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ABSTRACT
Wapenaar, C.P.A., 1992, The infinite aperture paradox. Journal of Seismic Exploration, 1: 325-336.

Given an integral formulation for forward wave field extrapolation of data recorded on an
infinite aperture, the formulation for inverse wave field extrapolation can be arrived at in two ways:
1. Exploiting the time symmetry of the wave equation, the forward-propagating Green’s function
may be replaced by a backward-propagating Green’s function. This approach seems to be exact.
2. Alternatively, the spatial convolution operator for forward extrapolation may be replaced by a
deconvolution operator for inverse extrapolation. This deconvolution approach is spatially band-
limited so it scems not to be exact.

Since both approaches lcad to identical expressions for inverse extrapolation, a paradox has
arisen. In this paper this paradox is unambiguously eliminated by a space-frequency domain analysis
of the inverse wave ficld extrapolation integral.
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INTRODUCTION

It is well known that wave field extrapolation of data recorded on a finite
aperture is not exact. The extrapolated wave field contains artefacts which can
be kinematically explained as ghost wave fields radiated by secondary sources
located at the endpoints of the aperture (Fig. 1). Suppose now that the data
would be recorded on an infinite aperture. Then forward wave field
extrapolation would be exact: the ghost wave field of the secondary sources at
the ‘endpoints’ would vanish when these endpoints were moved towards infinity.
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Since the wave equation is symmetrical in time one would expect a similar
conclusion for inverse extrapolation.

Now, let us see whether or not this expectation is fulfilled. In a classical
paper, Schneider (1978) presents an integral formulation for wave field
extrapolation in the space-time domain. Starting with the exact Kirchhoff
integral for forward extrapolation, he introduces inverse extrapolation essentially
by changing the direction of time in the Green’s function. The resulting
backpropagating Green’s function exploits the time symmetry of the acoustic
wave equation and it seems that no approximations are introduced by this simple
modification. In another classical paper, Berkhout and Van Wulfften Palthe
(1979) derive inverse extrapolation as a spatial deconvolution process in the
space-frequency domain. In their appendix C they show that this deconvolution
process is spatially bandlimited (evanescent waves are neglected). Hence, it
seems to be not exact, even when the size of the aperture is infinite. It is
interesting to note that their deconvolution operator, transformed back to the
time domain, is identical to Schneider’s operator.

We thus see that these two different interpretations of the same inverse

extrapolation operator (an exact backpropagating Green’s function versus a
bandlimited deconvolution operator) constitute a paradox: inverse wave field
extrapolation is either exact or not exact but obviously it cannot be both!
In our paper on inverse wave field extrapolation (Wapenaar et al., 1989) we
eliminate this paradox as follows. Our starting point for the derivation of the
inverse extrapolation operator is the Kirchhoff-Helmholtz integral with a
backpropagating Green’s function.
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Fig. 1. Forward (a) and inverse (b) wave field extrapolation of a point source response recorded on
a finite aperture. Note that both results contain artefacts as a result of the finitc aperture.
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This is essentially the space-frequency domain equivalent of Schneider’s
expression in the space-time domain. An important difference, however, is that
we start with a closed surface integral, whereas (for inverse extrapolation)
Schneider starts right away with an open surface integral over the infinite
aperture. The closed surface integral is doubtlessly exact; however, by going
from a closed to an open surface, a part of the surface integral is neglected. In
our 1989 paper we prove (via the wavenumber-frequency domain), that the
neglected part of the integral is not zero for evanescent waves. Omission thus
introduces approximations that are equivalent with those of the bandlimited
deconvolution approach of Berkhout and Van Wulfften Palthe. This eliminates
the paradox and in 1989 we could not imagine any objections to our derivations.
However, after the publication of our 1989 paper, we received a lot of
comments from many colleagues in the geophysical community, who disagreed
with our conclusions. Apparently, our derivation via the wavenumber-frequency
domain was not convincing enough to settle the dispute. The aim of this paper
is to present an alternative proof that inverse wave field extrapolation using
backward propagating Green’s functions is not exact. To avoid discussions
concerning the branches of complex square roots in the wavenumber-frequency
domain, the analysis is presented entirely in the space-frequency domain. It will
turn out that the finite aperture artefacts pictured in Fig. 1b do not vanish for
the sityation of an infinite aperture. The remaining artefacts may be
kinematically explained as (plane) ghost wave fields, backpropagated from
secondary sources at infinity (Fig. 2b). It will also be shown that the amplitude
of these ghost wave fields can be significant.
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Fig. 2. Forward (a) and inverse (b) wave field extrapolation of a point source response recorded on

an infinite aperture. Note that the inverse extrapolation results contains artefacts, in spite of the
infinitc aperture.
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REPRESENTATION INTEGRALS

Throughout the analysis we consider for simplicity an infinite
homogeneous lossless acoustic medium, with propagation velocity ¢. In this
medium we consider a source-free volume V enclosed by a surface S with
outward-pointing normal vector n. In the space-frequency domain, the acoustic
pressure P at any point (x,,y,,z,) in V can be expressed in terms of the
acoustic pressure P and its gradient on S by either one of the following two
representation integrals

P&, .y, .z, = P [GVP — PVG] - ndS (1a)
S

(Morse and Feshbach, 1953), or, exploiting the time symmetry of the wave
equation

P(x,.y, .z, = P IG'VP - PVG*] - ndS (1b)
S
(Bojarski, 1983), where G is the free-space Green’s function, given by
G = e 'k} 4ar , (2)

withr = VI{(x, - x)* + (y, — vy + (z, — z)*] and k = w/c, w being the
angular frequency. Note that both expressions (1a) and (1b) are exact. They will
be used to analyse the forward and inverse wave field extrapolation processes,
respectively.

THE CONFIGURATION

In the following the closed surface S will consist of two horizontal infinite
surfaces at depths z = z_, and z = z;, respectively, and a cylindrical surface
with a vertical axis through the origin of the coordinate system and infinite
radius (Fig. 3). The contribution from the cylindrical surface to the integrals
(1a) and (1b) vanishes (the area of this surface is proportional to the radius g,,,,
the integrant is proportional to 1/gZ,. ). Hence, for this configuration the
integrals (1a) and (1b) can be written as

Pix,,y,.z,,w = P ",y ,z,,0) + P{"(x.,y, .z, ,0) , (3a)
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where

P (x,,y, 2.0 = n | [ [G™3P/dz — PaG™/3z) dxdy,  (3b)
form= —1,1andn = -1, 1, with

G(m) —

G (for m = 1)
{ (3c)

G* (form = -1)
Note that the integer n in front of the integral in (3b) accounts for the direction
of the outward-pointing normal vector at depth levels z, forn = -1, 1.
The integral in (3b) can be solved most conveniently if we can make use
of cylindrical symmetry. To this end we choose a single monopole source for

P on the z-axis at (0, 0, z,), with z; > z, (Fig. 3). The source function is given
by S{w)}. Then, in cylindrical coordinates, we have

P = S{w) e %5/ 4as 4)

...................... zl

(0,0,2,) ¢

T source

Fig. 3. Conlfiguration for which the representation integrals arc evaluated. Note thatz_; <z, <z, <z_.
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withs = /[ 0° + (z, — 2?] and o = V(x* + y*). Moreover, we evaluate the
integral only for (x,, y.,z,) = (0,0, z,), withz_, < z, < z; (Fig. 3).
Hence, for the Green’s function we may write

G™ = e ikmr/ Aqr | (5)

withr = /[ ¢° + (z, — z)*]. For the configuration of Fig. 3 we speak of
forward extrapolation when an integration over the lower surface z = z
describes the wave field at (0, 0, z,) of the source at (0, 0, z,). Similarly, we
speak of inverse extrapolation when the wave field at (0, 0, z,) is obtained by
an integration over the upper surface z = z_, . Since equation (3) describes in
general an integration over both surfaces, a careful analysis of the different
contributions is required.
ANALYTICAL SOLUTION OF THE INTEGRALS

Using the cylindrical symmetry of P and G'™, equation (3) may be
rewritten as

PO,0,z,,w) =P'7(0,0,2z,,w) + P,"{0, 0, z,, v , (6a)

where

P™ (0,0, z,, 0 = 2an | [G™P/dz — PAG™/dz]  odo .  (6b)
0

n

Upon substitution of equations (4) and (5) into (6b) we obtain

P™ (0, 0, z,, @) = Slw)n/8x f iz, —z, )0 + jks,)/s
0

— (z, — 2,01 + jkmr,)/2} e TR G Mo b ] odo, (7)

withs, =0 o* + z, — z,)*landr, = V[0 + (z, — z,)°] (Fig. 3). The
argument of the exponential is shown as a function of o form = 1 and m = -1
in Fig. 4. Note that for m = 1 it is stationary only for o = 0, whereas for m
= —1 it is stationary for o = 0 and o = °o. This explains the fundamental
difference between forward and inverse extrapolation, as will be shown in the
following sections. The solution of the integral in equation (7) reads
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T phase

Fig. 4. Argument of the exponential in the integral (7) when using the forward (m=1) and backward
(m= —1) propagating Green's function. The stationary behaviour at o= e for m= -1 is responsible

for the artefacts in inverse extrapolation.

P™ (0, 0, z,, w) = S(n/8x [{-m(z, — z,)/s,

+ 2z, -z )} e Tk (e mrn)/(sn+mrn)

D i,
—
o0
=
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FORWARD EXTRAPOLATION

Choosing m = 1 means that the forward-propagating Green’s function is
employed (see equation 3c). Now in equation (8) the contribution for o = o
vanishes, or, using the terminology of the introduction, the ghost wave field of
the “secondary sources at infinity” vanishes. For evaluating the contribution for
0 = 0 we use the property z_ | < z, < z; < z, (Fig. 3). The result is

-iklz, - z,) - nz, - z,)] ) (9)

PV (0,0, 2,, 0w = Slon/8r | (1+n) <
(z,-2z,) —nz, —z,)




332 WAPENAAR

Hence,

P©,0,z,,w) = PP0,0,z,,w) + P{"0,0,z,, 0, (10a)
with

P10, 0,2, =0 (10b)
and

PO, 0,2, 0 = S e K@ %) [ 4n@, — 2,) . (10¢)

From this result we may conclude that P, 0, z,, w) equals the exact
monopole response at a distance z; — z, from the source. Moreover, this exact
result is fully obtained from the integral over the infinite horizontal surface at
z = z, between the source at (0, 0, z,)and the receiver at (0, 0, z,.) (Fig. 3).
This confirms our expectation of forward extrapolation from an infinite aperture.

INVERSE EXTRAPOLATION

Choosing m = —1 means that the backward propagating Green’s function
is employed (see equation 3c). Now in equation (8) the contribution for o = oo
does not vanish, or, using the terminology of the introduction, the
backpropagated ghost wave field of the ‘secondary sources at infinity’ does not
vanish. Evaluating this contribution involves an expansion of the square roots
s, and r, for large o. The result is

2z, —z,) + 2z, - z,)

(z,—2z,) = (z,-z,)

PP (0,0, z,, w = Slwn/8x

—jklz, —z,) + nl, — 2l
—(1-n) (1)
(z, —z,) +nlz, - z,)
Hence,
P0,0,z,,w) =P{P0,0,z,,0) + P{"7(0,0,z,, 0w, (12a)
with
PGY(0,0,z,, 0 =S {ed % ~2) _1Ydn@z, - z,) (12b)
and

P{P0,0,z,,0 =S 4z, — z,) . {(12c)
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Note that again P(0, 0, z,, w) equals the exact monopole response at a
distance z , — z , from the source, as expected. However, for inverse
extrapolation normally only the integral over the surface at z = z_, would be
evaluated (Fig. 3). Hence, P{{" (0, 0, z,, w), as given by equation (12b),
represents the inverse extrapolation result for the situation of an infinite aperture
at z = z_, . Obviously, this result is not exact. The artefact has the same
amplitude as the monopole response. Note that the time-domain equivalent of
equation (12b) reads

p!iV©0,0,z,,1) =

1/4nz, — z,.) [slt — @z, - z. )} — s@W], (13)

which means that the artefact shows up as a ghost event with zero time lag. This
is seen in Fig. 2b at the point where the asymptotes of the hyperbola cross each
other. The remaining part of the artefacts in Fig. 2b can be derived with a
stationary phase analysis, which is beyond the scope of this paper.

EXAMPLE

We discuss a numerical experiment which shows the evolution of the
artefact as a function of the aperture size. The upper limit of the integral in (7)
is replaced by g,,, (the radius of the aperture) and the integral is evaluated
numerically for different values of g,,, ., ranging from 100 m to 51.2 km.
Furthermore, we havechosen m = -1, n= —-1,¢ = 1200 m/s, z_, = 0 m,
z, = 200 m, z, = 400 m, Ap = 10 m. S(w) is a zero-phase source function
from 0 to 60 Hz. The results are shown in the time domain as a function of g,
in Fig. 5. As expected, the result converges to the analytically derived result for
Omax = « (equation 13).

MONOPOLE VERSUS DIPOLE SOURCES

In the examples that we considered so far, the source for the acoustic
wave field P was a monopole source at (0, 0, z;). When we replace this source
by a dipole source, we may expect that the ‘secondary sources at infinity’ are
weaker and, consequently, that the inverse wave field extrapolation artefacts are
less severe. (The directivity of the dipole source acts as a natural taper). To
obtain the wave field P of a dipole source at (0, 0, z,), we apply the operator
—d/dz ¢ to the right-hand side of equation (4). Following the same steps as
before, we eventually find that the inverse extrapolation result is obtained by
applying the same operator to the right-hand side of equation (12b} (bear in
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mind that G'™ does not depend on z ). This gives

P{Y0,0,2,, 0 = Sl + jkiz, — z,)} e 1K@ 20 _q)
]

4z, — z,)?. (14)

Note that the artefact of this inverse extrapolated dipole response is relatively
less severe. In the high frequency limit it vanishes completely.

Figure 1b Figure 2b
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Fig. 5. Numerical evaluation of the integral (7), with the upper limit replaced by g, . The result
converges to the analytically derived result for g, = °°.

DISCUSSION

By considering the Sommerfeld integral (Aki and Richards, 1980), it can
be shown that equations (12b) and (12c) represent the propagating and
evanescent wave field contributions, respectively, of the monopole source at
(0, 0, z,). In other words, the integral over z = z , accounts for the
propagating wave field whereas the integral over z = z; accounts (in a stable
manner) for the evanescent wave field (see Fig. 6). This is consistent with the
analysis in our paper on inverse wave field extrapolation (Wapenaar et al.,
1989) where we show that omitting the integral over z = z, is equivalent with
neglecting the evanescent wave field. It is also consistent with the analysis of
Berkhout and Van Waulfften Palthe (1979), who show that the spatial
deconvolution process (i.e., the integral over z = z_,) implies a spatial band-
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limitation (propagating waves only) and, consequently, a limited spatial
resolution. Hence, apart from the explanation in the foregoing sections, the
artefacts that occur in inverse extrapolation can also be explained as a result of
ignoring the evanescent wave field. In principle, a part of the evanescent wave
field could be recovered from surface z_, , provided that the distance to the
source is small. This is what actually happens in near-field acoustic holography
(Maynard et al., 1985). For this application the inverse operator is considered
as a broad-band spatial deconvolution operator; it is derived by taking the
reciprocal of the forward operator in the wavenumber-frequency domain.
Applying this operator yields an improved lateral resolution. Following the
arguments of Berkhout and Van Wulfften Palthe (1979), this approach is not
recommended for seismic applications since in seismic data the evanescent wave
field is generally far below the noise level.

N propagating waves

\i\/‘/
'Zf' .........................................................................................................
N
VA
‘ evanescent waves
2y
ZS .................................................. . .....................................................
source

Fig. 6. The represemation integral (with the backpropagating Green’s function) over z_, and z,
yiclds the exact wave ficld at z, . In inverse extrapolation from z_, to z, the integral over z, is
ignored, which means that only the propagating part of the wave field is reconstructed (band limited
extrapolation).

CONCLUSIONS

It has been shown that inverse wave field extrapolation using the
backward propagating Green’s function is not exact, even when an infinite
aperture 1s available. Using a space-frequency domain analysis, it has been
shown that the artefacts can be explained as ghost wave fields, backpropagated
from secondary sources at the aperture ‘endpoints’ at infinity. An important
consequence is that finite aperture artefacts that occur in practice cannot be
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removed by artificially extending the aperture towards infinity, unless this is
accompanied by some taper. Note that although the analysis is carried out in the
space-frequency domain, the conclusions apply equally well for inverse
extrapolation techniques in the space-time domain. Hence, also the reverse time
extrapolation approach, as advocated by McMechan (1983), suffers from the
same artefacts when the size of the aperture is infinitely large. This is easily
understood when one bears in mind that reverse time extrapolation is equivalent
with Schneider’s integral method with the time-reversed Green’s function (see
Esmersoy and Oristaglio, 1988). It has been argued that the artefacts can also
be explained as a result of the negligence of the evanescent wave field in inverse
wave field extrapolation (band-limited extrapolation). Apparently, employing the
backpropagating Green’s function for inverse wave field extrapolation is
equivalent with ignoring the evanescent wave field. This explains the stability
of the inverse wave field extrapolation process. For simplicity, we have
restricted the analysis to the situation of a homogeneous medium. However,
similar conclusions apply to the situation of an inhomogeneous medium where,
in addition, the use of backpropagating Green’s functions gives rise to amplitude
errors that are proportional to the squared reflectivity of the interfaces in the
medium (Wapenaar et al., 1989).
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