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Single-sided Marchenko focusing of compressional and shear waves
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In time-reversal acoustics, waves recorded at the boundary of a strongly scattering medium are sent back into
the medium to focus at the original source position. This requires that the medium can be accessed from all sides.
We discuss a focusing method for media that can be accessed from one side only. We show how complex focusing
functions, emitted from the top surface into the medium, cause independent foci for compressional and shear
waves. The focused fields are isotropic and act as independent virtual sources for these wave types inside the
medium. We foresee important applications in nondestructive testing of construction materials and seismological
monitoring of processes inside the Earth.
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I. INTRODUCTION

In the field of time-reversal acoustics [1], waves that are
recorded at the boundary of a medium are, after time-reversal,
sent back into the medium to focus at the original source
position (Fig. 1). A favorable aspect is that, in strongly
scattering media, the backpropagated multiply scattered waves
contribute significantly to the resolution of the focal spot [2,3].
The time-reversal principle applies to any kind of wave field
that is governed by a time-symmetric wave equation. Hence,
apart from acoustic waves in lossless media, it also holds for
electromagnetic [4] and elastodynamic waves [5,6] in lossless
media. For example, time-reversed elastodynamic waves, sent
back into the medium, focus at the original source position after
an intricate interplay of backpropagating multiply scattered
and mode-converted waves.

An important underlying assumption of the time-reversal
principle is that the boundary from which the wave field is sent
back into the medium entirely encloses the medium (except
that no sources are needed at perfectly reflecting parts of the
boundary). In many practical situations the medium can be
approached from one side only. This puts severe restrictions
on the focusing aspects of the backpropagated field. The reason
is that the interplay of backpropagating multiply scattered and
mode-converted waves breaks down when a significant part of
the wave field is missing.

For scalar (i.e., nonconverted) waves in a 1D medium,
Rose [7,8] introduced a “single-sided” autofocusing method,
which only requires the reflection response at one side of the
medium as input. He showed that the focusing field to be
emitted into the medium is a δ pulse, followed by a solution
of the Marchenko equation [9,10]. Broggini and Snieder [11]
demonstrated that because the focused field is isotropic, it can
be considered as a virtual source inside the medium, at the
position of the focal point. They obtained the Green’s function
of the unknown medium between the virtual source and the
surface. A 3D extension of these concepts [12,13] has led to
new imaging methodology for single-sided scalar reflection
data [14,15].

In the next section we briefly review the time-reversal
method for elastodynamic waves at the hand of a numerical
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example using a layered medium and we indicate the
limitations of this method for single-sided focusing. Next,
we derive step-by-step a new Marchenko-type single-sided
elastodynamic focusing method, which separately focuses
compressional and shear waves at a focal point inside a layered
medium. The focused fields act as independent virtual sources
for compressional and shear waves inside the medium, of
which the responses (the elastodynamic Green’s functions)
are observed at the surface. We conclude by indicating
how this single-sided elastodynamic focusing method can be
generalized for 3D inhomogeneous media.

II. TIME-REVERSAL METHOD

We review the elastodynamic time-reversal method and its
limitations at the hand of the horizontally layered model of
Fig. 2. The propagation velocities for compressional (P ) and
shear (S) waves are indicated by cP and cS , respectively; the
mass density ρ is taken constant throughout the medium. The
numbers along the depth (z) axis represent arbitrary units (for
example, “m” for shallow geophysical applications, or “tenths
of mm” for ultrasonic applications). The half-spaces above and
below the transparent boundaries at zT = 0 and zB = 2800 are
homogeneous (subscripts T and B stand for top and bottom,
respectively).

For horizontally layered media it is convenient to decom-
pose wave fields into plane waves and analyze wave propa-
gation per plane-wave component. We define the plane-wave
decomposition of a space-dependent (x,z) and time-dependent
(t) wavefield quantity u(x,z,t) as

u(p,z,τ ) =
∫ ∞

−∞
u(x,z,τ + px)dx. (1)

Here p is the so-called rayparameter (or horizontal slowness)
and τ is a new time coordinate, usually called intercept
time [16]. The relation with the more common plane-wave
decomposition by Fourier transform becomes clear if we apply
the temporal Fourier transform,

u(ω) =
∫ ∞

−∞
u(t) exp(−jωt)dt (2)
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FIG. 1. Principle of time-reversal acoustics [1]. (a) The response
to a source at xF is represented here by the Green’s function
G(x,xF ,t). This response is observed at all x at the boundary of
the medium. (b) The time-reversed Green’s function G(x,xF , − t) is
emitted from the boundary back into the medium and focuses at xF .

(with t replaced by τ ), to both sides of Eq. (1). This gives

u(p,z,ω) =
∫ ∞

−∞
u(x,z,ω) exp(jωpx)dx. (3)

Note that the right-hand side represents a spatial Fourier trans-
form, with horizontal wavenumber kx = ωp. Each wavenum-
ber kx corresponds to a plane-wave component, of which
the propagation angle α obeys kx = k sin α, with k = ω/c,
where c may stand for cP or cS . Hence, u(p,z,ω) in Eq. (3),
and consequently u(p,z,τ ) in Eq. (1), represents for each
rayparameter p a plane wave component, with propagation
angle α obeying p = (sin α)/c.

We model the response to a source at zF = 1800 in
the medium of Fig. 2. The plane-wave response can be
obtained either by modeling the response to a point source
and decomposing it into plane waves or by transforming the
elastodynamic wave equation to the (p,z,ω) domain, solving
this equation per rayparameter p, and transforming the result
back to the (p,z,τ ) domain. We follow the latter approach;
see Ref. [17] for details. We choose a single rayparameter
p = 0.0002 s/m. In the layer containing the source, where
cP = 2500 m/s and cS = 1800 m/s, this p value corresponds
to P and S waves propagating under angles αP = 30o

and αS = 21o, respectively. Figures 3(a) and 3(b) show the
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FIG. 2. Horizontally layered model.

responses to P - and S-wave sources, respectively, in the
(p,z,τ ) domain for the chosen rayparameter p = 0.0002 s/m.
Here the horizontal axes denote intercept time (τ ), displayed
in arbitrary units (for example, “s” for shallow geophysics,
or “tenths of ms” for ultrasonics). The right halves of the
figures represent positive time (τ > 0). The figures show a
superposition of flux-normalized P and S waves; superscripts
+ and − stand for downward and upward propagation, respec-
tively. The relation between these flux-normalized quantities
and the measurable wave fields is discussed in Appendix A.
In Figs. 3(a) and 3(b) we clearly observe waves propagating
away from the source at zF = 1800. Note that P and S waves
propagate under different angles in these (z,τ ) diagrams, as a
result of the different propagation velocities.

In a time-reversal experiment, the wave fields recorded
at the enclosing boundary are reversed in time and sent
back into the medium from the enclosing boundary (Fig. 1).
For a horizontally layered medium the “enclosing boundary”
consists of the top and bottom boundaries, at depths zT and
zB , respectively. In our example, the wave fields recorded at
these boundaries are nothing but the first and last traces in
Figs. 3(a) and 3(b). First, we take the time reversals of the
first and last trace of Fig. 3(a), change the polarity of the
S-wave parts, and send these waves back into the medium
(actually, because this is a numerical experiment, we model
the response of the layered medium to these incident waves).
The result is shown in Fig. 4(a). The left half of the figure
represents negative time (τ < 0). The τ < 0 parts of the top
and bottom trace are the time-reversed responses that are sent
back into the medium. The τ < 0 parts of the other traces show
how the wave fields propagate through the medium, scatter at
the interfaces, and at τ = 0 focus as P waves at the dot at
zF = 1800 (the depth of the original source). The right half
of the figure represents positive time (τ > 0). We see waves
propagating away from the focal point at zF = 1800, similar
as in the P -wave source response in Fig. 3(a). Hence, the focal
point acts as a virtual source for P waves and the response at
positive time in Fig. 4(a) can be seen as the Green’s function for
a P -wave source, convolved with the P -wave source function.
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FIG. 3. (Color online) Forward modeled responses to P - and S-
wave sources.

The relation between this type of Green’s function and the
more common elastodynamic Green’s tensor is discussed in
Appendix A. Next, we take the time-reversals of the first and
last trace of Fig. 3(b), change the polarity of the P -wave parts,
and send these waves back into the medium. The result is
shown in Fig. 4(b). We see the waves focusing as S waves at
zF = 1800 and propagating away from the focal point, similar
as in the S-wave source response in Fig. 3(b). Hence, this time
the focal point acts as a virtual source for S waves and its
response can be seen as the Green’s function for an S-wave
source, convolved with the S-wave source function.

Often the medium can be approached from one side only.
This is illustrated in Fig. 5, where the same time-reversed
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FIG. 4. (Color online) Time-reversal method: two-sided
illumination.

fields as in Fig. 4 are emitted into the medium from above, but
no fields are emitted from below. Note that at τ = 0 there is
still a downgoing P wave [Fig. 5(a)] or a downgoing S wave
[Fig. 5(b)] propagating through the focal depth zF = 1800,
but in addition there are many other events that degrade the
focus quality. Moreover, there are no clear upgoing P or S

waves propagating through the focal depth at τ = 0. Hence,
for single-sided accessible media another focusing approach
is required.

Fink and coworkers [3,18,19] developed an iterative time-
reversal scheme to improve the focusing in media, which
are accessible from one side only. Their method focuses
an acoustic wave field onto the strongest scatterers in the
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FIG. 5. (Color online) Time-reversal method: single-sided
illumination.

medium. The 1D autofocusing method of Rose [7,8] and
our 3D single-sided Marchenko focusing method [12,13]
focus acoustic waves at any point inside a medium, thereby
accounting for internal multiple scattering. The 3D method
requires, apart from the measured reflection response of
the medium, an estimate of the direct waves between the
focal point and the acquisition surface. To the knowledge of
the author, the iterative time-reversal method has not been
extended for elastodynamic waves. Research to extending the
Marchenko focusing method for elastodynamic wave fields
has only started recently. Da Costa et al. [20–22] investigate
an elastodynamic extension of Ref. [12] and illustrate with
numerical experiments the advantages and limitations of their

approach. In a recent paper [23] we briefly introduce another
approach to generalize the single-sided Marchenko method
for elastodynamic waves and show that, at least in principle,
all multiply scattered and mode-converted waves are properly
taken into account. Here we discuss the latter approach more
extensively and, in particular, carefully analyze its focusing
properties. With a numerical example we show that with
single-sided focusing functions, a focusing result can be
obtained which is identical to the two-sided time-reversal result
in Fig. 4.

III. SINGLE-SIDED GREEN’S FUNCTION
REPRESENTATION

Here we derive a representation for the elastodynamic
Green’s function for P - and S-wave sources at depth zF , in
terms of the single-sided reflection response at the top bound-
ary zT . Consider an arbitrary horizontally layered lossless
medium below zT ; the half-space above zT is homogeneous. A
downward propagating wavefield vector u+(p,z,τ ) is incident
to this medium from above. Its response is an upward
propagating wavefield vector u−(p,z,τ ). These vectors contain
downward and upward propagating plane P and S waves, as
follows

u+ =
(

P +
S+

)
(p,z,τ ) and u− =

(
P −
S−

)
(p,z,τ ). (4)

The relation between these wavefield vectors and measurable
wavefield quantities is discussed in Appendix A. At zT these
wavefield vectors are related via

u−(p,zT ,τ ) =
∫ τ

−∞
R(p,zT ,τ − τ ′)u+(p,zT ,τ ′)dτ ′, (5)

where R(p,zT ,τ ) is the reflection response matrix of the
layered medium at the top boundary zT . It is partitioned as
follows:

R(p,zT ,τ ) =
(

RP,P RP,S

RS,P RS,S

)
(p,zT ,τ ). (6)

Here RX,Y (p,zT ,τ ) is the plane-wave reflection response at
zT in terms of upgoing X waves in response to downgoing Y

waves (where each of the subscripts X and Y can stand for
either P or S). At an arbitrarily chosen depth level zF (below
zT ) the response to u+(p,zT ,τ ) is denoted as u+(p,zF ,τ ) and
u−(p,zF ,τ ). These wavefield vectors are related to u+(p,zT ,τ )
via

u±(p,zF ,τ ) =
∫ τ

−∞
G±,+(p,zF ,zT ,τ − τ ′)u+(p,zT ,τ ′)dτ ′,

(7)

where G±,+(p,zF ,zT ,τ ) is a Green’s matrix, which is par-
titioned in a similar way as the reflection response matrix
R(p,zT ,τ ), hence

G±,+(p,zF ,zT ,τ ) =
(

G
±,+
P,P G

±,+
P,S

G
±,+
S,P G

±,+
S,S

)
(p,zF ,zT ,τ ). (8)

The second superscript of the Green’s matrix (+) refers to
the downward propagation direction at zT , whereas the first
superscript (±) refers to the downward (+) or upward (−)
propagation direction at zF .
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Next, we consider a reference medium, which is identical
to the actual medium above zF and reflection-free below zF .
We define a downward propagating focusing wavefield vector
f+
P (p,z,τ ), which is incident to this reference medium from the

upper half-space and focuses onto a P wave at zF at τ = 0,
hence(

δ(τ )
0

)
=

∫ τ

−∞
T(p,zF ,zT ,τ − τ ′)f+

P (p,zT ,τ ′)dτ ′, (9)

where T(p,zF ,zT ,τ ) is the transmission response matrix of the
reference medium [partitioned in a similar way as R and G±,+
in Eqs. (6) and (8)]. Similar as u+(p,z,τ ) in Eq. (4), f+

P (p,zT ,τ )
is a vector containing downgoing P and S waves. According
to Eq. (9), these waves are shaped such that their combined
responses at zF consist of only a downgoing P wave, equal to
δ(τ ). We define a second focusing wavefield vector f+

S (p,z,τ ),
which focuses onto an S wave at zF at τ = 0, according to(

0
δ(τ )

)
=

∫ τ

−∞
T(p,zF ,zT ,τ − τ ′)f+

S (p,zT ,τ ′)dτ ′. (10)

Here f+
S (p,zT ,τ ) contains downgoing P and S waves, shaped

such that their combined responses at zF consist of only a
downgoing S wave, equal to δ(τ ). Equations (9) and (10) can
be captured by one equation by combining the vectors on the
left- and right-hand sides into matrices, according to

Iδ(τ ) =
∫ τ

−∞
T(p,zF ,zT ,τ − τ ′)F+

1 (p,zT ,zF ,τ ′)dτ ′, (11)

where I is the identity matrix and F+
1 (p,zT ,zF ,τ ) is a focusing

wavefield matrix, of which the columns are formed by the
vectors f+

P and f+
S . Note that we included the focal depth zF

in the argument list of F+
1 . The upgoing response at zT to the

focusing matrix is defined as F−
1 (p,zT ,zF ,τ ). These matrices

are partitioned similar as R and G±,+ in Eqs. (6) and (8), hence

F±
1 (p,zT ,zF ,τ ) =

(
f ±

P,P f ±
P,S

f ±
S,P f ±

S,S

)
(p,zT ,zF ,τ ). (12)

Here the first subscript refers to the wave type at zT , whereas
the second subscript denotes the type of wave onto which is
focused at zF .

In Appendix B we derive the following relations between
the Green’s matrices in the actual medium, the reflection
response matrix at the top boundary of the actual medium,
and the focusing matrices in the reference medium:

G−,+(p,zT ,zF ,τ ) + F−
1 (p,zT ,zF ,τ )

=
∫ τ

−∞
R(p,zT ,τ − τ ′)F+

1 (p,zT ,zF ,τ ′)dτ ′, (13)

and

−G−,−(p,zT ,zF ,τ ) − F+
1 (−p,zT ,zF ,−τ )

= −
∫ τ

−∞
R(p,zT ,τ − τ ′)F−

1 (−p,zT ,zF ,−τ ′)dτ ′. (14)

Here G−,+(p,zT ,zF ,τ ) is the Green’s matrix, describing
the upward propagating P and S fields at zT , in response to
downward radiating virtual P and S sources at zF . Similarly,
−G−,−(p,zT ,zF ,τ ) describes the upward propagating fields
at zT , in response to upward radiating virtual sources at zF

[the minus sign in −G−,−(p,zT ,zF ,τ ) is introduced here to
compensate for the minus sign in the reciprocity relation
−G−,−(p,zT ,zF ,τ ) = {G+,+(−p,zF ,zT ,τ )}t (superscript t
denotes transposition)]. Equation (14) holds under the assump-
tion that the waves are propagating (i.e., nonevanescent) at
z = zT and z = zF [this condition does not apply to Eq. (13)].
Note that G−,+ and −G−,− together form the total response to
virtual sources at zF , similar as in the τ > 0 parts of Figs. 4(a)
and 4(b). Hence, the single-sided representation Eqs. (13)
and (14) provide the basis for an alternative to the two-sided
time-reversal method. The reflection response R(p,zT ,τ ) in
these representations is obtained from measurements at the
top boundary zT only. Once the focusing functions F+

1 and
F−

1 are known, the Green’s functions follow from Eqs. (13)
and (14).

IV. SINGLE-SIDED MARCHENKO FOCUSING: THEORY

Equations (13) and (14) can be seen as a system of two
matrix equations for four unknowns (the two focusing matrices
and the two Green’s matrices). Because of causality, the
Green’s functions are nonzero only after the arrival time of
the direct waves. The focusing functions are also nonzero
only in specific time intervals. If there were no overlap of
the time intervals in which the Green’s functions and the
focusing functions are nonzero, then the system of equations
could be solved first for the two focusing functions in their
time intervals, after which the Green’s functions would follow
from straightforward substitution of the focusing functions into
Eqs. (13) and (14). However, unfortunately the time intervals
of the focusing functions and Green’s functions do partly
overlap. In the following we discuss one possible route to
resolve the focusing functions from Eqs. (13) and (14) by
making a number of assumptions. It remains to be investigated
whether a more general approach is possible.

We start by defining the arrival time of the direct wave of
G

−,−
X,Y (p,zT ,zF ,τ ) as τ d

XY . Because P waves travel faster than
S waves, τ d

PP is the smallest direct arrival time. The direct
wave of the Green’s function G

−,−
P,P (p,zT ,zF ,τ ) propagates as

a P wave in all layers between zF and zT . This is different
for the other components of the Green’s matrix. For example,
the first arriving wave of G

−,−
S,S (p,zT ,zF ,τ ) propagates as an

S wave through the first and last layer and as a P wave in
all intermediate layers, etc. We define a time-window matrix
W(p,τ ), according to

W(p,τ ) =
(

H
(
τ d
PP − ε − τ

)
H

(
τ d
PS − ε − τ

)
H

(
τ d
SP − ε − τ

)
H

(
τ d
SS − ε − τ

)
)

, (15)

where H (τ ) is the Heaviside step function and ε a small
positive constant. Note that H (τ d

XY − ε − τ ) equals zero for
τ � τ d

XY (p), that is, at and after the first arrival at τ d
XY (p).

The Green’s function G
−,−
X,Y (p,zT ,zF ,τ ) is by definition zero

before the first arrival. Hence, the product H (τ d
XY (p) − ε − τ )

G
−,−
X,Y (p,zT ,zF ,τ ) is zero for all τ . In matrix notation this

becomes

W(p,τ ) ◦ G−,−(p,zT ,zF ,τ ) = O, (16)

where O is the null matrix and ◦ denotes Hadamard matrix
multiplication (i.e., element-wise multiplication). The first
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arrival in G
−,+
X,Y (p,zT ,zF ,τ ) arrives at or after τ d

XY (p), hence,
we also have

W(p,τ ) ◦ G−,+(p,zT ,zF ,τ ) = O. (17)

Applying the time-window matrix W(p,τ ) via a Hadamard
multiplication to both sides of Eqs. (13) and (14), using
Eqs. (16) and (17), yields

W(p,τ ) ◦ F−
1 (p,zT ,zF ,τ )

= W(p,τ ) ◦
∫ τ

−∞
R(p,zT ,τ − τ ′)F+

1 (p,zT ,zF ,τ ′)dτ ′,

(18)

and

W(p,τ ) ◦ F+
1 (−p,zT ,zF ,−τ )

=W(p,τ ) ◦
∫ τ

−∞
R(p,zT ,τ − τ ′)F−

1 (−p,zT ,zF ,−τ ′)dτ ′.

(19)

This system of equations is not yet suited to resolve the
focusing functions F+

1 and F−
1 , because parts of these functions

may be cut off by the window functions on the left-hand sides.
In the scalar version of Eq. (18), the left-hand side

W (p,τ )f −
1 (p,zT ,zF ,τ ) is equal to f −

1 (p,zT ,zF ,τ ), because
the latter function is nonzero only before the direct arrival.
In other words, the time-interval in which this focusing
function resides is complementary to the time interval in which
the Green’s function is nonzero. In the elastodynamic case,
W(p,τ ) ◦ F−

1 (p,zT ,zF ,τ ) is only equal to F−
1 (p,zT ,zF ,τ )

when the focal point (at depth zF ) is not too close to the
interface directly above it. In the following we will assume
that this condition is obeyed, hence, Eq. (18) thus becomes

F−
1 (p,zT ,zF ,τ )

= W(p,τ ) ◦
∫ τ

−∞
R(p,zT ,τ−τ ′)F+

1 (p,zT ,zF ,τ ′)dτ ′. (20)

In the scalar version of Eq. (19), the left-hand side reads
W (p,τ )f +

1 (−p,zT ,zF ,−τ ). Here the window function cuts
off precisely one event at τ d (p), the arrival time of the direct
wave of the scalar Green’s function [24]. We generalize this
for the elastodynamic situation. First note that, according to
Eq. (11), the focusing matrix F+

1 (p,zT ,zF ,τ ) is the inverse
of the transmission response matrix T(p,zF ,zT ,τ ) of the
reference medium (which, between zT and zF , is equal to
the actual medium). Hence,

F+
1 (p,zT ,zF ,τ ) = Tinv(p,zF ,zT ,τ ). (21)

We rewrite the right-hand side as a superposition of two terms,
according to

F+
1 (p,zT ,zF ,τ ) = Tinv

fs (p,zF ,zT ,τ ) + M+(p,zT ,zF ,τ ), (22)

where Tinv
fs (p,zF ,zT ,τ ) is the inverse of the “forward-

scattering” transmission response matrix Tfs(p,zF ,zT ,τ ), i.e.,
the part of the transmission response that includes direct
and forward converted waves, but no internal multiples.
M+(p,zT ,zF ,τ ) represents the scattering coda [i.e., everything
that is not included in Tinv

fs (p,zF ,zT ,τ )]. Our previous analy-
sis [23] shows that the window function in Eq. (19) cuts off

the direct and forward converted waves, hence

W(p,τ ) ◦ F+
1 (−p,zT ,zF ,−τ ) = M+(−p,zT ,zF ,−τ ). (23)

Equation (19) thus becomes

M+(−p,zT ,zF ,−τ )

= W(p,τ ) ◦
∫ τ

−∞
R(p,zT ,τ − τ ′)F−

1 (−p,zT ,zF ,−τ ′)dτ ′.

(24)

Using Eq. (22), Eq. (20) becomes

F−
1 (p,zT ,zF ,τ )

= F−
1,0(p,zT ,zF ,τ )

+ W(p,τ ) ◦
∫ τ

−∞
R(p,zT ,τ − τ ′)M+(p,zT ,zF ,τ ′)dτ ′,

(25)

with

F−
1,0(p,zT ,zF ,τ )

= W(p,τ ) ◦
∫ τ

−∞
R(p,zT ,τ − τ ′)Tinv

fs (p,zF ,zT ,τ ′)dτ ′.

(26)

Equations (24) and (25) form a system of elastodynamic
Marchenko equations for the focusing matrix F−

1 (p,zT ,zF ,τ )
and the scattering coda M+(p,zT ,zF ,τ ) of the focusing
matrix F+

1 (p,zT ,zF ,τ ). These equations can be solved by the
following iterative Marchenko scheme:

M+
k (p,zT ,zF ,−τ )

= W(p,τ ) ◦
∫ τ

−∞
Rt (p,zT ,τ − τ ′)F−

1,k(p,zT ,zF ,−τ ′)dτ ′

(27)

and

F−
1,k+1(p,zT ,zF ,τ )

= F−
1,0(p,zT ,zF ,τ )

+W(p,τ ) ◦
∫ τ

−∞
R(p,zT ,τ − τ ′)M+

k (p,zT ,zF ,τ ′)dτ ′,

(28)

with F−
1,0(p,zT ,zF ,τ ) again defined by Eq. (26). The scheme

starts with k = 0.
Assuming the reflection response matrix R(p,zT ,τ ) is

available from single-sided reflection experiments at the top
boundary zT , and assuming an estimate of the forward-
scattering transmission response matrix Tfs(p,zF ,zT ,τ ) is
available to initiate the scheme [Eq. (26)], this iterative
scheme will give the focusing matrix F−

1 (p,zT ,zF ,τ ) and
the scattering coda M+(p,zT ,zF ,τ ) of the focusing matrix
F+

1 (p,zT ,zF ,τ ). Substituting the results into Eqs. (22), (13),
and (14) finally gives the Green’s matrices G−,+(p,zT ,zF ,τ )
and −G−,−(p,zT ,zF ,τ ).

Note that until now we have assumed that the half-space
above the top boundary zT is homogeneous. In other words,
the boundary at zT is considered to be a transparent boundary.
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In many cases the top boundary is a free boundary. This free
boundary acts as a total reflector for waves coming from below
and gives rise to so-called surface-related multiple reflections
and conversions (to be distinguished from internal multiple
reflections and conversions). Two approaches can be followed
to deal with these surface-related effects. One approach
is to eliminate the surface-related multiple reflections and
conversions from the reflection response by a well-established
process [25–27], after which the response is the same as
in a medium with a transparent top boundary zT and a
homogeneous upper half-space. Hence, after this process the
conditions are as described at the beginning of Sec. III, which
implies that the iterative method described in this section can
be followed without further modifications. Another approach
is to modify the representations in Sec. III to account for
the free-surface boundary conditions and adjust the iterative
scheme in this section accordingly. This approach is pursued
for acoustic waves in Ref. [28]. For elastodynamic waves this
approach is currently under investigation. For the numerical
example in the next section it is assumed that the top boundary
zT is transparent, so that the scheme discussed in this section
can be applied without modification.

V. SINGLE-SIDED MARCHENKO FOCUSING:
NUMERICAL EXAMPLE

We illustrate the iterative Marchenko scheme for the
horizontally layered medium of Fig. 2. We model the reflection
response matrix R(p,zT ,τ ) via the (p,z,ω) domain for a
single rayparameter p = 0.0002 s/m [17]. This represents the
elastodynamic reflection data, measured at the surface zT = 0.
Furthermore, we model the “forward-scattering” transmission
response matrix Tfs(p,zF ,zT ,τ ) of the medium between
zT = 0 and zF = 1800; multiples are excluded in this mod-
eling process. In practice this transmission response matrix
could be modeled in an estimated model of the medium
between zT and zF . The sensitivity with respect to errors in this
model needs to be further investigated. It is expected that the
requirements for a model that explains only forward scattering
are less severe than the requirements for a model that explains
forward and backward scattered multiple reflections. Here we
assume that the medium between zT and zF is known, so
that we can investigate the performance of the elastodynamic
Marchenko scheme under ideal circumstances.

The τ < 0 part of the top trace in Fig. 6(a) shows the fo-
cusing function F+

1 (p,zT ,zF ,τ ) obtained from R(p,zT ,τ ) and
Tfs(p,zF ,zT ,τ ) after four iterations of the Marchenko scheme
[Eqs. (27) and (28)]. To be more specific, it shows the superpo-
sition of the elements f +

P,P (p,zT ,zF ,τ ) and f +
S,P (p,zT ,zF ,τ )

in the left column of F+
1 , i.e., the downward propagating P

and S waves at zT = 0, giving rise to a P -wave focus at zF .
These focusing functions are emitted into the real medium
(actually, in this numerical experiment we model the response
of the medium to these focusing functions). Figure 6(a) shows
how this complex wave field propagates through the medium
and, unlike in Fig. 5(a), causes a well-defined P -wave focus
at τ = 0 and zF = 1800. The focal point acts as a virtual
source for downgoing P waves, which, after propagation and
scattering, reach the top surface zT in the form of upgoing P

and S waves [the left column of G−,+(p,zT ,zF ,τ ) in Eq. (13)].

τ

z

S+ P+P+

S+

S+

τ

z

P+S+

P+

P+

(a)

(b)

FIG. 6. (Color online) Illumination of actual medium from above
by F+

1 .

Figure 6(b) shows a similar exercise, this time with the right
column of F+

1 emitted from zT into the medium. This yields
an S-wave focus at zF = 1800, which acts as a virtual source
for downgoing S-waves. After propagation and scattering, this
finally results in upgoing P and S waves at the top surface zT

[the right column of G−,+(p,zT ,zF ,τ ) in Eq. (13)].
Compared with the virtual P and S wave sources obtained

with the two-sided time-reversal method (Fig. 4), the results
in Fig. 6 still lack virtual sources for upgoing P and S waves.
Equation (14) suggests to emit the time-reversal of −F−

1 (for
opposite rayparameter) from zT into the medium, which gives
−G−,−(p,zT ,zF ,τ ), i.e., the response to a virtual source for
upgoing waves at zF . Figure 7 shows the effect of emitting
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τ

z

P+S+

τ

z

S+ P+P+

(a)

(b)

FIG. 7. (Color online) Illumination from above by F+
1 and the

time-reversal of −F−
1 .

the superposition of F+
1 and the time-reversal of −F−

1 into the
medium. The interpretation of this figure is difficult because
of the many superposed functions. To simplify this we follow
a similar procedure as Broggini and Snieder [11] proposed for
the scalar case. From Eqs. (13) and (14) it follows that the
trace at zT in Fig. 7 consists of (in simplified notation)

H(p,τ ) = F+
1 (p,τ ) + F−

1 (p,τ ) + G−,+(p,τ ) − F−
1 (−p,−τ )

− F+
1 (−p,−τ ) − G−,−(p,τ ). (29)

Note that this expression contains the illuminating fields on
the right-hand sides as well as their responses on the left-hand
sides of Eqs. (13) and (14). If we combine H(p,τ ) with its

τ

z

S+ P+

S−

S+ S−

S+

P+

τ

z

P+

P−

P+P−

P+

S+(a)

(b)

FIG. 8. (Color online) Superposition of Fig. 7 and its time-
reversal.

time-reversal (for opposite rayparameter), we obtain

H(p,τ ) + H(−p,−τ ) = G(p,τ ) + G(−p,−τ ), (30)

with

G(p,τ ) = G−,+(p,zT ,zF ,τ ) − G−,−(p,zT ,zF ,τ ). (31)

Hence, with this simple operation the focusing functions are
removed, leaving the Green’s function and its time-reversal.
Applying this operation to all traces in Fig. 7(a) yields Fig. 8(a).
Note that the τ > 0 part clearly shows the response to a virtual
source at zF , radiating downgoing and upgoing P waves into
the medium. Applying the same process to all traces in Fig. 7(b)
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k

Er
ro
r

FIG. 9. Error as a function of the iteration number.

yields a virtual source at zF for downgoing and upgoing S

waves, Fig. 8(b).
Figure 8 is indistinguishable from Fig. 4. However, whereas

Fig. 4 was obtained by emitting time-reversed fields from
two sides into the medium, Fig. 8 has been obtained from
the reflection response matrix R(p,zT ,τ ) at the top surface
and the focusing functions F+

1 and F−
1 which, in turn, have

been obtained from R(p,zT ,τ ) and the forward-scattering
transmission response matrix Tfs(p,zF ,zT ,τ ).

We conclude this section by evaluating the error as a
function of the iteration number. We compute the averaged
absolute difference between the retrieved and the directly
modeled Green’s function at zT (averaged over time and the
components of the Green’s matrix). The error is defined as
this averaged difference, divided by the absolute maximum
value of the directly modeled Green’s function. Figure 9 shows
this error as a function of the iteration number k. Note that
the scheme converges rapidly. After four iterations no further
improvement is obtained.

VI. EXTENSION TO 3D INHOMOGENEOUS MEDIA

We briefly indicate the steps needed to extend the method
discussed here for 3D inhomogeneous media. In Ref. [23] we
derived the following 3D version of the single-sided Green’s
function representation

G−,+(x′′
T ,x′

F ,t) + F−
1 (x′′

T ,x′
F ,t)

=
∫

∂DT

dxT

∫ t

−∞
R(x′′

T ,xT ,t − t ′)F+
1 (xT ,x′

F ,t ′)dt ′ (32)

and

−G−,−(x′′
T ,x′

F ,t) − F+
1 (x′′

T ,x′
F ,−t)

= −
∫

∂DT

dxT

∫ t

−∞
R(x′′

T ,xT ,t − t ′)F−
1 (xT ,x′

F ,−t ′)dt ′.

(33)

Here ∂DT denotes the top boundary z = zT of a 3D inhomoge-
neous medium below a homogeneous half-space. Coordinates
at this top boundary are denoted as xT = (x,y,zT ). Similarly,
x′

F = (x ′,y ′,zF ) denotes the coordinates of a focal point at
depth z = zF . R(x′′

T ,xT ,t) is the 3D reflection response matrix
at zT . It is a 3×3 matrix, in which the different columns
correspond to the different sources at xT for downgoing P

and S waves (the latter for two different types of polarization).
The different elements within the columns correspond to the

different upgoing P and S waves at x′′
T . F±

1 (xT ,x′
F ,t) is a

similarly organized 3×3 matrix, containing the downgoing
(+) and upgoing (−) parts of the focusing functions at xT ,
which focus to P and S waves at x′

F (the first column focuses
to a P wave, the second and third columns focus to two types
of S waves). G−,±(x′′

T ,x′
F ,t) is a 3×3 Green’s matrix. Here

the different columns correspond to different types of virtual
sources at x′

F for downgoing (+) and upgoing (−) waves, of
which the responses are observed as upgoing waves at x′′

T .
The underlying assumption of Eqs. (32) and (33) is that the
medium is lossless. Moreover, for Eq. (33) it is assumed that
evanescent waves can be neglected at z = zT and z = zF .

Similar as in Eqs. (13) and (14), the Green’s functions
and focusing functions on the left-hand sides of Eqs. (32)
and (33) partly overlap each other in the time domain. Here
we discuss one possible way to deal with this overlap by
removing the Green’s functions from these equations and solve
the remaining system of equations for the focusing functions.
To this end, a 3×3 window matrix W(x′′

T ,x′
F ,t) is defined,

containing Heaviside step functions H [tdXY (x′′
T ,x′

F ) − ε − t],
where tdXY (x′′

T ,x′
F ) is the traveltime of the first arrival of

G
−,−
X,Y (x′′

T ,x′
F ,t). Applying this window matrix to the Green’s

matrices gives

W(x′′
T ,x′

F ,t) ◦ G−,±(x′′
T ,x′

F ,t) = O. (34)

Moreover, assuming the focal point is not too close to the
interface directly above it, we have

W(x′′
T ,x′

F ,t) ◦ F−
1 (x′′

T ,x′
F ,t) = F−

1 (x′′
T ,x′

F ,t). (35)

Analogous to Eq. (22), we write F+
1 (x′′

T ,x′
F ,t) as

F+
1 (x′′

T ,x′
F ,t) = Tinv

fs (x′
F ,x′′

T ,t) + M+(x′′
T ,x′

F ,t), (36)

where Tinv
fs (x′

F ,x′′
T ,t) is the inverse of the forward-scattering

transmission response matrix Tfs(x′
F ,x′′

T ,t). The latter matrix
contains not only the direct and forward converted waves
of the full transmission response matrix, but also triplicated
waves in case of multipathing [13]. M+(x′′

T ,x′
F ,t) in Eq. (36)

represents all other scattering events, which are not included
in Tinv

fs (x′
F ,x′′

T ,t). Applying the window matrix to the time-
reversal of F+

1 (x′′
T ,x′

F ,t) gives

W(x′′
T ,x′

F ,t) ◦ F+
1 (x′′

T ,x′
F ,−t) = M+(x′′

T ,x′
F ,−t). (37)

Keep in mind that, like in the 3D scalar case, Eqs. (34)–(37)
are not guaranteed to hold under all circumstances. In the fol-
lowing we only consider situations for which these equations
hold. This is the case, for example, at finite horizontal distances
in layered media with moderately curved interfaces [12,13],
assuming a focal point not too close to the interface above it.

Applying the window matrix W(x′′
T ,x′

F ,t) to Eqs. (32)
and (33), using equations (34)–(37) and rewriting the resulting
equations into an iterative scheme, gives

M+
k (x′′

T ,x′
F ,−t)

= W(x′′
T ,x′

F ,t) ◦
∫

∂DT

dxT

∫ t

−∞
R(x′′

T ,xT ,t − t ′)

× F−
1,k(xT ,x′

F ,−t ′)dt ′ (38)

063202-9



KEES WAPENAAR PHYSICAL REVIEW E 90, 063202 (2014)

and

F−
1,k+1(x′′

T ,x′
F ,t) = F−

1,0(x′′
T ,x′

F ,t) + W(x′′
T ,x′

F ,t) ◦
∫

∂DT

dxT

×
∫ t

−∞
R(x′′

T ,xT ,t − t ′)M+
k (xT ,x′

F ,t ′)dt ′,

(39)

with

F−
1,0(x′′

T ,x′
F ,t) =W(x′′

T ,x′
F ,t) ◦

∫
∂DT

dxT

∫ t

−∞
R(x′′

T ,xT ,t − t ′)

× Tinv
fs (x′

F ,x′′
T ,t ′)dt ′. (40)

These equations form the 3D version of the single-sided
elastodynamic Marchenko scheme. It starts with k = 0. As-
suming the reflection response matrix R(x′′

T ,xT ,t) is available
from single-sided reflection experiments at the top boundary
∂DT , and assuming an estimate of the forward-scattering
transmission response matrix Tfs(x′

F ,x′′
T ,t) is available, this

iterative scheme will give the focusing matrix F−
1 (x′′

T ,x′
F ,t)

and the scattering coda M+(x′′
T ,x′

F ,t) of the focusing matrix
F+

1 (x′′
T ,x′

F ,t). Substituting the results into Eqs. (36), (32),
and (33) finally gives the Green’s matrices G−,+(x′′

T ,x′
F ,t) and

−G−,−(x′′
T ,x′

F ,t).
The scalar version of this scheme has proven to give

accurate Green’s functions [12–14]. Da Costa et al. [20–22]
independently derived a similar 3D elastodynamic Marchenko
scheme and illustrated it with 2D numerical examples. For
a shallow focal point (situated in the second layer) several
arrivals in the Green’s functions are well recovered. However,
other events are missing and several artefacts (nonexisting
arrivals) are generated. In their scheme a direct arrival Green’s
matrix takes the place of our forward-scattering transmission
response matrix Tfs(x′

F ,x′′
T ,t). This direct arrival Green’s

matrix lacks the forward scattering information, necessary for
recovering the complete Green’s matrices with the iterative
scheme. From our initial 1D experiments, presented in Sec. V
and in Ref. [23], we expect that the 3D scheme outlined
above will lead to an accurate recovery of the elastodynamic
Green’s matrices. One of the main research issues concerns
the investigation of what approximations are allowed in the
estimation of the forward-scattering transmission response
matrix, needed to initiate the iterative scheme.

VII. CONCLUDING REMARKS

In the elastodynamic time-reversal method, P and S waves
are focused at the original source position inside a layered
medium by physically emitting time-reversed fields from two
sides back into the medium. Our method accomplishes the
same type of focusing (compare Fig. 8 with Fig. 4), but does
not need a physical source or receiver at the focus location, nor
does it need access to the medium from two sides. Our method
uses the measured single-sided reflection response and limited
information about the transmission response of the medium to
derive the focusing functions. Instead of physically emitting
these focusing functions into the real medium, we use them
in Eqs. (13) and (14) to retrieve the elastodynamic Green’s
functions at the top boundary, originating from virtual P - and
S-wave sources inside the medium.

The generalization of the method from horizontally layered
media to 3D inhomogeneous media goes along the same lines
as for scalar waves [12,13] and has been briefly discussed in
Sec. VI. This opens the way to 3D data-driven elastodynamic
“Marchenko imaging” of single-sided reflection data, as a
generalization of Marchenko imaging of scalar data [14].
Elastodynamic Marchenko imaging will fully employ wave
conversion and multiple scattering and is expected to have
important applications in nondestructive testing of construc-
tion materials and seismological monitoring of geophysical
processes inside the Earth.

APPENDIX A: FLUX-NORMALIZED COMPRESSIONAL
AND SHEAR WAVES

For elastodynamic wave fields in a horizontally layered
medium we define a wave-field vector q(p,z,ω) as

q(p,z,ω) =
(−τ

v

)
(p,z,ω), (A1)

where

τ =
(

τxz

τzz

)
(p,z,ω) and v =

(
vx

vz

)
(p,z,ω) (A2)

are the measurable wave-field quantities traction and particle
velocity, respectively. We define a second wave-field vector
u(p,z,ω) as

u(p,z,ω) =
(

u+
u−

)
(p,z,ω), (A3)

where

u+ =
(

P +
S+

)
(p,z,ω) and u− =

(
P −
S−

)
(p,z,ω) (A4)

are the downgoing (+) and upgoing (−) compressional (P )
and shear (S) wave fields. Vectors q(p,z,ω) and u(p,z,ω) are
mutually related via a matrix L(p,z), according to

q(p,z,ω) = L(p,z)u(p,z,ω). (A5)

Matrix L(p,z) is not uniquely defined. Its definition depends
on the chosen normalization of the down- and upgoing
compressional and shear waves P ± and S±. Choosing power-
flux normalization for these waves, matrix L(p,z) is defined
as [29–31]

L(p,z) =
(

L+
1 L−

1

L+
2 L−

2

)
(p,z), (A6)

where

L±
1 (p,z) = c2

S

(
ρ

2

) 1
2

(
±2pq

1
2
P −(

c−2
S −2p2

)/
q

1
2
S(

c−2
S − 2p2

)/
q

1
2
P ±2pq

1
2
S

)

(A7)

and

L±
2 (p,z) = (2ρ)−

1
2

⎛
⎝p

/
q

1
2
P ∓q

1
2
S

±q
1
2
P p

/
q

1
2
S

⎞
⎠. (A8)

The vertical P - and S-wave slownesses qP (p,z) and qS(p,z),
respectively, are defined as

qP (p,z) = [
c−2
P (z) − p2

] 1
2 (A9)
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and

qS(p,z) = [
c−2
S (z) − p2] 1

2 . (A10)

Because of the flux-normalization, matrix L(p,z) has a simple
inverse

L−1(p,z) = −N−1Lt (−p,z)N = J−1Lt (p,z)K (A11)

(superscript t denotes transposition), with

N =
(

O I
−I O

)
, K =

(
O I
I O

)
, J =

(
I O
O −I

)
,

(A12)

where O is the null matrix.
We group the Green’s matrices for downgoing and upgoing

waves, as introduced in Sec. III, into a single Green’s matrix
GI (p,z,zF ,ω), according to

GI (p,z,zF ,ω) =
(

G+,+ G+,−
G−,+ G−,−

)
(p,z,zF ,ω). (A13)

We define a Green’s matrix GII (p,z,zF ,ω) in terms of
measurable quantities as follows:

GII (p,z,zF ,ω) =
(

Gτ,f Gτ,h

Gv,f Gv,h

)
(p,z,zF ,ω). (A14)

Here the first superscripts (τ and v) refer to the observed
wave field at z [traction and particle velocity, respectively,
similar to Eq. (A1)], whereas the second superscripts (f and
h) refer to the source type at zF (force and deformation,
respectively). Note that the lower left matrix Gv,f (p,z,zF ,ω)
is the common Green’s tensor in terms of particle velocity
components in response to force sources. The two Green’s
matrices are mutually related, according to

GII (p,z,zF ,ω) = L(p,z)GI (p,z,zF ,ω)L−1(p,zF ). (A15)

Both Green’s matrices obey the reciprocity relation [32]

G(p,zF ,z,ω) = −N−1Gt (−p,z,zF ,ω)N, (A16)

where G stands for GI or GII .

APPENDIX B: DERIVATION OF THE SINGLE-SIDED
GREEN’S FUNCTION REPRESENTATION

For elastodynamic wave fields in a horizontally layered
lossless and source-free medium, we consider the following
two propagation invariants (i.e., quantities independent of z)
[17,33]:

−τ t
A(−p,z,ω)vB (p,z,ω) + vt

A(−p,z,ω)τB(p,z,ω) (B1)

and

−τ
†
A(p,z,ω)vB(p,z,ω) − v†A(p,z,ω)τB(p,z,ω). (B2)

Superscript † denotes transposition and complex conjugation.
Subscripts A and B refer to two independent solutions of the
elastodynamic wave equation for one-and-the-same lossless
source-free medium. Using the notation of Appendix A,
these propagation invariants can be compactly written as

qt
A(−p,z,ω)NqB(p,z,ω) and q†

A(p,z,ω)KqB(p,z,ω), respec-
tively. From these propagation invariants, we obtain

qt
A(−p,zT ,ω)NqB(p,zT ,ω) = qt

A(−p,zF ,ω)NqB(p,zF ,ω)

(B3)

and

q†
A(p,zT ,ω)KqB (p,zT ,ω) = q†

A(p,zF ,ω)KqB(p,zF ,ω),

(B4)

respectively, where zT and zF denote the top boundary and
the focal depth, respectively. Note that for these equations to
hold, it is sufficient that only the medium between zT and zF

is lossless, source-free, and the same for wave fields qA and
qB . Outside this region, sources may exist and the medium
parameters may be different for qA and qB . Substituting
Eq. (A5) into Eq. (B3), using Eqs. (A3), (A11), and (A12),
gives

{u+
A(−p,zT ,ω)}tu−

B (p,zT ,ω)− {u−
A(−p,zT ,ω)}tu+

B (p,zT ,ω)

= {u+
A(−p,zF ,ω)}tu−

B (p,zF ,ω)

−{u−
A(−p,zF ,ω)}tu+

B (p,zF ,ω). (B5)

This expression relates downgoing and upgoing wave fields
at depth levels zT and zF . In a similar way we obtain from
Eq. (B4)

{u+
A(p,zT ,ω)}†u+

B (p,zT ,ω) − {u−
A(p,zT ,ω)}†u−

B (p,zT ,ω)

= {u+
A(p,zF ,ω)}†u+

B (p,zF ,ω)

−{u−
A(p,zF ,ω)}†u−

B (p,zF ,ω), (B6)

assuming L(p,zT ) and L(p,zF ) are real-valued. This assump-
tion is obeyed when qP (p,z) and qS(p,z), defined in Eqs. (A9)
and (A10), are real-valued for z = zT and z = zF , i.e., when
|p| � c−1

P (z) < c−1
S (z) for z = zT and z = zF . In other words,

Eq. (B6) holds under the additional assumption that the waves
are propagating (i.e., nonevanescent) at z = zT and z = zF .

We use Eqs. (B5) and (B6) to derive relations between
the various quantities defined in Sec. III. To this end, we first
transform Eqs. (5), (7), and (11) to the rayparameter-frequency
domain, yielding

u−(p,zT ,ω) = R(p,zT ,ω)u+(p,zT ,ω), (B7)

u±(p,zF ,ω) = G±,+(p,zF ,zT ,ω)u+(p,zT ,ω), (B8)

and

I = T(p,zF ,zT ,ω)F+
1 (p,zT ,zF ,ω), (B9)

respectively. For the fields with subscript A we take the
fields in the actual medium. For convenience, we define
u+

A(p,zT ,ω) = I. Then, according to Eqs. (B7) and (B8),
we obtain u−

A(p,zT ,ω) = R(p,zT ,ω) and u±
A(p,zF ,ω) =

G±,+(p,zF ,zT ,ω). For the fields with subscript B we take
the focusing fields in the reference medium [this is allowed,
because between zT and zF the reference medium is identical
to the actual medium; see also the remark below Eq. (B4)].
Hence, we define u+

B (p,zT ,ω) = F+
1 (p,zT ,zF ,ω). Its response

at zT is then given by u−
B (p,zT ,ω) = F−

1 (p,zT ,zF ,ω). Ac-
cording to Eq. (B9) its downgoing response at the focal
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depth zF is u+
B (p,zF ,ω) = I. Since the reference medium

is reflection-free below zF , we have u−
B (p,zF ,ω) = O.

Making these substitutions in Eqs. (B5) and (B6), us-
ing R(p,zT ,ω) = {R(−p,zT ,ω)}t and G±,+(p,zF ,zT ,ω) =
∓{G−,∓(−p,zT ,zF ,ω)}t [Eq. (A16)], gives

G−,+(p,zT ,zF ,ω) + F−
1 (p,zT ,zF ,ω)

= R(p,zT ,ω)F+
1 (p,zT ,zF ,ω) (B10)

and

−G−,−(−p,zT ,zF ,ω) − {F+
1 (p,zT ,zF ,ω)}∗

= −R(−p,zT ,ω){F−
1 (p,zT ,zF ,ω)}∗, (B11)

respectively. Transforming these expressions back to the
rayparameter intercept-time domain, replacing p by −p in
Eq. (B11), gives Eqs. (13) and (14).
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