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ABSTRACT

Wapenaar, C.P.A., Slot, R.E. and Herrmann, F.J., 1994. Towards an extended macro model, that
takes fine-layering into account. Journal of Seismic Exploration, 3: 245-260.

Current macro models ignore the effect of fine-layering. The main effect of fine-layering on
wave propagation is an angle-dependent dispersion of the transmitted wave field. In this paper it is
shown that for a 1-D finely layered medium these effects can be mimicked by letting the wave field
propagate through a homogeneous anisotropic medium with anelastic losses. The match between the
true and the mimicked response is good up to a propagation angle of 45 degrees. For structurally
complex media an extended macro model is proposed, in which frequency-dependent (complex)
phase velocities ¢y and ¢ are assigned to each macro layer.

KEY WORDS: macro model, fine-layering, dispersion, anisotropy, anelastic losses,
angle-dependency.

INTRODUCTION

The main process in seismic migration is the elimination of propagation
effects from the seismic data. Usually these propagation effects are quantified
by a macro model, which contains the main geological boundaries in the
subsurface and the average velocities (and densities) between these boundaries.
The effects of fine-layering on wave propagation are ignored altogether.
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In the seismic literature (O’Doherty and Anstey, 1971; Burridge and
Chang, 1989; Folstad and Schoenberg, 1992) as well as in our consortium
project DELPHI (Herrmann and Wapenaar, 1992), a lot of attention is paid to
the theory of wave propagation through finely layered media. These studies
show that internal multiple scattering in a finely layered medium effectively
results in an angle-dependent dispersion of the transmitted wave field. In this
paper we investigate whether it is possible to replace a finely layered medium
by a homogeneous anisotropic medium with anelastic losses in such a way that
the transmission response of this replacement medium is effectively the same as
the transmission response of the original finely layered medium. The ultimate
aim is to generalize the results of this paper for the development of 2-D or 3-D
‘extended macro models’. By choosing for each macro layer a homogeneous
medium with the appropriate anisotropic anelastic losses, a wave propagating
through an extended macro model inherits the same angle-dependent dispersion
effects as a wave propagating through the true 2-D or 3-D inhomogeneous
medium with fine-layering. An extended macro model is essential for 2-D or
3-D true amplitude migration (Wapenaar and Herrmann, 1994).

The set-up of this paper is as follows: first, wave propagation through
finely layered media is briefly reviewed. Independently from this, wave
propagation through a homogeneous anisotropic medium with anelastic losses
is considered. The link between the two theories is made in the subsequent
section, where the expressions for the transmission responses of both theories
are expanded into a series. By matching the coefficients in both series
expansions the extended macro model parameters are found. The theory is
illustrated with some simple examples.

THE TRANSMISSION RESPONSE OF A FINELY LAYERED MEDIUM

We describe the transmission response of a finely layered medium in
terms of wave-field extrapolation operators in the rayparameter-frequency (p,w)
domain. To be more specific, for the response of a stack of layers between
depth levels z, and z,, we write

W} 20 2ip. @) = W3 (2, 20p,0) C(Z,n,203p,00) (1)

where W;(zm,zo;p,w) is the extrapolation operator for the primary wave,
C(zm,2Z;p,@) is a correction operator that accounts for the angle-dependent
dispersion effects due to the fine-layering and W; (ZysZo;p,@) is the extrapolation
operator for the generalized primary wave field in the finely layered medium.
We first analyze these operators for vertical propagation (p = 0) and later for
oblique propagation (p # 0).
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Vertical propagation through a finely layered medium
The primary extrapolation operator for vertical propagation reads
W;(Zm,zg;p=0,w) = exp{—jo <l/c> Az} , )

where Az = z, — z,. The correction operator reads

Clzy,zo;p=0,0) = exp{-Alw)Az} , (3)
where
Alw) = (1/2)S(@) +(1/2)jH{S)} , (4)

H denoting the Hilbert transform. In equation (2), <1/c> denotes the spatial
average slowness over the interval (z,,z,). In equation (4), S(w) represents the
Fourier transform of the auto-covariance of the reflectivity as a function of
travel time (O’Doherty and Anstey, 1971). It has been observed from well logs
that in many situations the statistics of the fine-layering are described by fractal
Brownian motion (Walden and Hosken, 1985). As a consequence, for S(w) in
equation (4) we may write

S = v|w|® , (5)
with 0 < a <1 and
H{S(w)} = v tan(ax/2)sign(w) |w|* (6)

(Herrmann, 1991). Note that the dispersion effects are now fully parameterized
by the parameters v and a. In analogy with equation (5), we may write for A(w)

Al =u|lo|® , (7)
where

w = (12v{1 + j tan(ax/2) sign(@)} . 8)
Note that A(w) has the following scaling property:

AQBw) = |B]* Alw) 9

where f3 is an arbitrary scaling factor.

Oblique propagation through a finely layered medium

The primary extrapolation operator for oblique propagation through a
finely layered medium reads
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W (Z,,20;p.0)

expl—jo Y. (c;2 - p)* Az} (10)
i=1

where p is the rayparameter and i is the layer index. Using a series expansion
of the square-root around p = 0, we easily find

Wt (Z,,20:p,0) = ex‘p[—ja)Z{c;‘ - (1/2)cp® + ...}1AzZ]

i=1

= exp[-jof{ <l/c> - (1/2)<c>p® + ...}Az] (11)

where =
<lle> = (IIAZ)ZC}‘Azi , (12a)

i=1
<c> = (1/Az) Y. chAz, (12b)

and = i=1
Az = ZAzi = . = Ty (12¢)
i=1

W;(zm,zo;p,m), as given by equation (11), may be seen as a series expansion
around p = 0 of the following expression

W} (2, 20;p.0) = exp{—jw cosp. < 1/c>Az} (13a)

where the angle ¢, is related to the rayparameter p via the effective velocity ¢
of the layered medium, according to

cosp = (1 = cp?)” (13b)
where

oy = <e>i<lie> . (13¢)
Comparing equation (13a) with equation (2), we observe that @ has been
replaced by o cos¢.;. This is easily understood, since the apparent vertical
wavelength A, of an oblique plane wave propagating under an angle ¢ with the
vertical axis is given by A, = A/cos¢p, where A is the wavelength in the
propagation direction, see Fig. 1.

) Instead of giving a strict derivation of the correction operator
C(zy,2;p,w), we directly introduce the apparent frequency @ cosg., in the
expression for C(z,,,z,;p=0,w). We consider two special cases:

- Density contrasts only
In this case, the reflectivity of each interface is independent of the

propagation angle ¢ r(¢.) = r(0). As a consequence, in the ‘apparent
frequency domain’ the Fourier transform of the auto-covariance of the
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reflectivity is also independent of the propagation angle. Hence, for the
correction operator C(z,,z,;p,®) we only need to replace @ in the
right-hand side of equation (3) by w cosg,, yielding

C(zz0:p.0) = exp{—Alw cosp,)Az} . (14)
- Velocity contrasts only

In this case, the reflectivity of each interface depends on the propagation
angle ¢., according to r(g,,) = r(0)/cos’p.; (Aki and Richards, 1980).
As a consequence, in the ‘apparent frequency domain’ the Fourier
transform of the auto-covariance of the reflectivity should be scaled by
(1/cos®p.)°. Hence, for the correction operator we now obtain

C(z,zo:p.@) = exp{ —[Alw cosp)Az / (cos*P)]} . (15)

Equations (14) and (15) may be seen as special cases of the more general
expressions derived by Burridge and Chang (1989).

For the series expansion in a later section, it is essential that the
¢.~dependency is removed from A(w cosg,,). This is easily accomplished by
using the scaling property (9), which applies to fractal Brownian motion. This
yields

C(z,,zy;p.0) = exp{—A(w)(cosp,)*"Az} (16)

P
g

Fig. 1. The apparent vertical wavelength of an oblique plane wave is given by A, = A/cosg.
Accordingly, the apparent frequency is given by w cosg.
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where
0 density contrasts only
n = 17)
4 velocity contrasts only

A discussion for the more general situation of velocity as well as density
contrasts is straightforward, but is beyond the scope of this paper.

THE TRANSMISSION RESPONSE OF A HOMOGENEOUS ANISOTROPIC MEDIUM WITH
LOSSES

The basic equations for acoustic wave propagation in an anisotropic
medium read

VP = —joMV (18)
where M is a 3 x 3 mass density tensor, and
V-V=—joxP , (19)

where x is the compressibility. When the medium is lossy, M and x are complex
and frequency-dependent, with the constraint that their inverse Fourier
transforms are causal. Eliminating the particle velocity vector V from equations
(18) and (19) yields the anisotropic wave equation for the acoustic pressure P,
according to

V:-M'VP) + 0P = 0 . (20)
In the following we assume that the medium is transversely isotropic

(remember that we want to mimic the response of a horizontally layered
medium). This means that for M we may write

On 0 0
M = 0 Ou 0 . (21)
0 0 oy

If we choose a homogeneous medium we finally obtain

caldiP + 9P} + cjdP + P = 0 (22)
where

ci = (g ! (23)
and

cy = woy)™' (24)
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¢y and cy being the (frequency-dependent) horizontal and vertical phase
velocities, respectively. Note that the anisotropy is elliptical and that the inverse
Fourier transforms of ¢;;? and ¢y are causal.

In the following we consider 2-D wave propagation and we transform
equation (22) to the rayparameter-frequency domain. To this end we replace 9?
by —w’p?, yielding

%P = —(?/cd)(1 - pcdP (25)

or

P = tjlwlc)(l - pcd)"P . (26)

The solution for downward propagation reads
Pt (zp.w) = W*(zn.2o:p.0) P*(zp,0) (27)
where

Wz, zoip.@) = exp{—jllc,)(1 = p’cd)” Az} (28)

with Az = 2z, — %,

SERIES EXPANSIONS OF THE TRANSMISSION RESPONSES

In this section we present series expansions of the transmission responses
of a finely layered medium and of a homogeneous anisotropic medium with
losses. By matching the coefficients in both series expansions, the extended
macro-model parameters are found.
The transmission response of a finely layered medium

Consider the generalized primary extrapolatlon operator W} W*C
with W} defined in equation (13) and C in equation (16). For small p we may
write

Wg(zm.zo;p.a)) =~ exp[{-joAz(<1/c> + A)/jo)} p°

+ (12{joAz<c>(1 + (@-nAlw)/ <lle>jw)} p?l . (29)

The transmission response of a homogeneous anisotropic medium with losses

Consider the extrapolation operator W* in a homogeneous anisotropic
medium with losses, as defined in equation (28). For small p we may write

GP2 3/3-5
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W* (z.zo;p,0) = expl—joAz(l/cy)p’ + (1/2)jwAz(ci/ey)p’] . (30)

Matching the coefficients

By matching the coefficients for p’ and p® in equations (29) and (30) we
obtain the extended macro model parameters.

- Coefficients for p’:
eyl = <lle> + Al)jo . (31)

- Coefficients for p*:

¢k = <c> o[l + (@—-nA)/<1llc>jo] . (32)

Hence, the transmission response of a finely layered medium can be mimicked
by modeling the transmission response of a homogeneous anisotropic lossy
medium, in which the complex medium parameters cy and ¢, are given by
equations (31) and (32), respectively. In the following we refer to ¢y and ¢y as
the parameters of the extended macro model (note that for the situation studied
so far the extended macro model consists of one homogeneous layer only).

In equation (31), the first term on the right-hand side accounts for the
primary travel time and the second term for the dispersion. A similar remark
applies to equation (32). It should be noted that when a well log is not available,
the error in the primary travel time is of the same order of magnitude as the
apparent additional time shift due to the dispersion. However, this does not
undermine the usefulness of the extended macro model for true amplitude
migration. The aforementioned travel-time error may lead to small positioning
errors in the migrated result (similarly to when a conventional macro model
would be used), but it will not affect the amplitude. Hence, the main reason for
using the extended macro model in migration is to improve on the (angle-
dependent) amplitude of the imaged reflectors rather than on their positioning.

EXAMPLES

In this section we illustrate the theory with a number of examples. We
consider a horizontally layered medium consisting of 15,000 layers each with
a thickness of 10 cm. The statistics of the fine-layering are described by fractal
Brownian motion (Walden and Hosken, 1985; Herrmann, 1991). The average
velocity <c> equals 2500 m/s and the density is taken constant. The standard
deviation for the velocity is 413 m/s.
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All results are presented in the rayparameter-time (p,r) domain for a
number of p-values, corresponding to plane wave propagation angles, ranging
from normal incidence to 52 degrees (for clarity, in the figures the p-axis is
labeled with ¢, defined as ¢.; = arccosy/ (1 — cZp?), see equation 13b). We
consider band-limited impulse responses; the time behaviour and spectrum of the
zero-phase band-limited impulse (i.e., the wavelet and its spectrum) are shown
in Figs. 2 and 3, respectively.

M/\

-0.15 -0.10 -0.05 0
time (s)

0.05 0.10 0.15

Fig. 2. Band-limited impulse.

0 20 40 60 80 100 120 140 160 180 200
frequency (Hz)

Fig. 3. Spectrum of the impulse in Fig. 2.
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As a first example we compare the exact transmission response, obtained
by numerical modeling in the finely layered medium, with the transmission
response of a conventional macro model (here: a homogeneous isotropic lossless
acoustic medium), that describes the finely layered medium as accurately as
possible, see Fig. 4. Equation (13) is not suited for modeling the conventional
macro-model response, because it contains two different velocities (< 1/c> and
<c¢>). Therefore the macro-model response was modeled with the following
operator

W, = (z,.20;p.0) = exp{—jo(<1/c>? - p)* Az} . (33)

Note that for vertical propagation (p = 0) this operator is identical to the
primary extrapolation operator, given by equation (2) or (13).

From Fig. 4 it becomes clear that the conventional macro-model solution
is a poor estimation of the transmission response in a finely layered medium.

The dispersive attenuation effects are neglected altogether and, particularly at
higher angles, the travel times do not match very well.

(¢
52 ﬁtﬁvm,
44
exact —y, A |« macro model
36 *"J(; &7"”
29° ﬂAf‘N =

= *’\/\f""“"
23
Deff
17° A W——

o
1

o
5.6

- | | | 1
0.35 0.4 0.45 0.5 0.55 0.6 0.65
time (s)

Fig. 4. Transmission responses in the rayparameter-time domain of a finely layered medium: exact
versus macro-model response.



EXTENDED MACRO MODEL 255

In Fig. 5 we compare the exact response with a particular version of the
generalized pnmary operator W} = W}C, with W defined by equation (10)
and C defined in equation (16), w1th n =4, Hence W+ describes the exact
primary operator in the true (i.e., finely layered) medlum and the correction
operator C is the O’Doherty-Anstey solution, modified for a fractal medium. In
fact this is the approach followed by Herrmann and Wapenaar (1992). From
Fig. 5 we observe that the generalized primary response matches the exact
response very well, up to high propagation angles.

The accuracy obtained with the generalized primary in Fig. 5 is fully
satisfactory. However, the aim of this paper was to propose an extended macro
model, the response of which accurately matches the exact response. The result
in Fig. 5 cannot be seen as a macro-model response, in particular because the
primary operator W; was defined in the true medium.

44° Y | S o -
exact ..r/\feneralized primary
o
36 e

o
29

23°

deff
(+]
17

11°

o
5.6

it

1 1 1
0.35 0.4 0.45 0.5 0.55 0.6 0.65
time (s)

Fig. 5. Exact versus generalized primary response.
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In Fig. 6 we compare the exact response with our extended macro-model
response, given by W+, as defined in equation (28), with ¢y and ¢;; defined in
equations (31) and (32). Note that this extrapolation operator is defined in a
homogeneous anisotropic lossy macro model with complex medium parameters.
From Fig. 6 we observe that the match is quite accurate, up to a propagation
angle of 30 degrees. Beyond this angle, the travel times in particular become
less accurate. The dispersive attenuation effects, however, are accurate up to
higher angles and are almost just as good as in the generalized primary solution
in the previous example. This is more clearly illustrated in Fig. 7a, where we
compare the generalized primary response with the extended macro-model
response, after a removal of the primary operator. In Fig. 7b the extended
macro-model response is compared with the exact response, again after a
removal of the primary operator. We observe that the match is quite good up
to a propagation angle of 45 degrees. This example suggests that if we want to
improve the extended macro model, we should primarily be concerned with
finding a better approximation of the travel times.

0 —4:UA'C\
52
o
al )
exact ::N -« extended macro model
(e}
36 A

29°

o
23

Oeff
o
17

11°

5.6

%%%TF

1 1 1

0.35 0.4 0.45 0.5 0.55 0.6 0.65
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Fig. 6. Exact versus extended macro-model response.
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(a) (b)

Fig. 7. Transmission responses in the rayparameter-time domain of the finely layered medium after
a removal of the primary operator. (a) generalized primary (solid) versus extended macro-model
response (dotted). (b) exact (solid) versus extended macro-model response (dotted).

Finally, in Figs. 8 and 9 we compare, for two angles of incidence, the
exact response with the conventional macro-model response and with the
extended macro-model response. From these figures it becomes clear that the
extended macro-model response is significantly more accurate than the
conventional macro-model response.
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Fig. 8. Normal incidence transmission responses of the finely layered medium: exact versus macro-

model versus extended macro-model response.
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Fig. 9. Oblique incidence (29 degrees) transmission responses of the finely layered medium: exact

versus macro-model versus extended macro-model response.
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CONCLUSIONS

We have shown that it is possible to mimic fine-layering effects by the
response of an extended macro model (so far represented by a homogeneous
anisotropic lossy medium). The examples show that the travel times of the
extended macro model response are accurate up to 30 degrees and that the
dispersive attenuation is mimicked accurately up to 45 degrees. Although the
results are less accurate than those obtained with the generalized primary
operator, the extended macro model approach has some important advantages.
The extended macro model approach is not restricted to plane-wave responses
of horizontally layered media, and it can be easily generalized to structurally
complex configurations, simply by assigning complex velocities ¢, and Ch
(equations 31 and 32) to each macro layer of a 2-D or 3-D ‘conventional’ macro
model. A point-source response (Green’s function) can be obtained by
numerically solving wave equation (20) or (22) in each macro layer (for instance
by ray tracing or finite difference modeling), imposing the appropriate boundary
conditions at the layer interfaces. When in a certain area the fine-layering is
tilted, this can be easily incorporated by applying coordinate rotation matrices
(containing direction cosines) to the mass-density tensor M, as defined in
equation (21).

The main application of the extended macro model will lie in the
numerical generation of (approximate) generalized primary operators for 2-D or
3-D true-amplitude migration in structurally complex media, containing
significant fine-layering effects (Wapenaar and Herrmann, 1994).

The main points of current research concern:

- mimicking the fine-layering response more accurately by taking
more terms into account in the series expansions of the operators
and thus allowing a more general mathematical model for the
anisotropy of the replacement medium (Slot, 1994),

- accounting for 3-D heterogeneities per macro layer.
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