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ABSTRÁCT

Pool, ll., Wapenaar, C.P.A. and Fokkema, J.T., 2008. Slicing the eaÍth: a layer stripping method
employing a causality based imaging condition. Jounal oÍ Seismic Explorution. l1t 19-5L.

We formulate the theory for a direct nonlmear seismic inversion method in the acouslic
approximation. It is a completely data-driven method, aiming at the determination of subsurface
properties direclly from the data. The theory is presented for the full three-dimensional, larerally
varying case. For this situation we derive a layer replacement method based on the reciprociry
lheorem and we de ve an imaging condition based on causality. Next we sjmplify the theory for lhe
one-dimensional case and give some synthetic results for this case. We explain how the limited
bardwidth of seismic data influences our method. We propose a solution method ro deal with the
lack of low frequencies in the data. This method uses the absolute value of the data. Finally we
prese a synthetic inversion example for a laterally varying earth model using commoÍ-midpoinl
techniques.
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INTRODUCTION

The different existing seismic inversion methods can roughly be divided
into three classes: (l) direct approximate methods, (2) iterative (nonlinear)
methods and (3) direct nonlinear methods. In direct approximate problems the
nonlinear inverse problem is reduced to a linear problem by making
approximations. The simplest linearization method is the Born approximation,
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as described by Morse and Feshbach (1953). There are many different linearized
methods; examples are the migration methods described by Berkhout (1980) and
the velocity inversion methods described by Cohen and Bleistein (1979). A
slightly different approach is presented by Pran and Worthington (1988), who
present an imaging method using the Rytov approximation. The second class of
inversion methods is the class of iterative nonlinear methods. With this type of
method one tries to construct a solution of the inverse scattering problem by
sequentially updating a model. Many different optimization methods can be
applied to inverse scattering problems, such as the method described by
Tarantola (1984), using the least squares criterion. Other examples are the
seismic waveform inversion method in the frequency-space domain by Pratt and
Worthington (1990) or the global optimization methods as described by Sen and
Stoffa (1995). The third class of inversion methods is the class of direct
nonlinear methods. This class contains methods that give an explicit expression
for the unknown in terms of the data, as well as methods that use explicit
algorithms to reconstruct the unknown in a finite number of steps. Most ofthese
methods involve a transformation of the one-dimensional wave equation into the
Schródinger equation, which obviously cannot be applied directly to multi-
dimensional problems. An overview of this class of methods for electromagnetic
applications is giveri by Habashy and Mittra (1987). The most well-known direct
nonlinear methods are 'layer-stripping' methods. In these methods, first the
desired quantities are determined at the earth surface. Next, the measurements
that would have been ma.ie if a thin layer below the surface had been absent are
mathematically reconstructed. The desired quantities at this new surface are now
determined and the method is repeated layer by layer. Examples of layer-
stripping methods are described by Yagle and Levy (1983) and Koster (1991).
The advantage of layer-stripping methods is that they are generally fast and not
constrained to small velocity perturbations. Since these methods are completely
data driven, using no a priori information on the subsurface, measurement
errors and noise may result in unstable results. Unlike the optimization methods,
layer-stripping methods do not guarantee that the final reconstructed image is
consistent with the measured data.

Even though many difierent seismic imaging and inversion methods exist,
a direct nonlinear method determining the subsurface properties directly from
the data, for any subsurface configuration, without making use of a priori
information, still remains to be developed. The method described in this paper
is a step towards the development of such a method. We introduce the theory
for a layer-stripping method in the acoustic approximation for the full, laterally
varying, three-dimensional case. The method is derived for a medium
configuration with two half-spaces, the upper half-space consisting of a
homogeneous background medium with known constant wave speed,
corresponding to the configuration for marine data. The advantage of this
method compared to linearized methods is the fact that multiDles are treated
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correctly and that there are no constraints on the wave speed properties of the
subsurface. The advantage of our method compared to optimization methods,
is that no a priori velocity model has to be included. The fact that the method
described in this paper is derived for the 3D case is also the main advantage of
this method over most other layer-stripping methods, such as the ones described
by Yagle and Levy (1983), Koster (1991) and the work by Sylvester (1996).
There have been attempts to solve the inverse problem without making
restrictions on the dimensionality of space, such as the method for the
electromagnetic case, described by Somersalo et al. (1991). The described
method makes use of the fact that high frequent current does not penetrate very
deeply into a body, and uses a Ricatti type differential equation for wavefield
extrapolation. He et al. (1998) describe a wave-splitting approach. A stable
solution however still remains to be found. The method described in this paper
describes a new approach to tackle this problem. It combines layer replacement,
based on the reciprocity theorem, with velocity contrast determination, using the
causality principle.

The derivation of the underlying theory for the full three-dimensional case
is given in the next section. After that, the theory is simplifred for the
one-dimensional case and an inversion result for this situation is given. The next
part of the paper focusses on some practical considerations related to the finite
bandwidth of seismic data. The paper concludes with the inversion result for
synthetic data modeled in a laterally varying two-dimensional medium using
common midpoint techniques.

THEORY

Each layer-stripping step in our method consists of two actions: A layer
replacement and a contrast determination. The layer replacement is performed
by applying the reciprocity theorem. This theorem, as described by Fokkema
and van den Berg (1993), relates two acoustic states to each other. It can be
applied to many different acoustic problems such as wavefield decomposition,
source deghosting, multiple Íemoval (van Borselen, 1995) and seismic
interferometry (Wapenaar and Fokkema, 2006). In our case, one state is the
actual state and the other state has the same medium configuration as the actual
state except for the fact that the top layer has been removed and replaced by a
homogeneous layer with known wave speed. Given the data measured in the
first state we can determine the wavefield in the second stat€ usins the
reciprocity theorem.

The second action is the determination of the contrast between the top
layer and the layer beneath it. In order to determine this contrast we apply an
imaging condition which relates the up- and downgoing wavefields just above
an interface to the wavefield iust below this interface. The derivation of the
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imaging condition uses the boundary conditions over an interface and the
causality principle. The causality principle is the well-known principle that there
will always be a lapse of time for a wave to travel from one position in space
to another position.

Layer replacement

In this section we discuss how the wavefield just below a thin layejr can
be determined when the wavefield at the top of this layer is known. The use of
the reciprocity theorem in the space-Laplace domain, as described by Fokkema
and van den Berg (1993), is the foundation of the layer replacement method.
The acoustic equations in the Laplace domain have the following form:

àó(x,9 + spÍ*(x,s) = iír,$

d*i*(x,s) * srÊ(x,9 = Q(x,9 ,

where

Ê(x,s; : 
""our,t. 

pressure,

v1(x,s) = particle velocity,

f(x,s) : volume source density of volume force,

9(x,s) : yolur. source density of volume injection rate,

p(x) : volume density of mass.

r(x) : compressibility.

Lower case Latin subscripts take on the values 1, 2 and 3: the summation
convention applies to repeated subscripts. The t = to contributions of the
Laplace transform are incorporated in the source ierms. The Cartesian
coordinate vector is denoted by x : (x,,xr,xr), where the xr_axis is pointing
downward. The Laplace transform parameter is given by s. The reciprocit!
theorem relates two non-identical acoustic states in a three-dimensional domain
D to each other. The domain D is bounded by boundary surface dD. The two
different states inside the domain are referred to as state A and state B. Each
state is characterized by the acoustic wavefield (Ê,nk), the constiturive
parameters (p,x), and the source terms (f,.,Q). Table I shows how the states are
defined- in the space-Laplace domain. Rayleigh's reciprocity theorem in global
form, following Fokkema and van den Berg (1993), is given by

( l )

(2)



I (Êoi'Ï - pBnfrn*dA
'  x€aD

: I [s6B - pArnfn! - s('r" - (A)ÊÁÈBldV
"  x€D

. [  . ;À^a ^a^+ J.."tftnï + q'Ëo - ??íi - q"Êïdv , (3)

where nu is the unit vector normal to aD and oriented away from D. Fig. I
shows the two states to which the reciprocity theorem is applied. These two
states will from now on be referred to as state 0 and state l. In both states we
assume an upper (x, < x!) and a lower half-space (x3 > x$. The upper
half-space consists of a homogeneous background medium with known constant
wave speed co. Source and receiver are positioned in this upper half-space.
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Fig. L Configuration of the two states in Rayleigh's reciprocity theorem for the derivation of layeÍ
replacement. Both states have an upper (x, < x$ and a lower half-space (xr > xro). The upper
half-space consists of a homogeneous background medium with known constant wave speed c6.
Source and receiver are positioned in the upper half-space. The loweÍ half-space in both states is
divided into thin horizontal layeÍs with thickness Áx1. The layers wave speed insidc a layet do€s noi
vary in the vertical direction, but can tle variable in the lateÍal direction. The horizontal coordinate
vectoÍ is denoted by xr = (xr,xJ.
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Table l States in the field reciprocity theorem.

POOT. WAPENAÁR & FOKKEMA

State A

{P^'tiXx'9

{p^,*^Xx)

{Q^,iiXx,s)

Domain D

Srate B

{i',nlX*.9

{p",*"}(x)

{q",ÍïXx,9

The lower half-space in both states is divided into thin horizontal virtual layers
with thickness Ax3. These layers are virtual, meaning that they do not
necessarily coincide with the geological layering. The layers are thin enough to
justify the assumption that the wave speed inside a layer does not vary in rhe
vertical direction. The wave speed can however be variable in the lateral
direction. The horizontal coordinate vector will be denoted by x1 : (x1,x2). We
will assume the density p to be constant and identical in both half-spaces. We
will also assume that the data to which the layer-stripping method will be
applied is preprocessed such that the described configuration with its two
half-spaces is simulated. This means for example that surface-related multiples
in the marine case should have been removed (van Borselen, 1995.y. Staie 0
represents the actual state in which the wavefield was measured. State 1
represents an almost identical medium configuration except for the top layer
which is replaced by a layer with the same properties as the homogeneous
background medium in the upper half-space. The properties of the acoustic
states 0 and l are shown in Table 2. The dependency on s is omitted for
simplicity of notation. Since the compressibility x and the wave speed c are
related through c = (xp)-h and the density p is a constant, we can use c"(x.r) to
describe the material state in the n-th layer, where x!-' ( x. 3 xj and n can
be any number between 1 and the desired number of stripped layers N. We will
take for both states 0 and I a point source of volume injection (monopole
source). Note the reversed source and receiver positions in state I with respect
to state 0, see Fig. 1. Domain D contains both the upper and the lower
half-space. Application of Rayleigh's reciprocity theorem in global form, eq.
(3), to the states shown in Fig. I and Table 2leads to:

J".r, tÊo{* l t)ol{x I xR; - prlx I xRy0g(x I x)lnkdA

= I".r-s{*t - ,(0)p0(xlx)Êr(xlxR)dv

* Í..rtQ'a{" - xR)p'(x lxs) - Qrà(x - x)pr(x lxR)ldv (4)
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Table 2. States in the Íield Íeciprocity theorcm.

Field State

Material State

Source State

State 0

{po,.1X*lr)

{co,c r(xr),cíxr),. . ,cN(xr) }

{qsó(x - xs),o}

Domain D

State I

{pr,nlXxlxR)

{co,co,cíxr), . . ,cN(xr)}

{qsó(x - xR),o}

In this notation {p,n*}(xlxs) is the wavefield {p,n*}, which was generated
at source position xs and measured at receiver position x. If we take domain D
to be a sphere with radius A, the left hand side of eq. (4) vanishes in the limit
A --' @. ln that case, the domain -D resembles an unbounded domain. Note that
x0 and xr in the right hand side of eq. (4) are the compressibilities in states 0
and I respectively. They only differ in layer 1, where they are given by x,(xr)
and xo, respectively (see Fig. 1). We define the laterally variable contrast K(xr)
in layer I as:

K(xr) = p(x' - xo) = p[xo -,(r(xr)l

= plllpcï - l/pcl(x,)l = (l/cfr) - l/cl(x,)

Next, we substitute QtG) = W(s)lps, where W(s.) is the wavelet spectrum, into
the right hand side of eq. (4). Using the contrast function K(xr), rhis results in
the following expression:

J ,- s'?rlxrypolx lxs)Êr(x lxR)dv
"  reD

: w1po1x* |x) - Ê'("'lt*)l ,

where D' denotes layer 1.

In the upper half-space, the total wavefield in state 0, p0, can be
decomposed into an incident and a reflected wavefield, Ê0,' und po.', respectively,
according to:

po(xlxsl = po, '(xlx) + Êq(xlx) ,  x, s x!.

The incident field can be expressed as:

(5)

(6)

(7)



Êo(xlx ' )=wexpt-(s/cJlx-xsl l /4r lx-xsl ,  (8)

where we made use of the Laplace domain representation of the Green's
function, see Fokkema and van den Berg (1993). The wavefield in state I can
be decomposed into an incident and reflected part in a similar way:

Ê'(x lx*)  :  Êt,(x lx")  + ptr(x lxR),  x.  < x l .  (9)

Note that the decomposition in state t holds for the homogeneous upper
half-space, extended with layer 1.

We rewrite the integral over layer 1 in the left hand side of eq. (6) as

f  l tav=f dA"* j
'x€D dr '€R 'J. ' {  }d* '

Making use of Parseval's theorem we thus find:

a f^r

ll/(22.)'/J J."..*, dA J,. n'(-jscr,xrlxR) s, r{F0}(scr,x, lxs)dx,

: *1p1x*1x) - Ê'(r'lx*)l ,
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(10)

performed with
spatial Fourier

where dr : (dr,dt. A spatial Fourier transformation was
respect to the horizontal receiver positions (xr) only. These
transformations are defined as:

p'dsor,x.,lxsl : f expUsdr'xr)È0(x lxs)dA
" * 'e l '

pt{  - jsa.r .x, lxR) :  Í  exp( - jsor.xr)pr{  x lxR)dAr  r ,ÉRl

( l  l )

(12)

f{p0} in eq. (10) is rhe spatial Fourier transform of K(xr)p0(x lxs). Hence, it is
a compact way of writing the convolution operator in the transformed domain:

K{po}(sctr,x, l xs)

= lrt(2r\'z| J. . -, 
X1;ro, - jscilp0(sci,x,lx)dA

,  -  sd;€R'wnere

K(scr; : Í.,u n, "*p{iror.rr)K(xr)dA

(  13)

(  l4)
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Taking a closer look at eq. (10) it is clear that the wavefields in the
integrand on the left hand side of the equation are not expressed in the same
domain as the wave frelds on the right hand side. In order to evaluate this
equation the wavefields should all be expressed in the same domain. To
accomplish this the following operator is applied:

Í,..*, exp(s$'x1; Í*,.*, exn{-lsof x;X }dAdA . (ls)

Application of this operator to the fields on the right-hand side of eq. (10)
corresponds to a transformation to the spatial Fourier domain for both source
and receiver coordinates. To finally get all fields in the same domain, the
transformation is applied to the left-hand side of the equation as well, and we
find:

I t / (2r) '?1 J," , . " .  dA J, ,  Ë'(  - jsdT.x,  l jsaf .  x! l

x s'?K{fo}(sor,x, | - jsai,xS)dx,

- wtË'Csd+,xl | - jsai,x!) - p'(-jsaf,x! ljsal,xl)l (16)

where the asterisk * indicates the double spatial Fourier transformation with
respect to both source and receiver coordinates.

The physical reciprocity condition can now be applied. In the space
domain, physical reciprocity for the wave field in state I is formulated as
Ê'(*tlx*) : Ê'(xRlxs). Applying the double Fourier transformation of equation
( 15) to both sides yields:

pr1-jsof,x! ljs$,xl) = È'0s"ï,*11 - jscrf,x!)

When we apply this to eq. (16) we find:

. . . j
I t(2zrf l  I  dA I p'(sc{.x! l  -  jsa,.x)
-  -  J:" ,€R, rx l  .

x s'?K{io}(sar,x, | - jscf,x!)dx,

: w1p06soi,x51 - jsai,x) - È'(saf,x}l-jscf,xl)l (18)

The incident wavefield in the transformed domain in state 0 can be written
as

poi(sar,x, | - jsci,x!)

: (2ÍFOV/2srDó(sc, - scf)exp(-sl! lx, - x!l) , x. < x! , (19)

(  l7)
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which is the spatial Fourier domain version ofeq. (8) with the vertical slowness
f l :

13 = t(licil + di.dil% , R{r;} > 0. (20)

A similar expression holds for the incident wave field in state I for x. 3 xl.

The reflected wavefield in state 0 at depth xl can be expressed in terms
ofthe reflected wavefield at depth xg by conducting a simple extrapolation step:

Ë"0s4,x51 - jsaf,x!)

: exp[-sf[(x! - x])1i0,'(s{,x!l - jsoi,x), xl . x9, et)

with the vertical slowness ff:

f[: t(l/cfr) + 
"1."]1, , R{rà} > 0. (22)

Analogously to eq. (21) the reflected wavefield in state 1 at depth xl can be
written in terms of the reflected wavefield at depth xl by:

i"Cs{,*!l - jscf,x!)

: exp[-sr$(xj - x])li'',(jsag,xll - jscf,x!), *] < xl. (23)

Now we rewrite eq. (18) by decomposing the wavefield in state 1 on the
left-hand side into an incident and a reflected parr following eq. (9). The
wavefields on the right hand side are decomposed in a similar manner leading
to:

^ -  a rr j
s' l(2?r) '  J,".€R. dA J," IÉ' ' i is4,x] l  -  jsc,,x,)

+ f',.(sog,xfl - jsar,x)l

x K{fo}(sar,x, | - jsaf,x!)dx,

: W16o'6s"1,x5; - jscf,x!)

- É"0so{,x51 - jsai,x!)

+ fq'(s{,x! | - jscf,x!)

- È''(s"l,x}l - jsai,xl)l (24)
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Now we substitute the expression for the incident wavefreld, eq. (19). Note that
the incident wavefields on the right hand side will drop our because the incident
field in state 1 is equal to rhe incident field in state 0:

Ë' 
,(x* 

l"r) = fioi1xRlxs) (25)

This is the case since source and receiver are both positioned in the same
homogeneous background medium (x{s'Rr < x!). Next, we extrapolate the
receiver position to the first interface, x!, by applying eqs. (21) and (23) and we
find:

-  n* l
s'zW J." exp[-sfl(x] - x9l/2sf3 x K{fo}(s{,x31 - jsc.!,x!)dx,

+ exp( - sf[Ax)/(2o)' * Í,",.*,i',(so$,*j| - jsc,,xlydA

x s' J. explsrolx, - x!)l x K{io}(sar,x, | - jsaf,x!)dx,

= wlpo'6s"1,x3; - jsaf,x!)

- È''Cs4,*l | - jscf,x!)exp(-srfAx)l

wttn

fo = [(1/c!) + c1.c1]% , R{fo} > 0, (27)

and Ax, = xl - x9. We will use this equation to calculate the reflected
wavefield in state 1 measured at depth xl. In order to do this we need to know
the total wavefield in state 0 at the same depth. We now perform a similar
procedure to eq. (18), by extrapolating the receiver to one thin layer below the
first interface, xrr, this yields:

"r js'zw J,,, expt-sff lx, - xl ll/2sr[ x r{fo}(sof,x, | - jsc.f,x!)dx,

+ lItQn)21 Í,"..*, Ë',,ii.o+,*li - jsar,x)oe

x s' J" explslolx3 - x:)l x K{fo}(scr,x3 | - jscf,x!)dx,

(26)
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= wfËo'(iso+,xll - jsaf,x!)

- i"(js"f,^ll - jscvf,x!)

- È',(j."+,*ll - jsai,x!)l

In this case the incident fields on the right-hand side of the equation do not
cancel, since in state 0 the incident field travels through a layer with wave speed
c,(x.r), and in state 1 it does not. Multiplying the right- and left-hand side ofeq.
(26) with exp(sf$Áx) and subtracting the result from eq. (28) we find:

p'0r"1,*ll - jsoi,x!)

: Ëq'Cs"+,xl l - jscf,x!)exp(sf[ax,)

(28)

+ p0t(s{,x!| - jscf,x!)exp(-sffiax)

+ s2 I sinhtsfA(x. - xl)l/sf*,x l

x r{fo}(s$,x,1 - jscf,x!)dx, (2e\

where

sinh(x) : [exp(x) - exp(-x)]/2. (30)

We call eqs. (26) and (28) the two basic equations, where eq. (28) is the
consistence equation. This equation is used to determine Ët(s{,xj | - jsai,xl),
the total wavefield in state 0 recorded at position x] (see Fig. 1). In other
words, this wavefield is the total wavefield below the top thin layer, before
replacement of this layer by a layer with the homogeneous background medium
properties. Once this wavefield is known, eq. (26) is used to determine
Ë"(jrd,*]l - jsoi,x!), the reflected field in state 1 (after replacement of rhe
layer by a layer with the homogeneous background medium properties) at the
same depth xj. When the top layer has been replaced, the source can be moved
downwards over Ax, and state I can become the new actual state (state 0) for
a next layer-stripping step. This process will be described in the section on the
layer-stripping method. In both basic equations, Eqs. (26) and (28), the velocity
c(xr) in the top layer has to be known. In order to determine this velocity we
use an imaging condition based on the causality principle. The derivation of this
imaging condition is shown in the next section.
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Derivalion of imaging condition

In this section we derive an imaging condition which relates the up- and
downgoing waves just above an interface to the velocity contrast over this
interface. The term imaging condition is a term known fróm migration, where
in the imaging condition the (t = 0) - value is used to determine the reflectivity.
This principle was first introduced by Claerbout (1971). Our imaging conditión
resembles the imaging condition in migration in the sense that we also use the
(t = 0) - value of the wavefields. A difference is however the fact that we use
the imaging condition to directly determine the medium parameter wave speed
as opposed to determining the reflectivity.

We consider a medium consisting of two half-spaces, a homogeneous
upper half-space and a heterogeneous lower half-space. The lower half-space is
heterogeneous in the horizontal direction but not in the vertical direction. The
medium configuration is shown in Fig. 2.

When a wave travels downwards the two boundary conditions across the
interface between the two half-sDaces are:

l imá3Pl^,  .  
= f i Í ïa 'P1",- . '

t i t t tF l  ,  = t i r r rFl .
( j - r  .L\)

homogeneous

(31)

(32)

where the wavefields are written in the single spatial Fourier domain and p is
shorthand for p(sc.r,x,lxs). The first boundary condition shres rhar rhe
component of the particle velocity normal to the interface is continuous across
this interface. We will write this boundary condition in a short hand notation:

alpl ,r  = aiFl"r (33)

where the term djp l_, denotes the vertical derivative of the pressure wavefield
very close to the interface when approaching the interface from the side of the
upper half-space (from small x3 to large xr). A solution for the partial derivative
in the x, direction approaching the interface from above is known:

-  I  I -
p' l  lp ' v0

Fig. 2. Medium configuration for derivation of imaging condition.

cr(xr)
- -03 - ,/\3

helerogeneous lD
I
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alFl , . :  srà(F'-  Fr)  ,  (34)

where p = F' + F'. This solution accounts for the opposite direction of
propagation of the upgoing wavefield p'and the downgoing wavefield p' by the
minus sign. From the Helmholtz equation it follows that the second derivative
in the vertical direction over the pressure wavefield shows a jump across the
interface which is proportional to the velocity contrast over this interface. The
Helmholtz equation for constant density is defined as:

6lp : [1s']/c'?y - a.,.a.,1É

From this it follows directly that:

(alF - (alnÊ : [(s'z/cb - s'?lcï(x')]Ê = s'KÊ

In the spatial Fourier domain this corresponds to:

t (a j ) 'z-(ajFlF=s'KF (37)

Note that K is a convolutional operator similar to the one in eq. (13). Eq. (37)
can be rewritten as:

(a j ) 'p: td j ) '?F-s 'zKF

The second derivative of the wavefield in a homogeneous medium is
known, so we can write for the upper half-space:

(alfp = s'(Iàfp (3e)

Substituting this in eq. (38) we find for the lower half-space:

(ajfp : s't(r[F - K]F (40)

When there are only downgoing waves below the interface we can write:

(aj)F = -sr/t08t - Kl p (41)

Note that the term y'[(lf)'z - K] is a pseudo-differential operator. Substinrting
this term in eq. (33) together with eq. (34) yields:

rà(p ' -p)=-V[(ràf  -Klp.  @2)

Now write, multiplying F = p' + p' by l[:

(35)

(36)

(38)

f$p'+ rËpt : ràp , (43)
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and add these equations:

2ràp'= {-Jt(rlf - rq + r}}F

Subtracting the same two equations results in:

2r6Fr : {VI(r8f - KJ + Iá}p .

In the next step we will make use of the inner product which is defined as:

For the inner product between the terms for the up- and downgoing wavefield
we can wrlte:

(216F',2I5p)

= I(r8p,f6p) + (Iàt,VI(Iàf - KlF)

- (VI(ráf - Kl P'fËF)

- (.r'[(r8f - Á'l p,Vt(ràf - KJ F)1 (7)

We will now make use of the fact that the pseudo{ifferential operator is
symmetric, as shown by Poot (2004). Note that the operator is only proven to
be symmetric when we meet the condition s = jor. The two middle terms on the
right hand side drop out and we can write for the remaining two terms:

(rfF,rlF)l - (./ttráf - r1p,.,/t(r}f - r,]p)

= (F,(r6fF) - (p,t(r8f - rrp)l = (F,KF) .

We have now found the following result:

4(r[p',IËp) = (F,,Kp) . (4e)

Note that this equation is only valid when there is no upgoing wavefield
below the interface. If this is not the case, eq. (40) does not hold. When the
lower half-space is heterogeneous in the vertical direction as well as in
horizontal direction, as is would be in a realistic earth model, there will be an
upgoing wavefield below the inrcrface. We now use the causality principle:
since it will always take a lapse of time for a wave to travel from one position

(44)

(45)

(46)

(48)
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in space to another position in space, there will always be a time interval where
the upgoing waves in the lower half-space have not reached the area just below
the interface yet. During this short time interval there are only downgoing
waves just below the interface and the imaging condition is valid. In order to
meet this condition we define our imaging condition to be valid for time t = 0
only. This leaves us the desired imaging condition:

"7; ' t4(ráp' , ráp) l  = 9; ' (p,Kp)1,  t=0, (50)

where -7,' stands for the inverse temporal Fourier transform, where we use s =
jo. The imaging condition shows that the contrast over an interface can be
determined once the up- and downgoing parts of the pressure wavefield are
known

Layer-stripping method

The layer-stripping procedure combines the wavefield extrapolation
method explained in the section on layer replacement and the causality based
imaging condition as explained in the section on derivation of imaging
condition. Our stariing point is a medium which is divided in thin horizontal
layers. As stated once before in the section on layer replacement, these layers
are virtual, meaning that they do not necessarily coincide with the actual
interfaces in the subsurface. The horizontal layers are defined to be thin enough
to justify the assumption that they are homogeneous in the vertical direction (but
not necessarily in the lateral direction). On top of this medium, wavefields are
measured. When both pressure and velocity wavefields are measured, the
pressure wavefield can be decomposed in an upgoing and a downgoing part.
This is shown by Fokkema and van den Berg (1993). Using the decomposed
pressure wavefield, the contrast over the first virtual horizontal interface can be
defined by applying the imaging condition described in the previous section [eq.
(50)1. The imaging condition is solved by determining the inner product of the
wavefields per frequency in the frequency domain, performing an inverse
Laplace transform on rhe imer products, and solving for the velocity contrast
K in the time domain. Once the contrast over the first interface is known and
therefore also the propagation velocity in the top layer, we can determine the
total wavefield just below this layer using the basic 'consistence' eq. (28). The
integral over x, in eq. (28) is solved using the trapezoidal rule. The determined
total wavefield, Éo(sc{,xll - jsaf,x!), is then used in the determination of the
wavefield Ë"0sc{,"11 - jsc'|,x!). This is the upgoing pressure wavefield
measured at depth x] when the top layer is replaced by a layer with the same
properties as the homogeneous background medium (state 1in Rayleigh's
reciprocity theorem). This wavefield after 'stripping' the top layer is calculated
using the second basic equation, eq. (26). After discretization in the frequency
and wavenumber domain we can write this integral equation as a marix
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equation of the following form:

Pr'U + K) : Tdá'a ,

where i'r' is the matrix to be solved. to"" i, 
" 

term containins known
wavefields, i is the unit matrix and f( is the discretized kernel. In ordei to solve
this matrix equation, the sampling rate in the source and receiver direction must
be equal and the equation has to be solved for each frequency. The matrix
equations can be solved using a standard matrix inversion method. A solution
method for the integral equations using Taylor series and Neumann iterations is
given by Poot (2004).

Once the wavefield i','(s$,x] | - jsci,x!) is known, the entire procedure
can be repeated. The imaging condition is used to determine the contrast over
the next (virtual) interface and the wavefield as determined in the second basic
equation [eq. (26)] becomes the wavefield in the new state 0, see Fig. 1. The
entire procedure can be repeated until the desired depth is reached and a
velocity profile of the lower half-space is determined. The procedure is referred
to as a 'layer-stripping'-procedure since the medium is evaluated layer by layer
and once the information concerning one layer is used, this layer is replaced and
not considered anymore in the further evaluation of the medium. An overview
of the total procedure is shown in Fie. 3.

(51)

(D

(!

Measured oressure and velocitv field

Decomposition in up-and downgoing field

Contrast determination using imaging condition

Calculation offield in state 0 at xi

Calculation of field in state I at x.i

Velocity profile of subsurface

Fig. 3. Flow diagram of the layer-stripping algorithm.
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The layer-stripping method in the one-dimensional case

The theory can be simplified to the theory for a one-dimensional
wavefield in a one-dimensional medium. The two basic equations, Eqs. (26) and
(28), can now be written as:

^xl
s'zrw J,, {col2s)exp[ - (s/co)(x] - xDlÊo(x3ld)dx3

+ exp[- (s/co)Ax,]Ê','(xj I xl)

x s'?K J,. exp[(s/c,Xx3 - x!)]p0(x3lx;)dx3

: w{Ê0,(x3 | x) - Ê',.(xl1x!)expt - (s/co)ax,l} ,
and:

Êo(xllx) = po',ix! | x!)exp[(s/c6)Axl

(s2)

+ pqi(x! | x!)exp[ - (s/c)Ax3]

* .'r Jo (co/s)sinh[(s/co)(x, - xj)]po(x, l x!)dx, (53)

These equations can be solved easily by using the trapezoidal rule for the
integrals over the area from x! to xj. The onedimensional version of the
imaging condition teq. (50)l is given by:

. í i ' tB,Êl : (cf l la)Kx. ' - ; ' (Êf l ,  r :0,  (s4)

where .7;' stands for the inverse temporal Fourier transform. We assume s =
j<,l. Note that the convolutional operator K{!} is now reduced to a scalar K. The
imaging condition, eq. (54) is valid only for the short period of time that there
are only downgoing waves below the interface over which the contrast is
calculated. In niactice, taking only the value of the wavefields at time t : 0
when calculating the contrast from the imaging condition, does not give accurate
results. So, in order to improve the accuracy of the method, we use a shifted
causal wavelet. We assume that the sources that generate the acoustic wavefields
are switched on at time instant to, where to < 0. The energy of the wavelet
between t : to and t : 0 is now taken into account in the evaluation of the
imaging condition. Hence, we modify eq. (54) to:

Í

0

j,fi'[É'Ê']dt : (c3l4)K x .e-i't(Ê)'zldt , (ss)
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where ws is the window size used for calculating the energy of the wavefield.
An imaging result for synthetic one-dimensional data is given in Fig. 4. Note
that the imaging result matches the velocity model very well. An investigation
of the performance of this method compared to the Schur method described by
Yagle and Levy (1983) is described by Poot (20&). Fig. 5 shows that our
method performs well for noisy data in comparison to this Schur method. It is
also shown in Poot (2004) that the use of the energy of the wavelet results is a
stabilization of the layer-stripping, which is missing in for example the Schur
method.

In order to investigate how our layer-stripping method deals with the
internal multiple reflections in the data take a closer look at the first of our basic
equations, eq. (26):

2500

iï
E

$ zooo
.9

1500

1000

500

0

Fig. 4. one-dimensioÍnl imaging result together with the earth model. The eanh velocity model is
denoted by the solid line, the imaging result by the dotted line.
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depth [m]

Fig. 5. Imaging Íesult for noisy data. Top left is the synthetically generated upgoing field used as
input for the Schur method. The imaging r€sult for this method is shown bottom left. The actual
velocities arc denoted by thc dashed linc, Top right is the upgoing wavefield uscd as input for lhc
causality-based imaging method, th€ imaging result and the actual velocities for this method are
shown bottom risht.
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s,Kw I " (co/2s)exp[-(s/coxxr - xl)]Êo(xrlx:)dxJ
Xi

+ exp[- (s/co)AxJÉ1{x] lx)

x s'?K J". exp[(s/c0)(x3 - x:)]Ê0(x3lx!)dx3

: w{Êo'(x8lx!) - Ê'r(xi lx}exp[-(s/co)ÁxJ] (s6)

The second and third term on the left-hand side can be recognized as a
multiple generator term as described by van Borselen (1995). This term takes
care of the correct handling of the multiples in the data. To demonstrate this,
we take a look at a velocity model with wo interfaces, shown together with the
imaging result in Fig. 6. The behaviour of the multiple reflection while stripping

3500

È 3ooo
;
* zsoo

2000

1500

í 000

500

0
800 1000

deplh [m!

Fig. 6. Velocity model with two reflecting interfaces, one at 300 m and one at 900 m depth (dashed
line) togeÍher with the imaging Íesult (solid line). The small event at 600 m depth is explained in
Fie.7.

1600
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Fig. 7. The upgoing wavefield at different source and receiver depths. At the top the velociry model.
At the beginning of the layer-stripping procedure the multiple is visible at about 1.4 s. At a source
and receiver depth of 600 m the mulriple is at 0.5 s. At m0 m deprh rhe mulriple and irs primary
event reach the (t = 0)-axis at the same time. For means of visibility the amplitude of the multiple
is enlarged. The size of the multiple in the sepaÍate traces for source and receiver depths at 0, ó00
and 840 m, shown below the wiggle plot, is the actual size. The small event ar 600 m depth in Fig.
6 is caused by miscalculations in the imaging procedure Etarting at about 300 m depth, when the firsr
interface has reached the (t = o)-axis. Part of this miscalculation is visible above. stanins fÍom a
depth of 300 m at the negative side of rhe (t = o)-axis.
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the layers is made visible in Fig. 7. This figure shows intermediate results of
the calculated upgoing wavefield after an increasing amount of layer stripping
steps. The more layers stripped, the larger the virtual source and receiver
depths, and the closer both the multiple and the primary event that caused it
move towards the (t : 0)-axis. The multiple and its primary event reach the
(t:o)-axis at the same moment. As noted above, the energy of the wavelet
between t : to and t : 0 is taken into account in the evaluation of the imaging
condition. Therefore, had multiple and primary not reached the (t = 0)-axis at
the same time, the multiple would have been treated as a separate event when
applying the imaging condition.

We would like to note that in case of a very smoothly varying medium,
there will be no detectable events in the data. Since the method we present here
is completely data-driven, this smooth variation in the medium parameters will
therefore not be detected.

THE LIMITED SEISMIC BANDWIDTH

In the previous examples we used a Gaussian wavelet, containing all low
frequencies, to model and image our data. Such a wavelet is however not
realistic for seismic data since the lowest frequencies cannot be produced by the
seismic source. It is well known that these low frequencies are extremely
important to the quantitative interpretation of seismic data. This is for example
described by Pao et al. (1984). The effect of lack of low frequencies on our
method is íllustrated in Figs. 8 and 9. Fig. 8 shows the imaging result for a
model with two velocity interfaces. This is the imaging result of the reflection
response modelled with a Gaussian wavelet, containing all low frequencies. The
imaging result resembles the velocity model well. Fig. 9 shows the same
velocity model together with the imaging result of the reflection response
modelled with the derivative of a Gaussian wavelet. This wavelet does not
contain all low frequencies. Now, the imaging result is not satisfactory since
even though the velocity contrasts cause a response in the imaging result, the
imaged velocity between the contrasts is the same as the background velocity.
The reason for failure of the method when the lowest frequencies are missing
can be found in the spectral information of the desired velocity function. This
spectral information contains a broad range of wavenumbers, including small
wavenumber components. It is not possible to recover these small wavenumber
components from the data when the data does not contain low frequency
information. Some theoretical inversion methods ignore this problem, such as
the method described by Raz (1981). In those cases it is assumed that the data
can be properly deconvolved in order to recover the reflectivity sequence. This
is explained by Treitel, Lines and Ruckgaber (1993). In the next section a
solution method for dealing with the lack of low frequencies is proposed.
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Fig. 8. IÍnaging result for synthetic data modellcd using a wavelet rhat contains all lou, fÍequcncies
(solid line). The rrue velocity model is given by the dash-dotted lirc. The widow $ize us€d to find
these results is 1.4 s,
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Fig. 9. ImaSing Íesult for synlhetic rlata modelled using a wavelet tlxrt does not contain àl lortr
frequencies(solid lirE). A very snall window (0.02 s) was us€d !o evaluate the iÍnaging condition.
Thc true velocity modcl is given by the &sh-dotied liÍF.
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The absolute value method

In this section we propose a method to add low-frequency content to the
data without using a background velocity model. To do this, we use the absolute
value of the data in the imaging procedure. The absolute value of the measured
waveÍields is taken at the beginÍring of the layer-stripping procedure. Both the
extrapolation of the wavefields and the calculation of the contrast with the
irnaging condition is performed with the absolute value of the wavefields. The
tiequency spectrum of the absolute value of a wavelet that does not contain low
frequencies, does contain the desired dc-component. Testing of the absolute
value method on wavelets such as a Ricker wavelet gave good results. Fig. l0
shows the imaging result using the absolute value method for the same earth
model as in Figs. 8 and 9. As we stated before, the reason for failure of the
imaging method when the lowest frequencies are missing is that the spectral
inÍbrmation of the desired velocity profile contains small wavenumber
components. This means that the desired low-frequency information somehow
has to be added to the data or to the imaging result. The common method in
seismics is to add this information to the imagíng result by using background
velocity information. The absolute-value method however adds low-frequency
information directly to the data. The underlying assumption is that the events in
the data are separate events. For this reason, the method will fail for
overlapping events.

r 900

61800
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!
I  17oo
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1400
0 200 40o 600 uoo 

o"lllo", 
,roo 1400 1600 1400 tooa

Fig. 10. Resulrs for the absolute value-method, calculated velocities (solid) togerher wjth the actual
vcloc[y rnodel (dashed). The derivarive ofa Gaussian was used as input wavelet. l'he absolute value
method was used.
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Negative velocity contrasts

Because the absolute value method results in a loss of the sign of the
events in the data, this method fails for negative velocity contrasts. In this
section we propose a solution method for this problem.

After the absolute value of the wavefield is taken the method 'sees' a
negative contrast as a positive one. The imaging result for a velocity model
which has a negative contrast is shown in Fig. 11. The inversion result was
obtained using the absolute value method and as the figure makes clear, the
negative velocity contrast was interpreted as a positive one. A solution method
for this problem is to determine the sign of the events before taking the absolute
value, and then to apply this sign to the resulting data. We use a median filter,
as described by Marion (1991), to determine the sign of the events. Before
applying the median filter we transform the wavefield such that the events are
symmetrÍc (zero-phasing). After median filtering, a time series containing the
sign of the events in the data is computed by assigning the value - 1 or + 1 to
every negative or positive point in the filtered wavefield, respectively. The
absolute-value data are now multiplied by the time series containing the sign of
the original data in order to assign the correct sign to the events. The choice of

0 200 400 600 roo 
o.lffh, 

,roo 1400 1600 1800 2ooo

Fig. I l. Imaging result (solid line) for the absolure value-method together wÍh the actual velocity
model (dsshed) which contains a rcgative vclocity contrast. Thc truc velociry varics from 1500 m/s
to 1800 m/s and 2000 m/s and rhen back ro 1800 m/s. The imaged velociry however varies from
1500 m/s to 1800 m/s to about 2230 m/s. The derivative of a Gaussian was used as input wavelet.
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the width of the median filter window is important. If the window is chosen too
wide, the events will overlap and if the window is chosen too small, the result
will almost be the same as the original data. The time series containing the sign
of the original data together with the result of application of this time series to
the absolute value of the data is shown in Fig. 12. The absolute-value data after
manipulation with the correct sign give the imaging result shown in Fig. 13.

0 0.05 0.1 0 0.05 0.1

Fig. 12. In the middle rhc median filrering result, containing the sign of the events in rhe waveÍield
shown on the left. This wavefield on th€ left was modelled with the vetocities shown in Fig. Il On
tle right the coresponding reflected waveÍield after taking the absolute value and manipulation with
tie time series shown in the middle, as explaioed in the section on negative veloclry conrrasrs.
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Fig. 13. Imaging result for rhe absolure value-method (solid line) together wirh rhe actual velociry
model (dashed) which contains a negative velocity contrast. The reflected wavefields were filtered
to find a time series containing the sign of the events in the data, which was applied to the absolute
value of the data. as describ€d in the section on negative velocity cootrasts. The derivative of a
Gaussian was used as the inDut wavelet.

Fig. 14 shows the synthetic upgoing wavefield for the multilayered depth model
from the previous section, after manipulation with the time series containing the
sign of the original data. Fig. 15 shows the imaging result for the same depth
model. The result is slightly less accurate than the result shown in Fig. 4. This
is the consequence of very small events or artifacts being given the wrong sign.
Note that the method to determine the sign of each event in the data will fail
when events with an opposite sign are overlapping.

2D IMAGINC RESULTS

So far, we have examined the behaviour and characteristics ofthe method
for the one-dimensional case. In this section we use common midpoint gathers
to invert a 2D examole.
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Fig. 14. The figure on the left shows the time series containing the sign of the events in the data
modelled using the velocity model shown in Fig.4. This time series was found by median filtering.
On the right shows the reflected wavefield after taking the absolute value and manipulation with the
median filtered time series.

The imaging result for this example is shown in Fig. 16. In order to reach
this result, the synthetic data were sorted to common midpoint gathers. A
comprehensive review of the use of common midpoint data is given by Diebold
and Stoffa (1981). Every 20th CMP-gather was then transformed to the intercept
time and ray parameter (r-p) domain. An overview of r-p mapping of seismic
data is given by Stoffa et al. (1981). Since the trace for p = 0 s/m after
tÍansformation to the 7-p domain corresponds to a plane wave at normal
incidence, we were able to apply our imaging procedure to this trace. The
imaging result for several CMP-positions is shown in Fig. 16 (bottom). The
imaging result closely resembles the velocity model. This method, where we use
plane-wave decomposition of CMP-gathers is known to be applicable only to
media varying smoothly in the horizontal direction. When the theory for the full
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Fig. 15. Imaging result (solid line) for the absolute-value method after sign-conecting by median
filtering as shown in Fig. 14. The dotted line denotes the true velocities.

three-dimensional case as described in the first section of this paper will be
implemented, this restriction on variations in the horizontal direction will not
have to be made.

CONCLUSIONS

In the first part of this paper, we have derived the theory for a
layer-sÍipping method for the three-dimensional acoustic case. We have tested
the one-dimensional version of this theory on synthetic data, obtaining very
accurate resuhs. We have also inverted a two-dimensional earth model makine
use of CMP-gathers.

As an overall conclusion we can state that promising results have been
obtained by designing and partly implementing a completely data driven
inversion method which is theoretically applicable to laterally varying media.

We have described how the limited bandwidth of seismic data affects our
method. In this paper we have proposed a solution method for this problem
using the absolute value of the data, which gives good results as long as the
events in the data are not overlapping.

2000 3000 4000 5000 6000
dePthtBl
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Fig. 16. IÍ[aging result (bottom) per CMP-position for laterally varying velocity model (top). A 2D
finite-diífererrce code was used !o model 12ó shois with 12ó receivers at the suÍface, each 20 meters
apart. A bandlimited Ricker wavelet was used as input wavelet. The absolute value method was

applied. The gray scale on the right defiÍIes the velocity iÍt m/s.
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In the final section of the paper we have shown that good imaging results
can be obtained for laterally varying subsurface models using common midpoint
gathers. This technique is applicable only to media varying smoothly in the
horizonlal direction. The imaging result for the two-dimensional case shows the
potential of the merhod for this kind of problems. By fully implementing our
layer-stripping method for the multi-dimensional case we exDect to find more
accurate imaging results for laterally varying media. Other pioblems still ro be
addressed before being able to apply the multi-dimensional methcd to
geophysical explorarion are for example the stability of the method, the fact that
events in the data are often overlapping and the expected large amount of
computation time that will be involved in solving the large matrix equations,
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