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ABSTRACT

Wapenaar, C.P.A., 1993. Representations of seismic reflection data. Part II: New developments.
Journal of Seismic Exploration, 2: 247-255.

We present reciprocity and representation theorems for one-way wave fields. The latier
thcorem is the basis for the derivation of the one-way volume integral representation of seismic
reflection data. Its properties are compared with the representations discussed in Part I of this paper.
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INTRODUCTION

In Part I of this paper (Wapenaar and Berkhout, 1993) we discussed
two-way boundary and volume integral representations as well as a one-way
boundary integral representation of seismic reflection data. Here we show step
by step how to arrive at a one-way volume integral representation, which fully
accounts for internal multiple reflections. The applications in seismic inversion
will be briefly indicated. For detailed derivations we refer to two papers on
reciprocity and representation theorems for one-way wave fields (Wapenaar,
1993a, 1993b; hereafter referred to as paper A and paper B, respectively).
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ONE-WAY WAVE EQUATION

We denote the Cartesian coordinate vector by x = (x,y,z) and the angular
frequency by w. In the x,w-domain the one-way wave equation reads

AP(x)/0z = B(x)P(x) + S(x) , (1)

(the parameter  is omitted for notational convenience). Here the one-way wave
vector P contains the downgoing and upgoing wave fields P* and P,
respectively, according to

P(x) = (x) . (2)

In the acoustic situation P* is a scaled version of the downgoing /
upgoing acoustic pressure; in the full elastic situation P* contains the three
wave-types qP*, qST and qS3. The one-way source vector S is defined in a
similar way as P in equation (2). B is a2 x 2 (acoustic) or 6 x 6 (elastic)
pseudo-differential operator matrix (it contains the operators 3/dx and 8/dy, see
paper A; for a discussion about its existence in the acoustic situation, see de
Hoop, 1992). It is expressed in terms of the (block-} diagonal operator matrix
A and a non-diagonal coupling operator matrix A,, according to

B(x) = —joA(x) + Aj(x) , 3)
where
At O T R-
A= and A, = . (4a,b)
O A" -R* -T-

The generalized vertical slowness operators A* and A~ essentially govern
the propagation of the downgoing and upgoing waves, respectively. The
transmission operators T* and T~ as well as the reflection operators R* and R~
govern the scattering of the various wave types. These operators are
proportional to the vertical derivative d/0z of the medium parameters. They
vanish in any region where the medium parameters do not vary with depth.

RECIPROCITY OF ONE-WAY WAVE FIELDS

In general, a reciprocity theorem interrelates the quantities that
characterize two admissible physical states that could occur in one and the same
domain in space-time (de Hoop, 1988; Fokkema and van den Berg, 1993). Here
we introduce the reciprocity relations for one-way wave fields. The two
different states (i.e., wave fields, sources and medium parameters) will be
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distinguished by the subscripts A and B. We consider the interaction between
downgoing waves in one state and upgoing waves in the other and vice versa
(Fig. 1). To be more specific, we consider the interaction quantity

PPy — (PP, (5)

where T denotes transposition (modified after Berkhout and Wapenaar, 1989).
To simplify the notation we rewrite the interaction quantity as

O 1
PINP, , withN = . (5)
-1 O
interaction interaction
r,J\ r,/\

Ap; (P; )'I‘T lPB'

B Ve — S

(Py)?

no interaction

Fig. 1. Both terms of the interaction quantity (5) contain waves that propagate in opposite directions.

Applying the operator 0/0z to this quantity and using the one-way wave
equation (1) yields the local reciprocity relation, according to

(8/9z) (PINP,) = PINByP; + (B,P,)'"NP;, + PINS, + SINP, . (V)

It would be useful if the right-hand side could be reorganized such that
it contains a term proportional to B, — B,, which vanishes when the medium
parameters in both states are identical. This reorganization appears to be
possible by integrating both sides of equation (7) over a volume V, ‘enclosed’
by two infinite horizontal surfaces, denoted by dV, with outward pointing
normal vector n = (0,0,n,), see Fig. 2. The result of this integration is the
global reciprocity relation, given by

f (PINPg )nd’x =
av

| PIN®, - BOPPx + [ PINS, + SINP,)d'x . (8)
A\ \'4
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X
JdV n=(0,0,-1
¥ T
z
1%
dV l n=(0,0,1)

Fig. 2. The configuration for the global reciprocity thcorem.

For details of the derivation see paper A. As an illustration we consider
a special situation. We choose identical medium parameters in both states so that
the first volume integral vanishes. Moreover, we choose the medium outside 0V
scatter-free (i.e., A, = O) and source-free. Now it is easily seen that the
interaction quantity (5) vanishes at @V and so does the left-hand side of equation
(8). We consider the acoustic (i.e., scalar) situation and we choose point sources
for the downgoing waves at x, and xg in V, according to S} = 8(x - x,) and
S = 6(x — x;) and we set the sources for the upgoing waves equal to zero.
Now equation (8) yields

Pi(x,) = Pr(xy) . 9)

This equation formulates the property that sources for downgoing waves
and receivers for upgoing waves are interchangeable, see Fig. 3. Hence, when
seismic data are decomposed into one-way responses, their reciprocity properties
are fully preserved. A more general formulation of equation (9) will be given
in the next section.

Pgixy) Sg(xp) Shilxs) Py(xp)
*

Fig. 3. Reciprocity of decomposed seismic data.
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GREEN’S ONE-WAY WAVE FIELD MATRIX

We introduce a (2 X 2 or 6 X 6) Green’s matrix G which satisfies the
following one-way wave equation

0G/oz = BG + Is(x — x,) , (10)

where B is the pseudo-differential operator matrix defined in some reference
medium. The (2 or 6) columns of G = G(x,x,) represent (2 or 6) independent
Green’s one-way wave fields at observation point x, related to (2 or 6)
independent one-way sources at source point x,. G may be partitioned as
follows
G+,+ G+,—
G(x»xA) = (x’xA) , (11)
G™* G

where the superscripts refer to the propagation direction at x and x,,
respectively. Let G(x, x, ) play the role of state A in equation (8) and let a
similar matrix G(x, xg) play the role of state B. Then a similar exercise as in
the previous section yields the following reciprocity relation

G(x,,xz) = =N'G"(x4,x, )N (12)

which is a generalization of equation (9).

REPRESENTATION OF ONE-WAY WAVE FIELDS

Consider a one-way wave vector P(x) related to a one-way point source
Sy(x)8(x — xg), with xgin V. Our aim is to find a representation for P(x, ),
with detector point x, in V. To this end we let a Green’s matrix G(x, x;,) play
the role of state A in equation (8) and we let P(x) play the role of state B.
Using relation (12) as well, we obtain

P(xp) = Glxp,x6)85(xs) — | Glxp, )P(x)n,dx
oV

+ [ Glaxp, B - BxIP(Px | (13)

where B and B are the operator matrices for P in the true medium and for G
in the reference medium, respectively (see also paper B). Note the analogy with
equation (3) in Part I. In the remainder of this paper we let V span the entire
space so that the boundary integral vanishes.




252 WAPENAAR

PRIMARY REPRESENTATION

For the reference operator we choose B = —jwA, hence B — B = A,
Since A is a (block-) diagonal operator matrix (in the true medium), G will also
get a (block-) diagonal structure, according to

w, O
G(x,x5) = (x,xs) . (14)
o -w,

We refer to W, and W, as the extrapolation operators for the primary
downgoing and upgoing waves in the true medium. Note that W (x,x5) =
[W: (x5, x)]", on account of equation (12). Also note that W (x,xs) = O for
z <zg5. We replace P(x) in the right-hand side of equation (13) by the ‘incident’
one-way wave vector, defined as P'(x) = G(x, xg)S,(xg). Hence

P(x,) = Pl(xp) + P(xp) (15)
with

P(xy) = | Glxp, DA(0G(x, x5)So(x5)d x . (16)

Note the similarity with the two-way volume integral representation, given
by equation (11a) in Part I. However, the difference becomes clear if we
compare the contrast function A in the two-way representation (equation 11b in
Part I) with the contrast operator A, in the one-way representation, see Fig. 4.
Remember that A, is proportional to the vertical derivative of the medium
parameters. Hence, for the special situation of a single interface between two
homogeneous half-spaces, the one-way representation reduces to a boundary
integral (unlike the two-way representation). Next consider another special
situation for which §; = O. We now easily find from equations (2), (4b), (14)
and (16)

P (xy) = | Wilxp, R (OW?(x, x5)85 (x5)d'x (17)
v
or, upon introducing the kernel R*(x,x’) of R*(x),

P (xp) = | | Wilxp OR (x,x)Wi(x', xS} (x)d2x'd*x ,  (18)

where X is a horizontal surface defined by z' = z. Note the similarity with the
one-way boundary integral representation, given by equation (16) in Part I. In
the next section we generalize this primary representation so that internal
multiple reflections are taken into account.
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Fig. 4. (a) Vertical cross-scction of one medium parameter (mass density) for the situation of a
single interface at z,,. (b) Contrast function for the two-way volume integral representation (equation
11, Part I of this paper). (c) Contrast operator for the one-way volume integral representation
(equation 16).

GENERALIZED PRIMARY REPRESENTATION
For the reference operator we write (see paper B)
B(x|z') = —joA(x) + Hz' -2)Al(x) , (19)

where H(z) is the Heaviside step function. Hence, B(x|z’) applies to a
configuration that is identical to the true medium for the upper half-space z < z’
and that is scatter-free for the lower half-space z>z’. We let B(x|z') govern
a Green’s matrix G{x, xs|z’) and we let a similar operator B(x|z") govern a
reference wave vector P(x|z"). Note that P(x| — o) = P'(x) and P(x| =) =
P(x). Now instead of equation (13) we may write

P(xp|2") = P(xp|2) = [ Glxp,x|2){B(x|2") - B(x|z)}P(x|z")d’x . (20)

Next we choose z” = z' + dz’ and we take the limit for dz' = 0. We
thus obtain

{0P(xp |20z = [ Glxp, x|2){0B(x|2) 0z’ }P(x|2)d x . (1)
A\

Using equation (19) the right-hand side of eq. (21) reduces to a surface
integral. Integrating both sides with respect to z’ from — e to e and omitting
the primes in the result again yields equations (15) and (16}, with G(xp,x) and
G(x, xg) replaced by G(xp,x|z) and G(x, xg|z), respectively. However, unlike
in the previous section, no approximations have been made in this section.

GP2 2/3-5
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We now consider the configuration of Fig. 5, in which the upper
half-space z < 2z, is homogeneous. We choose xg and x;, in this upper
half-space, so that for z > z; we may write

W, O
G(x,xg|2) = (x,x5) , (22a)
0 O
and
0] (0]
G(xp,x|2) = (xp, %) (22b)
o -w,

see Fig. 5. We refer to W, and W as the extrapolation operators for the
generalized primary downgoing and upgoing waves, respectively (conform with
Hubral et al. (1980) and Resnick et al. (1986), who used this term for 1-D
waves through finely layered 1-D media). Note that these operators account for
internal multiple scattering occurring in the region between z, and z, whereas
reflections from the region below z are excluded. Finally, if we consider again
the special situation that §; = O, we obtain, in a similar way as in the previous
section:

P_(XD) = J. J- W;(xl),x)R_'—(x’x’)W.;(xl,xS)S-B(xS)d2x1d3x , (23)
vV %
see again Fig. 5.
./'z.(::.moéénebu.s‘ 'jis"(:rzfrdpié .
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Fig. 5. Generalized primary representation.
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CONCLUSIONS

In Part 1 of this paper we noted that in seismic reflection experiments the
boundaries between the different layers are the main cause for scattering; as a
consequence, the two-way volume integral representation is not very well suited
as a starting point for seismic inversion (see Fig. 2b in Part I as well as Fig. 4b
in Part II). The one-way volume integral representations, derived in this paper,
have the attractive property that the contrast function vanishes in regions where
the medium parameters do not vary with depth (see Fig. 4c). As a consequence,
these representations relate the registered upgoing wave field directly to the
reflection properties of the boundaries between the different layers. Therefore,
these representations provide an excellent starting point for seismic inversion
[after decomposition (Wapenaar et al., 1990} and surface-related multiple
elimination (Verschuur et al., 1992)]. This is particularly true for the
generalized primary representation (23) since it fully accounts for internal
multiples and wave conversions, whereas its format is just as simple as the
primary representation (18). Hence, by properly inverting the generalized
primary operators W, and W, one may even account for the complicated
anisotropic dispersion effects due to fine layering (see paper B and Wapenaar
and Herrmann, 1993).
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