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ABSTRACT

Wapenaar, C.P.A. and Berkhout, A_J., 1993. Representations of seismic reflection data. Part I: State
of affairs. Journal of Seismic Exploration, 2: 123-131.

For the evaluation of representations of seismic reflection data, we may distinguish between
boundary and volume integral methods and between two-way and onc-way methods. In part I three
of the four methods are reviewed; in part II the fourth methed is newly introduced (the one-way
volume integral representation). The pros and cons of the various representations with respect to
their application in seismic inversion are briefly cvaluated.
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INTRODUCTION

Historically, acoustic reflection data have been represented in two
different ways: by boundary integrals and by volume integrals. All modern
boundary integral representations are essentially based on the work of Huygens
(1629-1695), Fresnel (1788-1827), Kirchhoff (1824-1887), Rayleigh (1842-
1919) and Sommerfeld (1868-1951). The foundation of the volume integral
representations was laid by Born (1882-1970). Both the boundary and the
volume integral representations are traditionally based on what we call the "two-
way" wave equation (i.e., the common acoustic wave equation which does not
explicitly distinguish between "one-way" downgoing and upgoing waves. In this
paper, these boundary and volume integral representations are briefly reviewed
and their importance in seismic inversion is indicated.
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For seismic reflection experiments, the incident and scattered wave fields
can often be denoted as downgoing and upgoing, respectively. For this reason,
the "one-way" wave equations for downgoing and upgoing waves are widely
used in seismic exploration [see Claerbout (1976) for a finite difference
approach and Berkhout (1982) for an integral approach]. In this paper, two
approaches are discussed that lead to different representations of seismic
reflection data in which the concept of one-way wave propagation plays an
essential role. The first approach starts with the two-way boundary integral
representation and employs the one-way wave equations to transform this into
a one-way boundary integral representation (Berkhout and Wapenaar, 1989).
The second approach (discussed in part II, next issue) starts with the one-way
wave equations and leads step by step to a general one-way representation
theorem containing boundary and volume integrals from which the former one-
way representation can be derived as a special case.

GENERAL TWQO-WAY REPRESENTATION THEOREM

Consider an inhomogeneous acoustic medium, characterized by the
compression modulus K(x) and the mass density o(x), where x is the Cartesian
coordinate vector (x,y,z). Outside some sphere with finite radius the medium is
assumed to be homogeneous and lossless. The acoustic pressure of a source at
Xs = (xg,¥s,Zs) is denoted in the frequency domain by P(x) and satisfies the
acoustic two-way wave equation

V.[(1/p)VP] + (@/K)P = -Sék - x5) , n
where S(x) is the source function and @ is the angular frequency. Our aim is to
find a representation for P at a detector position x;, = (X ,yp, ,Zp ). To this end
we introduce a Green’s function G(x,x, ) as the wave field of a unit source at
xp in an inhomogeneous reference medium with compression modulus K(x) and

mass density o (x). Outside a sphere with finite radius, we choose K = K and
o = o. The Green’s function satisfies the following two-way wave equation:

V.[170)VG] + @¥K)G = -6 — xp,) . (2)

Applying the theorem of Gauss to the interaction quantity G(o~'VP) — (o "'VG)P
and employing the two-way wave equations (1) and (2) yields

Plx,) = Glrgxp)Strs) + 45 [(1/0)G(@P/an) — (1/0)(3G/on)Pldx
av

f [- @*(AK/KK)GP + (Ao/00)VG.VPldx (3)

where AK = K - K, Ag = ¢ — o and where V is an arbitrary volume
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(containing xg and X ) enclosed by surface dV. The derivative d/dn is a
directional derivative in the normal direction outward from oV.

TWO-WAY BOUNDARY INTEGRAL REPRESENTATION

Consider the configuration shown in Fig. 1a. Here surface 0V consists of
a curved reflector = of infinite extent and a hemisphere =, with infinite radius
in the upper half-space. We choose the reference medium continuous across =
and equal to the actual medium throughout the upper half-space, i.e., throughout
V. Now the volume integral in equation (3) vanishes. We define the wave field
P as the superposition of an incident wave field P’ and a scattered wave field
P*, hence, P = P’ + P°®. The incident wave field is the response to the source
in the absence of the reflector, i.e., in the reference medium. We then have

¢ (1/0)[G(3P i/dn) — (0G/an)P ]d%x = 0 (4)

V

(Sommerfeld’s radiation condition, see Bleistein, 1984). Hence, applying
equation (3) for the incident wave field P yields P'(x;,) = Glxs, xp)Sls). A
result similar to equation (4) holds for P* on the hemisphere X ,. Hence,
applying equation (3) for the total wave field P = P' + P*, we find for the
scattered wave field at x, :

Ps(x,) = f (1/0)[G (9P */an) — 3G/on)P * 1d* (5)

EO—)OO

S(xg)

Gix, xp)

{a) {h)

Fig. 1. a) Configuration for the two-way boundary integral representation; V is the upper half-space.
b) The scattered field from reflector X is represented by a boundary integral over the reflector. The
reflection coefficient Ry(x,a,3) depends on the reflector geometry as well as on the acquisition
configuration.
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So far no approximations have been made, however, P® in the right-hand side
has not yet been specified explicitly. In the high-frequency limit, it is common
usage to relate the scattered field on Z to the incident field on X by a (angle
dependent) reflection coefficient R{x, a), according to

P*x) = Rix, a)P'(x),
[OP*(x)/on] = —R(x, a)[oPi(x)/on] ,xon X . (6)

This is a generalization of what is commonly known as the Kirchhoff
approximation (Bleistein, 1984). Moreover, motivated by ray theory, the normal
derivatives of P’ and G on X are generally approximated by

[6P (x)/on] = —jk (x)cosax)P(x) |
[0G (x, xp)/dn] = —jk X)cosBx)G(x, x,) ,xonX | (7)

with k = wy/{(0/K) and a and 8 being the angles of the rays with respect to the
normal on X, see Fig. 1b. Substituting relations (6) and (7) into equation (5),
using the reciprocity relation Gix, x;) = Glx,, x) and writing the incident field
on X as P'(x) = Glx, x5)S(xg) yields

PS(xD) = J‘ G(XD, x)R()(x,a,ﬁ)G(x, X3 )S(xs )dzx , (8a)
with 0
Rolx,a.,B) = [jk&x)/ox))lcosalx) + cosBx)]R(x,c) , x on X . (8b)

Note that R and R, depend on the reflector geometry as well as on the
acquisition configuration, see Fig. 1b. Moreover, a{x) and S(x) must have an
unique value for each x on X, hence, it is implicitly assumed that the medium
above X is relatively simple.

Interpreting the integral in equation (8a) from right to left, we encounter
subsequently: propagation from the source at xg to x on X, reflection at x on =
and propagation from x to the detector at x;,, see also Fig. 1b. In essence, this
representation (and extensions of it) plays a central role in the seismic inversion
research project at the Colorado School of Mines (Bleistein, 1984).

TWO-WAY VOLUME INTEGRAL REPRESENTATION

The starting point is again equation (3), this time for the situation that aV
is a sphere with infinite radius, so that the surface integral vanishes. Consider
the configuration of Fig. 2a. A scattering volume Q is introduced, being the
region where AK # 0 and Ap # 0. Again we define P = P' + P® where P’
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is the incident field (i.e., the wave field in the reference medium), hence
Pi(xp) = Glxg, xp)Slxs), see equation (3). For the scattered wave field at xj,
we thus obtain

Ps(xy) = f [~ w*(AK/KK)GP + (Ao/po}VG.VPIdx . 9)
Q

So far no approximations have been made, however P in the right-hand side is
not yet known. Assuming the contrasts are small, it is common use to replace
P by P'. This approximation is known as the first-order Born approximation.
The most important effect of this approximation is that multiple scattering is
neglected. In the high-frequency approximation, the term VG.VP' can be
approximated by

VG(x, x,).VPix) = [—jk(x)]? cosy(x)Glx, x,)P(x) , (10)

with k? = ® 0/K and y being the angle between the rays at x, see Fig. 2a.
Substituting P(x) = Pi(x) = Glx, x3)S{xg) as well as equation (10) into
equation (9), and using G, x,) = Glxp, x) yields

P*(x,) = f Glxp, x)AK,y)Glx, x5)Sxg)dx (11a)
with &
Alx,y) = [-KE)IAKX)/KE) + {Aok)/ok)}cosy(x)] . (11b)

fa) (b)

Fig. 2. a) Configuration for the two-way volume integral representation; V is all space.
b) The scattered field from reflector X is represented by a volume integral over the entire lower half-
space Q.
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Note the analogy with the boundary integral representation (8a). The difference
from equation (8a) becomes clear when we apply equation (11a) to the same
configuration as before, see Fig. 2b. Now equation (11a) implies an integration
over the entire lower half space 2, whereas equation (8a) implies an integration
along the boundary X only. Both representations account for (pre-critical) angle-
dependent reflection effects. In essence, the volume integral representation
(including higher-order terms) plays a central role in the seismic inversion
research project at the Institute de Physique du Globe (Tarantola, 1984).

ONE-WAY BOUNDARY INTEGRAL REPRESENTATION

The main idea behind one-way techniques is that the "preferred direction
of propagation" is along the vertical axis and that the "preferred orientation of
reflectors" 1is horizontal. It should be noted, however, that the actual
propagation direction and reflector orientation may vary from —90 to +90
degrees around the preferred direction/orientation. To illustrate the principle we
consider the configuration shown in Fig. 3a. Here surface 9V consists of a
horizontal reflector X of infinite extent and a hemisphere X, with infinite radius
in the upper half-space. As before, the volume integral as well as the
contribution of the surface integral along X, vanishes. At the reflector £ we
define the wave field P as the superposition of a downgoing wave field P* and
an upgoing wave field P~, hence, P = P* + P~. We choose the reference
medium continuous across % and reflection free in the lower half-space, so G
= G* at 2. Finally, we assume that the medium above the detector is
homogeneous and we ignore the direct wave contribution, so P = P~ at x,.
Hence, from equation (3) we find

P (xp) = I (1/0)[G*{a(P* +P~)/dz} — (3G*/3n)(P* +P~)]d% (12)

z

Employing the one-way wave equations for P* and G* at X, Berkhout and
Wapenaar (1989) show that the terms containing P* cancel (compare with
equation (4)) and that the terms containing P~ are identical, hence

P &) = J [-2/0 W[BG "~ (x,,, x)/3z]P~ (x)dx (13)

where we also used the one-way reciprocity relation G*(x, x;) = G (x;, x).
The upgoing wave field P~ (x) on Z can be related to the downgoing wave field
P*(x) according to

P x) = f R*kx, x)P*(x)d*’, xonX , (14)
x
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see Berkhout (1982) or de Bruin (1993). This "pseudo-differential operator"
notation is typical for the one-way approach, see also part II of this paper in the
next issue. Equation (14) is a generalized convolution integral that takes the
angle-dependent reflection behavior at X fully into account. Moreover, the
reflection operator R* is independent of the acquisition geometry, unlike
R,,defined in equation (8b). Actually, R* is a true medium characterization.
Substituting equation (14) into equation (13) yields

P (x,) = IW‘(xD, xR (x, x)P*(x)d%x'd’ , (15a)
where tz
W (xp, x) = [-2/0)][0G " (xy, x)/0z] . (15b)

Note that P*(x’) may be written as G* (x’, x5)S(xg) when the source at x5 is a
monopole. On the other hand, for a dipole source S§ at xg we may write

P (xp) = II W (xp, XR* (x, x)W*(x', x5)S(xg)dx’d> ,  (16a)

where X

WHx’, xg) = [2/0(xs)I[0G* (x', xg)/dzg] . (16b)

S (xg
P (xp) o(%s)
W (x’ xg)
K=K
p=7
—_ ‘4' Z
K- K+AK ’
p:,(_)++Ap R+(x’x)

(a) (h)

Fig. 3. a) Configuration for the one-way boundary iniegral representation; V is the upper half-space.
b) The WRW model accounts for angle-dependent reflection and involves no high-frequency
approximation. The reflection operator is independent of the acquisition geometry (for simplicity a
horizontal reflector is shown; the WRW model is valid for 3-D inhomogencous media, sec also
part II.
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Representation (16a) is the integral formulation of Berkhout’s so-called WRW
model, see Fig. 3b. During the past twelve years, both authors have proposed
several refinements, including the incorporation of multiple reflections
(Berkhout, 1982; Verschuur et al., 1992) and an extension to the full elastic
situation (Wapenaar and Berkhout, 1989). In essence, this representation is the
basis for the research carried out in the consortium project DELLPHI at Delft
University.

DISCUSSION

At first sight, the two-way volume integral representation ((9) or (11a))
seems to be the most attractive starting point for inversion, since it directly
relates the scattered wave field to the medium contrast parameters AK and Ap.
This representation is particularly suited for media which consist of a smooth
background, with /ocal inhomogeneities superimposed on it. Therefore, two-way
volume integral representations find wide applications in medical imaging and
(to a lesser extent) in non-destructive testing of construction materials. For
seismic inversion, however,this representation is less suited, which is best
illustrated by the example in Fig. 2b. Since in seismic reflection experiments the
boundaries between the different layers are the main cause for scattering, the
boundary integral representations provide a more appropriate starting point for
seismic inversion. A complication of the two-way boundary integral
representation (equation (8a)) is that the reflection coefficient is not an intrinsic
medium property since it depends on the acquisition geometry as well.
Moreover, it is implicitly assumed that the overburden is relatively simple so
that the incident and scattered waves are characterized by a unique angle at each
point on the reflector. The one-way boundary integral representation (equation
(16a)) does not have these shortcomings and is therefore an excellent starting
point for seismic inversion. The pros and cons of the various representations
discussed in this paper are summarized in Table 1. It is interesting to note that,
for the boundary integral methods, P and P* in the two-way representation play
the same role as P* and P~ in the one-way representation. Actually, equation
(8a) can be seen as a simplified version of (16a): replacing in (16a) the
reflection operator by a reflection coefficient yields (8a). Use of G or W
depends on the type of source (monopole or dipole)} and reflection operator
(pressure to velocity or pressure to pressure). Fokkema et al. (1993) generalize
(14) to curved interfaces.

In part II of this paper (next issue) a one-way volume integral
representation will be derived that holds for inhomogeneous fluids and solids
and that accounts for internal multiple scattering (and wave conversion). In that
representation the contrast function is proportional to the vertical variations of
the medium parameters so that for the situation of a single reflector the volume
integral again reduces to a boundary integral.
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Table 1. Pros and cons of the various representations with respect to their application in seismic

inversion.
TWO-WAY ONE-WAY
P=P' +P° P=P" + P
equation (8a) equation (16a)

' boundary Pro: integration over a boundary Pro: integration over a boundary
integral Con: R depends on acquisition Pro: R* independent of acquisition
methods geometry geometry

s

equation (11a)
volume Con: integration over a volume ?
integral Pro: AK and Ap independent of (Sce part 1D
methods acquisition geometry
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