electric and magnetic current densities
and, finally, € is the alternating tensor (€55 = €375 = €33, = —€3;3 = —€5y, =

—€3 = 1; ¢ = 0 when not all subscripts 1,j,k are different). Note that eu-kajlilk
is the subscript representation of V. x H, etc.

According to Pride (1994), the constitutive relations are given by

]ji = @ikﬁ'k 3 (12)
Bk = r&'ij:Ij ; (13)
5 = 6B — L0+ jepi; — ) , (14)

where &, = &,(X,0), fiy; = f;(X,w) and G, = 6,(xX,w) are the permittivity,
permeability and conductivity, respectively. In general these are complex
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frequency-dependent anisotropic tensors, with symmetry relations &, = &, f;
= f and oy = 0. For isotropic media they reduce to &, = €0y, by =
toit,0; and 6, = 60;. The subscripts O refer to the parameters in vacuum and
the subscripts r denote relative parameters. Pride (1994) gives for €, and f,

& = (pla )& — &) + &, (15)
ao=1, (16)

where &' and &* are the dielectric parameters of the fluid and solid, respectively,
and «, is the tortuosity at infinite frequency. Substituting the constitutive
relations (12), (13) and (14) into the Maxwell equations (10) and (11), and
adding JL1 j times equation (4) to equation (10) in order to compensate for the
term —L; (3p + jwp[¥; — f7), yields

jUJEikEk + jwﬁiji)ljsiwl - eijkajI:Ik = _jf , (17)

jwpH + e 08 = =Ip | (18)
with

Ey = & + 0y /jw) — L g5 L, . (19)

The system of equations (3), (4), (6), (7), (17) and (18) governs the
coupled propagation of elastodynamic and electromagnetic waves in dissipative
anisotropic fluid-saturated porous solids.

At any position in space where the medium parameters are discontinuous,
the wave quantities should obey boundary conditions. For interfaces between
porous media one can distinguish between open, partially open and closed pores
(Gurevich and Schoenberg, 1999). Here we consider the situation with open
pores (Deresiewicz and Skalak, 1963). At an interface with normal vector n =
(n;,ny,n;) the open pore boundary conditions require continuity of #n;, p, ¥},

win;, €;En; and e Hen,.

RECIPROCITY THEOREM OF THE CONVOLUTION TYPE

In this section we derive a reciprocity theorem that interrelates two
seismoelectric states in one and the same domain D with boundary 4D and
outward pointing normal vector n, see Fig. 1. The two seismoelectric states
(i.e., wave fields, medium parameters and source functions) will be
distinguished by the subscripts A and B. We assume that the medium parameters
in states A and B are piecewise continuous in D and that the open pore
boundary conditions hold at interfaces in D.
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Fig. 1. Configuration for the reciprocity theorems.

We consider the interaction quantity aj[eijk]::i.AI:lk_B = Ei}kI:Ik_AEi_B — VAt
+ AVl + WaPs — DaW;sl. Applying the product rule for differentiation,
substituting equations (3), (4), (6), (7), (17) and (18) for states A and B, using
the symmetry relations for the medium parameters and the alternating tensor ¢,
integrating the result over D and applying the theorem of Gauss yields

- & _ & - a8 ab Ab  As aoA _ oA A 2
@ [eikEi aHy » “-iijk,AEi,B ViaTiis + TijaVis + Wy abPs — PaW,;plnd’x
ap

~

= jw 5.0 [(ﬁjk‘A - -&‘jk.B)ﬁj‘Aﬁk,B - (Eki.A - Eki.B)Ek,AEi,B
- (fflj,A ﬁljar,,q - f‘ij,B !3;51,3 )(WI‘AELB + Ei.A‘g".!‘B) + (ﬁ?j,A - f’?j.B )ﬁ.Aﬁ,B
+ A%.A - f’fj,ﬂ YWV g + VW) + (ﬁ?l.r\ = ﬁ?LB W oW, pld*x
+ (1jw) 5 [(éijkl,A - éijkl,B )aj{rsi.AaIGE.H + (MA - MB )aj‘Avj,Aaka,B

D
+ (Cija — Ciip)@W A0 5 + 3V A0 W, 5)]1dx

+ s [JT.AHk.B - Hk.AJrl?.B - J?,AELB + EE.A‘I?.B
D

b & as b o2 A Bf 143
- fi.AV?.B + Viufds — AWip T Wj,Afj,B]d X . (20)
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This is the reciprocity theorem of the convolution type for seismoelectric
waves (we speak of convolution type since the products in the frequency domain
(E, ,\Hk s etc.) correspond to convolutions in the time domain). It has the usual
form of a boundary integral containing convolutions of wave fields, domain
integrals containing the contrast functions of the medium parameters and a
domain integral containing the source functions. If one of the states is a Green's
state (i.e., the wave field of a point source in a background medium) and the
other state is the actual wave field, then equation (20) yields a representation for
the actual wave field in terms of a boundary and a domain integral, similar as
for uncoupled elastodynamic or electromagnetic wave fields.

We conclude this section by considering some special situations. When the
medium parameters in both states are identical in D, then the domain integrals
containing the contrast parameters vanish. This leaves

” a A on 2
§’ [eikEi aHkp — ukH AE|B - IATIJ g T Tu aVipg + Wiabg — PaW, sIndx
ap

= 5 [A?.AHk,B - ﬁk.Ajrl?.B - j?.AEi.B + Ei.,\jf.n

D

— f2a¥ 5 + Vi uf% — W s + Wi Affldx . (21)

This is the reciprocity theorem that was previously derived by Pride and
Haartsen (1996).

In addition to the condition of identical medium parameters in both states,
consider the situation in which the medium at and outside 4D is an unbounded
homogeneous isotropic lossless solid and assume that the wave fields in both
states are causally related to the sources in D. In this case the elastodynamic and
electromagnetic components of the wave field outside dD have the same
asymptotic behaviour as in the equivalent uncoupled situation. Hence, for this
situation the boundary integral on the left-hand side of equation (21) vanishes
(Pao and Varatharajulu, 1976; de Hoop, 1995).

From the remaining integral it is straightforward to derive source-receiver
reciprocity properties. For example, let the source in state A be an electric
current oriented in the x,-direction at x, € D, according to j?‘,\(x,w)
Sa(w)d(x—x,)d,,, and let the source in state B be a force oriented in the
x,-direction at x; € D, according to f'y(x,w) = ffa(x,w) = Sp(w)d(X —Xg)b,,.
Assuming all other sources are zero, we thus obtain

E (X4 @0)/85(0) = [V3A(Xpow) + Wy 4(Xp@)]/84(0) . (22)
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The left-hand side of this equation is the electric field strength in the
X,-direction at x,, due to a force oriented in the x,-direction at xg, divided by
the source spectrum of this force; the right-hand side is the velocity in the
X,-direction at xg, due to an electric current oriented in the x -direction at x,,
divided by the source spectrum of this current. The reciprocity properties for
other source-receiver combinations can be derived in a similar way.

RECIPROCITY THEOREM OF THE CORRELATION TYPE

In this section we derive a second reciprocity theorem for seismoelectric
waves. This time we consider the interaction quantity d;[— UkE, AHk B
e aEip — WA — AV + Wi ADp + DaW; 5], where * denotes complex
conjugation. Following the same procedure as in the previous section we obtain

Do o . TP _ fs* oAb __ ab* s A* A A 2
‘5’ [—euwEi AHin — €HiaEis — Vi ATiin TiiaVis T W aPg + PaW;plndx
aD

= jw g [(n&;k,A - ﬁjk.B)HI,AHk,B + (E;i.A - Ekl‘B)E;.AEiB
= (LTJ Ana%:A T Liysﬁ]jzz‘s)(w;,,qu.B - E?.AW{,B) + (»‘3?;.}\ - ﬁ?,,s){’fTAc'},B
+ (Pl, A .5%,13)(‘&’?.:\0?.3 s \A’?fAWj.B) + (nble:.A = ﬁJEI.B)W;.AW[.B]dBX

+ (1) | [@n = € up)d ¥ 000s + ML — Mp)d, Wy
D

*

+ 5 I_jTTAI:Ik,B - H;.AAT, JC*AElB E?.Aj?.B
D

+ f—‘lh‘rﬂt(\’r‘l‘li + VI A % B ffA\'Avj B + wj AfTB]dF’ g (23)

This is the reciprocity theorem of the correlation type for seismoelectric
waves (we speak of correlation type since the products in the frequency domain
(E{ \H, 5 etc.) correspond to correlations in the time domain). Its applications
are found in inverse problems, similar as for the correlation type reciprocity
theorems for uncoupled elastodynamic or electromagnetic wave fields (de Hoop
and Stam, 1988; Wapenaar and Haimé, 1990).

We conclude this section by analysing equation (23) for the situation in
which both states (i.e., wave fields, medium parameters and source functions)
are identical. Omitting the subscripts A and B, we thus obtain
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® | (-id, - JE + B+ Erdx
D

- % §> lenEif, — 779 + PV Indx

I_]I

+ o | -SEOEN, — SEIEE + 2RLHEHIWE) — SGFIWW,

D

— FEDV — 2 (EHRWI)IA K
+ (Vw) S l\F(Cuk.')aJ‘:'\*aJVE Er S“(M)aj‘i’;ak‘i"k
+ ZQ(Cij)ﬂ?(ak\ﬁai‘:’f)]dr’x , (24)

where & denotes the imaginary part. The domain integral on the left-hand side
represents the power, generated by the sources in D. The boundary integral on
the right-hand side represents the power-flux propagating outward through aD
and the domain integrals on the right-hand side represent the dissipated power
in D. Hence, equation (24) is the power balance for seismoelectric waves in its
global form for the domain D [Pride and Haartsen (1996) derived the power
balance in its local form]. For this reason, equation (23) is also referred to as
the power reciprocity theorem for seismoelectric waves.

CONCLUSIONS

We have derived reciprocity theorems of the convolution type and of the
correlation type for coupled elastodynamic and electromagnetic waves (also
known as seismoelectric waves) in dissipative inhomogeneous anisotropic
fluid-saturated porous solids. In both theorems, which are formulated in the
space-frequency domain, we assumed that the wave fields, medium parameters
and source functions may be different in both states. Hence, both theorems are
expressed in terms of a boundary integral containing products of wave fields,
domain integrals containing the contrast functions of the medium parameters and
a domain integral containing the source functions. When coupling tensor L,k is
taken equal to zero, the underlying system of equations decouples to the Biot
equations for elastodynamic waves in fluid-saturated porous solids [equations (3)
through (7) with L,, = 0] and Maxwell’s equations for electromagnetic waves
[equations (17) through (19) with f,l . = 0]. As a consequence, the reciprocity
theorems (20) and (23) decouple to recnprocuy theorems for these decoupled
wave fields. Moreover, when the tensors p}j, 5, C, ; and M are taken equal to
zero, the Biot equations reduce to the equation of motion [equation (3) with 5},
= (] and the stress-strain relation [equation (6) with C.= ; = 0] for elastodynamic
waves in non-porous solids and equations (20) and (23) reduce analogously to
reciprocity theorems for elastodynamic waves in non-porous solids.
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