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ABSTRACT

wapenaar, C.P.A., Slot, R.E. and Herrma.rm, F.J., 1994. Towards an eÍended macro model, that
takes fioe-layering into accovnt. Joumal oI Seísnic Exploration, 3: 5-260.

Current macro models ignore the effect of finelayering. The main effect of fine-layering on
wave propagation is an angle{ependent dispcrsion of the transmitted wave field. In this paper it is
shown that for a 1-D finely layered medium thcse effects can be mimicked by letting the wave ficld
propagate through a iomogeneous anivÍropic medium with anelastic losses. The match between the
true and the mirnicked response is good up to a propagation angle of 45 degrees. For structurally
complex media aí exten.led macro modcl is proposcd, in which frequency{ependent (complex)

phase velocities cv and cH are assigned to cach macro layer.

KEY WORDS: macro model, fineJayering, dispersion, anisotropy, anelastic losses,
angledependency.

INTRODUCTÍON

The main process in seismic migration is the elimination of propagation
effects from the seismic data. Usually these propagation effects are quantified
by a macro model, which contains the main geological boundaries in the
subsurface and the average velocities (and densities) between these boundaries.
The effects of fine-layering on wave propagation are ignored altogether.
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In the seismic literature (O'Doherty and Anstey, 1971; Burridge and
Chang, 1989; Folstad and Schoenberg, 1992\ as well as in our consonium
project DELPHI (Herrmann and Wapenaar, 19921, a lot of atenrion is paid to
the theory of wave propagation through finely layered media. These studies
show thal internal multiple scattering in a finely layered medium effectively
results in an angle-dependent díspersion of the transmitted wave field. In this
pap€r we investigate whether it is possible to replace a finely layered medium
by a homogeneous anisotropic medium with anelastic losses in such a way that
the transmission response of this replacement medium is effectively the same as
the transmission response of the original finely layered medium. The ultimate
aim is to generalize the results of this paper for the development of 2-D or 3-D
'extended macro models'. By choosing for each macro layer a homogeneous
medium with the appropriate anisotropic anelastic losses, a wave propagating
through an extended macro model inherits the same angle-dependent dispersion
effects as a wave propagating through the true 2-D or 3-D inhomogeneous
medium with fineJayering. An extended macro model is essential for 2-D or
3-D true amplítude migration (Wapenaar and Herrmann, 1994).

The set-up of this paper is as follows: first, wave propagation through
finely layered media is briefly reviewed. Independently from this, wave
propagation through a homogeneous anisotropic medium with anelastic losses
is considered. The link between the two theories is made in the subsequent
section, where the expressions for the transmission responses of both theories
are expanded into a series. By matching the coefficients in both series
expansions lhe exlended macro model parameters are found. The theory is
illustrated with some simole examoles.

THE TRANSMISSION RESPONSE OF A FINELY LAYERED MEDITJM

We describe the transmission response of a finely layered medium in
terms of wave-field extrapolation operators in the rayparameter-frequency (p,a,;)
domain. To be more specific, for the response of a stack of layers between
depth levels zo and z^ we write

w [(z^,zoip,t t) = Wi(z.,zo:p.,o)e h^.zo;p.a\ (1)

where Wi(z.,zo;p,al) is the extrapolation operator for the primary wave,
C(z-,2";p,a) is a correction operator that accounts for the angle-dependent
dispersion effects due to the fine-layering and Wl tz-,zo:p.ro) is the extrapolation
operator for the generalized primary wave field in the finely layered medium.
We first analyze these operators for venical propagalion (p = 0) and later for
oblique propagation (p É 0).
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VeÉical propagation through a finely layered medium

The primary extrapolation operator for vertical propagation reads

W i(z^,zo;p=g,o) = exp{ - j ro <1lc> Lzl

where Àz = z^ - 4.The correction operator reads

e(z^,zo;p--O,a) = exp{ - A(.r)^z}
where

A(a.r) = (1/2)S(ar) + (1/2)jli{S(o)}

l@) =plal"
where

tt = (Ll2)vll + j tan(azl2) sign(a)l

Note that A(ro) has the following scaling properry:

^vkd 
= gr 

^@)
where p is an arbitrary scaling factor.

(2)

1í denoting the Hilb€rt transform. In equation (2), <llc> denotes the spatial
average slowness over the interval (zo,z^). In equation (4), S(ro) represents the
Fourier transform of the auto-covariance of the reflectivity as a function of
travel time (O'Doherry and Anstey, 1971). It has been observed from well logs
that in many situalions the statistics of the fineJayering are described by fractal
Brownian motion (Walden and Hosken, 1985). As a consequence, for S(rlr) in
equation (4) we may write

S(ar) = ylarl"

with0 < a <1. and

Í{S(al)} = v tan(arl2\sign(a) lal" , (6)

(Herrmann, 1991). Note that the dispersion effects are now fully parameterized
by the parameters v and a.In analogy with equation (5), we may write for A(rr.r)

(3)

(4)

(7)

(8)

(s)

(e)

Oblique propagation through a finely layered medium

The primary exrapolation operator for oblique propagation through a
finelv lavered medium reads



where p is the rayparameter and i is the layer index. Using a series expansion
of the square-root around p = 0, we easily find

' f t  roL-,zr:po\ = 
"*pt- ; ,  i  {"  , t  -  (1t2)cip2 + . . . }azJ

= exp[- jo{  <l lc> -  ( l l2)  <c>p'z + . . . }Az]  (11)
where

<1/c> = ( l l !z) lc; t4 iz,  ,  (12a)
i= l

<c> = ( l  l \z l  Lc,Az,
and

Az = L Lz,  = 1- zo

W i@^,zo;p,a), as given by equation (11), may be seen as a series expansion
around p = 0 oÍ the following expression

W;(z^,zi;p,a) = exp{ - ja cos@",, < 1/c > Az} , (13a)

where the angle @ap is related to the rayparameter p via lhe efec ve velocity c.n
of the lavered medium. accordins to

w;(a,zo;p,to'l = e*p{ -jar I 1e ,2 - p2)k az;l
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(10)

(r2b)

(lZcl

(13b)

(13c)

cos@"o = (1 - cl,p'?)h
where

ck= <c>l<l lc>

Comparing equation (13a) with equation (2), we observe that ro has been
replaced by rr; cos/a1. This is easily understood, since the apparent vertical
wavelength 1, of an oblique plane wave propagating under an angle / with the
veÍical axis is given by )," = ),lcosó, where .l is the wavelength in the
propagation direction, see Fig. 1.

- 
Instead of giving a strict derivation of the correction operator

C(z-,za:p,u\, we directly introduce the apparent frequency a-l cos{"6 in the
expression for e (z.,zo;p = 0,rr-r). We consider rwo special cases:

- Densit! contrasts onb)

In this case, the reflectivity of each interface is rndependent of the
propagation angle Q"o: r(@") = 1161. As a consequence, in the 'apparent
freouencv domain' the Fourier transform of the auto-covariance of the
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reflectivity is also independent of the propagation angle. Hence, for the
correction operator Ó(z.,zo;p,rJ) we only need to replace a.r in the
right-hand side of equation (3) by a-l cosf",,, yielding

eZ^,zo;p,a) = exp{ - A(ro cos@)Àz}

- Velocity contrasts onl!

In this case, the reflectivity of each interface depends on the propagation
angle $"6, according to r(p"ri) = r(0)/cos'z/*r (Aki and Richards, 1980).
As a consequence, in the 'apparent frequency domain' the Fourier
transform of the auto-covariance of the reflectivity should be scaled by
(llcos2{")'z. Hence, for the correction operator we now obtain

ë(z^,zn;p,a\ = exp{ - [A((.) cosp",)az / (cosoC"n)] ] (15)

Equations (14) and (15) may be seen as special cases of the more general
expressions derived by Burridge and Chang (1989).

For the series expansion in a later section, it is essential that the
/"r;-dependency is removed from A(ro cosó"J. This is easily accomplished by
using the scaling property (9), which applies to fractal Brownian motion. This
yields

e2-zn;pp\ = exp{ - A (al) (co sS.ol"- " Lzl , (1ó)

(14)

Fig. 1. The apparent vertical wdvelength of an oblique plane vave is given by À, = Àlcosó.
Accordingly, the apparent frequency is given by @ cosó.
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where
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[ 0 densiry contrasts only
n= 1

[ 4 velocity contrasts only
(r7)

A discussion for the more general situation of velocity as well as density
contrasts is straightforward, but is beyond the scope of this paper.

TI{Ë TRANSMISSION RESPONSE OF A HOMOGENEOUS AMSOTROPIC MEDII'M \ITTH
LOSSES

The basic equations for acouslic wave propagation in an anisotropic
medium read

9p = _jarMV ,

whereMisa3 x 3 mass density tensor, and

j .y = _ jaxp , (19)

where z is the compressibility. When the medium is lossy, M and z are complex
and frequency-dependent, with the constraint that their inverse Fourier
transforms are causal. Eliminating the panicle velocity vector V from equations
(18) and (19) yields the anisotropic wave equation for the acoustic pressure P,
according to

v '  (M-tvP) + xalP =0 (20)

In the following we assume that the medium is transversely isotropic
(remember that we want to mimic the response of a horizontally layered
medium). This means that for M we mav write

0 0)
QH0lo e'J

If we choose a homogeneous medium we finally obtain

(18)

Qr)
(n"

M= I  0

Io

122\

(23\

(24)

ci{ó:P + AíP} + ciAP + ar2P = 0,
where

cí = (rp")-t
and

cí = (zpu) -t
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cH and cv being the (frequency-dependent) horizontal and vertical phase
velocities, respectively. Note that the anisotropy is elliptical and that the inverse
Fourier transforms of c;2 and c;2 are causal.

In the following we consider 2-D wave propagation and we transform
equation (22) to the rayparameter-frequency domain. To this end we replace à]
by - ro'zp'z, yielding

a1i' = - (artc:/)(i, - p'cí)p
or

ê.P = +j(arlcv)(l - ptc?,\*P

The solution for downward propagation reads

P- (2.:p,<.r) = W- (z-.zo:p.rr) P- bo:p.ut
where

W*(z-,zo;p,a.r) = exp{ -j(al/cv)(l - p'zcÍ,)* Lzl

wi thAz=q-za.

SERIES EXPANSIONS OF THE TRANSMISSION RESPONSES

In this section we present series expansions of the transmission responses
of a finely layered medium and of a homogeneous anisotropic medium with
losses. By matching the coefficients in borh series expansions, the extended
macro-model parameters are found.

The transmission response of a finely layered medium

-Consider 
rhe generalized primary exrrapolarion operaror W; = W;ê,

with Wj defined in equation (13) and C in equation (16). For small p we may
write

w i2^,zo;p,a) = exp[{ -jrraz(< 1/c > + A (a-r)/ja;) } p0

+ (ll2\lja\z<c> (1 + (a-n)A(ra)/ <tlc> jr,)l p1 (29)

The transmission response of a homogeneous anisotropic medium with losses

Consider the extrapolation operator È. in a homogeneous anisotropic
medium with losses, as defined in equation (28). For small p we may write

GP2 3/t 5

251

(2s)

(26)

(27)

(28\
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W- t2.,4:p,o) = expl - joAz(l /cy)p0 + (l/2)ja;Az(ci/cu)pl (30)

Matching the coefficients

By matching the coefficients for p0 and p'z in equations (29) and (30) we
obtain the extended macro model Darameters.

- Coefficients for po:

ctr= <l lc> + A(a) l ja

- coettrcrents tor p':

cí  = <c> cu[ l  + (a-n)A(ar) l<l lc> j ,a)

Hence, the transmission response of a finely layered medium can be mimicked
by modeling the transmission response of a homogeneous anisotropic lossy
medium, in which the complex medium parameters cu and c" are given by
equations (31) and (32), respectively. In the following we refer to cu and c,, as
the parameters of the extended macro model (note that for the situation studied
so far the extended macro model consists of one homogeneous layer only).

In equation (31), the first term on the right-hand side accounts for the
primary travel time and the second term for the dispersion. A similar remark
applies to equation (32). It should be noted that when a well log is not available,
the error in the primary travel time is of the same order of magnitude as the
apparent additional rime shift due to the dispersion. However, this does not
undermine the usefulness of the extended macro model for true amplitude
migration. The aforementioned travel-time eÍTor may lead to small positioning
errors in the migrated result (similarly to when a conventional macro model
would be used), but it will not affect the amplitude. Hence, the main reason for
using the extended macro model in migration is to improve on the (angle-
dependent) amplitude of the imaged reflectors rather than on their posirioning.

EXAMPLES

In this section we illustrate the theory with a number of examples.'We
consider a horizontally layered medium consisting of 15,000 layers each with
a thickness of 10 cm. The statistics of the fineJayering are described by fractal
Brownian motion (Walden and Hosken, 1985; Herrmann, 1991). The average
velocity < c > equals 2500 m/s and the density is taken constant. The standard
deviation for the velocity is 413 m/s.

(31)

(321
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All results are presented in the rayparameter+ime (p,Í) domain for a
number of pvalues, corresponding to plane wave propagation angles, ranging
from normal incidence to 52 degrees (for clarity, in tlle figures the paxis is
labeted with f*, defined as C"ff = arccosVr$ - c?"$), see equation 13b). We
consider band-limited impulse responses; the time behaviour and spectrum of the
zero.phase bandlimited impulse (i.e., the wavelet and its spectrum) are shown
in Figs. 2 and 3, respectively.

-0.10 {.05 0
rime (s)

0.05 0.10 0.15.0.15

Fig. 2. Bandlimited irnpulse-

Fig. 3. Spectrum of the impulse in Fig. 2.
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As a first example we compare the exact transmission response, obtained
by numerical modeling in the finely layered medium, with the transmission
response of a conventional macro model (here: a homogeneous isoropic lossless
acoustic medium), that describes the finely layered medium as accurately as
possible, see Fig. 4. Equation (13) is not suited for modeling the conventional
macro-model response, because it contains two different velocities (< l/c > and
< c > ). Therefore the macro-model response was modeled with the following
oDerator

'il i -- Q^,zop,a) = exp{ -jar( < 1lc>2 - p2\\2 LzI (33)

Note that for venical propagation (p = 0) ttris operator is identical to the
primary exrapolation operator, given by equation (2) or (13).

From Fig. 4 it becomes clear that the conventional macro-model solution
is a poor estimation of the transmission response in a finely layered medium.
The dispersive attenuation effects are neglected altogether and, panicularly at
higher angles, the travel times do not match very well.

Fig. 4. Transmission Íesponses in the ralparameter-time domain of a finely layered medium: e.ract
veÍslJs mac ro -mode I íesvJns€.

17

110
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In Fig. 5 we compare the exact response with a particular version of the
gene!,lized primary operator WË = WiC, with W j de-fined by equation (10)
and C defined in equation (16), with n = 4. Hence, Wj describes the exact
primary o-perator in the true (i.e., finely layered) medium and the correction
operator C is the O'Doheffy-Anstey solution, modified for a fractal medium. In
fact this is the approach followed by Herrmann and Wapenaar (1992). From
Fig. 5 we observe that the generalized primary response matches the exact
response very well, up to high propagation angles.

The accuracy obtained with the generalized primary in Fig. 5 is fully
satisfactory. However, the aim of this paper was to propose an extended macro
model, the response of which accurately matches the exact response. The resuh
in Fig. 5 cannot be seen as a macro-model response, in panicular because the
primary operator Wi was defined in the true medium.

QetÍ

29

fio

110

oo

0.45 0.5 0.55
l ime (s)

Fig. 5. Eracl versus j'eneralbed pimary rcsponse.
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In Fig. ó we c-ompare the exact response with our extended macro-model
response, given by W*, as defined in equation (28), with cu and c" defined in
equations (31) and (32). Note that this extrapolation operator is defined in a
homogeneous anisotropic lossy macro model with complex medium parameters.
From Fig. 6 we observe that the match is quite accurate, up to a propagation
angle of 30 degrees. Beyond this angle, the travel times in panicular become
less accurate. The dispersive attenuation effecB, however, are accurate up to
higher angles and are almost just as good as in the generalized primary solution
in the previous example. This is more clearly illustrated in Fig. 7a, where we
compare the generalized primary response with the extended macro-model
response, after a removal of the primary op€rator. In Fig. 7b the extended
macro-model response is compared with the exact response, again after a
removal of the primary operator. We observe that the match is quite good up
to a propagation angle of 45 degrees. This example suggests that if we want to
improve the extended macro model, we should primarily be concerned with
finding a better approximation of the travel times.

QeÍf

44

36

29

2go

17

110

oo

Fig. 6. Eract versus ?,Írended macro-model respcnx.
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29

2go
0ett

17

2go
0eí

170

520

44

360

290

11

oo

0 0.0r 0.02 0.03
lime (s)

(a)

0 0.0r 0.02 0.03
lime (s)

(b)

Fig. 7. Transmission responses in the ralaarameter-time domain of the Íinely layered medium after
a removal of the primaiy operator. (a\ genemlized prina? (solid) versus €Jterded macro-model
response (dotted). (b) erad (solid) veÉvs extended macro-rrodel response (dored).

Finally, in Figs. 8 and 9 we compare, for two angles of incidence, the
exact response with the conventional macro-model respons€ and with the
extended macro-model response. From these figures it becomes clear that the
extended macro-model respons€ is significantly more accurate than the
conventional macro-model resDonse.

11
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Fig, 8. Normal incidence traÍsmissioo Í€6Í'onses of the finely layercd meditmi exact \t,..Til$ m4cro-
model v€fg]n extended macro-madel reígotl6€-
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CONCLUSIONS

We have shown rhat it is possible to mimic fineJayering effects by the
response of an extended macro model (so far represented by a homogeneous
anisotropic lossy medium). The examples show that the rravel timej of the
extended macro model response are accurate up to 30 degrees and that the
dispersive attenuation is mimicked accurarely up to 45 degiees. Although the
results are less accurate than those obtained with the generalized primary
operator, the extended macro model approach has some important advantages.
The extended macro model approach is not restricted Ío plane-wave responses
of horizontally layered media, and it can be easily generalized to struciurally
complex configurations, simply by assigning complex velocities cu and c,,
(equations 31 and 32) to each macro layer of a 2-D oi 3-D .conventional' macro
model. A point-source response (Green's function) can be obtained by
numerically solving wave equation (20) or (221in each macro layer (for instance
by ray tracing or finite difference modeling), imposing the appropriate boundary
conditions at the layer interfaces. When in a cenain area the iine{ayering is
tilted, this can be easily incorporated by applying coordinate rotation matrices
(containing direction cosines) to the mass-density tensor M, as defined in
equation (21).

The main application of the extended macro model will lie in the
numerical generation of (approximate) generalized primary operators for 2_D or
3-D. 

-true-amplitude 
migration in structurally complex media, containing

significant fine-layering effects (Wapenaar and Herrmann, 1994).

The main points of current research concern:

- mirnicking the fineJayering response more accurately by taking
more terms into account in the series expansions of the operators
and thus allowing a more general mathematical model for the
anisotropy of the replacemenr medium (Slot, 1994),

- accounting for 3-D heterogeneities per macro layer.
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