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The one-dimensional Marchenko equation forms the basis for inverse scattering problems in which the

scattering object is accessible from one side only. Here we derive a three-dimensional (3D) Marchenko

equation which relates the single-sided reflection response of a 3D inhomogeneous medium to a field

inside the medium. We show that this equation is solved by a 3D iterative data-driven focusing method,

which yields the 3D Green’s function with its virtual source inside the medium. The 3D single-sided

Marchenko equation and its iterative solution method form the basis for imaging of 3D strongly scattering

inhomogeneous media that are accessible from one side only.
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Introduction.—Inverse scattering is the problem of deter-
mining amedium perturbation (or, in quantummechanics, a
potential) from an acoustic, electromagnetic, or quantum-
mechanical wave field, scattered by this perturbation (or
potential). One particular approach to one-dimensional
(1D) inverse scattering makes use of the Marchenko equa-
tion. This is an exact integral equation which relates the
reflection response, measured at one side of the perturba-
tion, to the field inside the medium [1,2]. Rose [3] shows
that solving the Marchenko equation is equivalent to
designing a wave field which, when emitted from one side
of the perturbation into the inhomogeneous medium,
focuses inside themedium.He proposes an iterative scheme
to design the focusing wave field, which only requires the
reflection response at one side of the perturbation as input.
This ‘‘autofocusing’’’ method solves the Marchenko equa-
tion and, subsequently, the 1D inverse scattering problem.
Broggini and Snieder [4] show that the focusing wave field
and its response can be combined in a specific way to yield
the 1Dmedium’s Green’s function, with its virtual source at
the focal point inside the medium.

The question arises whether the discussed concepts of
single-sided Marchenko inverse scattering, autofocusing,
Green’s function retrieval, and their mutual relations [4]
can be extended from one to three dimensions. A 3D
extension of the Marchenko equation is the so-called
Newton-Marchenko (NM) equation [5,6]. 3D inverse scat-
tering based on the NM equation requires omnidirectional
reflection and transmission measurements. Hence, despite
the fact that the NM equation is very useful for this class
of inverse problems, it is not applicable to single-sided
reflection measurements. Prada et al. [7] pioneered 3D
single-sided autofocusing, but their method is limited to
focusing waves onto the strongest scatterers and does not
account for multiple scattering.

We derive a 3D version of the Marchenko equation
which relates the single-sided scalar reflection response

of a 3D inhomogeneous medium to the field inside the
medium. Next, we briefly review a new 3D data-driven
focusing method [8] and show that this method solves the
3D single-sided Marchenko equation. We also show that a
specific combination of the 3D focusing wave field and its
reflection response gives the 3D Green’s function, with its
virtual source at the focal point inside the medium. Unlike
in other data-driven Green’s function retrieval methods
[9–12], no receiver is needed at the position of the virtual
source.
Fundamental solutions.—In the derivation of the 1D

Marchenko equation, so-called ‘‘fundamental solutions’’
of the source-free Schrödinger equation play an essential
role [1]. For the situation of a localized potential uðxÞ,
the fundamental solutions f1ðx; tÞ and f2ðx; tÞ of the
Schrödinger equation are those solutions that reduce to
impulsive outgoing waves for x ! 1 and x ! �1,
respectively. Here, we extend the fundamental solutions
to 3D. We define the spatial coordinate vector x as x ¼
ðxH; x3Þ, in which xH ¼ ðx1; x2Þ is the horizontal coordi-
nate vector and x3 the vertical coordinate; the positive x3
axis is pointing downward. Coordinates at a constant depth
level x3 ¼ x3;i are denoted as xi ¼ ðxH; x3;iÞ and time is

denoted by t. Consider an inhomogeneous lossless medium
between transparent boundaries @D0 and @Dm at depth
levels x3 ¼ x3;0 and x3 ¼ x3;m, respectively. The domain

enclosed by @D0 and @Dm is denoted asD. The upper half-
space x3 < x3;0 and the lower half-space x3 > x3;m are

homogeneous. A fundamental solution f1ðx; tÞ of the sca-
lar wave equation consists in the upper half-space of a
downgoing field fþ1 ðx; tÞ and an upgoing field f�1 ðx; tÞ,
with fþ1 ðx; tÞ shaped such that f1ðx; tÞ focuses at x0

m ¼
ðx0

H; x3;mÞ at t ¼ 0, and continues as an impulsive diverging

downgoing field fþ1 ðx; tÞ into the lower half-space.
The focal point x0

m is a variable at @Dm and will from
here onward be included in the argument list; hence,
f1ðx; tÞ becomes f1ðx;x0

m; tÞ [Fig. 1(a)]. Similarly, the
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fundamental solution f2ðx;x00
0 ; tÞ focuses at x00

0 ¼ ðx00
H; x3;0Þ

at t ¼ 0, and continues as an impulsive diverging upgoing
field f�2 ðx;x00

0 ; tÞ into the upper half-space [Fig. 1(b)]. The

temporal Fourier transform of a time-dependent function
uðtÞ is defined as uð!Þ ¼ R1

�1 uðtÞ expði!tÞdt, where !
is the angular frequency and i the imaginary unit. To keep
the notation simple, the same symbol is used for time-
and frequency-domain functions (here u). In the frequency
domain, the aforementioned focusing conditions for f1 and
f2 are f1ðxm;x

0
m;!Þ ¼ �ðxH � x0

HÞ and f2ðx0;x
00
0 ; !Þ ¼

�ðxH � x00
HÞ. Throughout this paper we ignore evanescent

waves; hence, head waves, turning waves, etc. are excluded
from the following analysis. Moreover, �ðxHÞ should be
interpreted as a spatially bandlimited delta function
(because it lacks the wave number components of the
evanescent field).

The two fundamental solutions are mutually related.
The relation can be rigorously derived from reciprocity
theorems for flux-normalized downgoing and upgoing
wave fields [11]. Here we present a short, more intuitive,

derivation. In the upper half-space the upgoing field f�1
can be seen as the response to a distribution of Huygens
sources along @D0, weighted by f�1 at @D0. Since f2
focuses at @D0 [Fig. 1(b)] and emits impulsive upward
propagating waves into the upper half-space, f2 at @D0

provides the Huygens sources. Similarly, the downgoing
field fþ1 in the upper half-space can be seen as the acausal
response to time-reversed Huygens sources (or Huygens
sinks) f�2, weighted by fþ1 at @D0 (the asterisk denotes
complex conjugation). Hence, for f1 ¼ fþ1 þ f�1 we have
the following in the upper half-space:

f1ðx;x0
m;!Þ¼

Z

@D0

f2ðx;x00
0 ;!Þf�1 ðx00

0 ;x
0
m;!Þdx00

0

þ
Z

@D0

f�2ðx;x00
0 ;!Þfþ1 ðx00

0 ;x
0
m;!Þdx00

0 : (1)

Recall that x00
0 ¼ ðx00

H; x3;0Þ; hence, the integration takes

place at @D0 along the horizontal coordinate vector x00
H.

Since f1 and f2 are solutions of the one-and-the-same
source-free wave equation for all x 2 R3, Eq. (1) not
only holds in the upper half-space but throughout space.
In a similar way, f2 can be expressed in terms of f1 and f

�
1.

The downgoing and upgoing constituents of f1 at @D0

are related via the reflection response Rðx0;x
00
0 ; !Þ of the

inhomogeneous medium in D, according to

f�1 ðx0;x
0
m;!Þ ¼

Z

@D0

Rðx0;x
00
0 ;!Þfþ1 ðx00

0 ;x
0
m;!Þdx00

0 : (2)

Similarly, the downgoing field at @Dm is related to the
downgoing field at @D0 via the transmission response
Tðxm;x

00
0 ; !Þ. Because the downgoing wave field focuses

at x0
m ¼ ðx0

H; x3;mÞ, this gives

�ðxH �x0
HÞ ¼

Z

@D0

Tðxm;x
00
0 ;!Þfþ1 ðx00

0 ;x
0
m;!Þdx00

0 : (3)

We introduce the inverse of fþ1 ðx0;x
0
m;!Þ viaR

@Dm
fþ1 ðx0; x

0
m; !Þffþ1 ðx00

0 ; x
0
m; !Þginvdx0

m ¼ �ðxH � x00
HÞ.

Applying this inverse to both sides of Eq. (3) gives
ffþ1 ðx00

0 ;xm;!Þginv ¼ Tðxm;x
00
0 ; !Þ. Applying Tðx0

m;x
00
0 ; !Þ

to both sides of Eq. (1) gives, using Eq. (2),

Z

@Dm

f1ðx;x0
m;!ÞTðx0

m;x
00
0 ; !Þdx0

m

¼
Z

@D0

f2ðx;x0
0; !ÞRðx0

0;x
00
0 ; !Þdx0

0 þ f�2ðx;x00
0 ; !Þ:

(4)

In the following we show that the left-hand side of Eq. (4)
is equal to the Green’s function Gðx;x00

0 ; !Þ and we use the
right-hand side to derive the 3D Marchenko equation.
Green’s function.—We define an internal boundary @Di

at depth level x3;i, anywhere between x3;0 and x3;m, and
analyze the Green’s function Gðxi;x

00
0 ; !Þ. The downgoing

and upgoing constituents, Gþ and G�, are related via [13]

(a)

(b)

FIG. 1. Fundamental solutions of the 3D wave equation.
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G�ðx0
i;x

00
0 ; !Þ ¼

Z

@Di

Rðx0
i;xi; !ÞGþðxi;x

00
0 ; !Þdxi: (5)

This equation resembles Eq. (2), but because @Di is an
internal boundary it is less trivial. Rðx0

i;xi; !Þ is the reflec-
tion response of a truncated medium (consisting of the
actual medium below @Di and a scattering-free half-space
above @Di), whereas the Green’s function is defined in the
actual medium. Using a similar derivation as in Ref. [13],
we also obtain

Z

@Di

Tðx0
m;xi; !ÞGþðxi;x

00
0 ; !Þdxi ¼ Tðx0

m;x
00
0 ; !Þ; (6)

where Tðx0
m;xi; !Þ is the transmission response of

the truncated medium. Similar as above we have
ffþ1 ðxi;x

0
m;!Þginv ¼ Tðx0

m;xi; !Þ. Substituting this in the
left-hand side of Eq. (6) and applying fþ1 to both sides
gives

Gþðxi;x
00
0 ;!Þ ¼

Z

@Dm

fþ1 ðxi;x
0
m;!ÞTðx0

m;x
00
0 ;!Þdx0

m: (7)

Applying the reflection response R to both sides of Eq. (7)
gives, using Eq. (5) for G� and f�1 ,

G�ðxi;x
00
0 ;!Þ ¼

Z

@Dm

f�1 ðxi;x
0
m;!ÞTðx0

m;x
00
0 ;!Þdx0

m: (8)

Summing Eqs. (7) and (8) and dropping the subscript i
confirms that the left-hand side of Eq. (4) is equal to the
Green’s function Gðx;x00

0 ; !Þ for x 2 D.

3D Marchenko equation.—We transform Eq. (4), with
the left-hand side replaced by Gðx;x00

0 ; !Þ, to the time

domain, which gives

Gðx;x00
0 ; tÞ ¼

Z

@D0

dx0
0

Z 1

�1
f2ðx;x0

0; t
0ÞRðx0

0;x
00
0 ; t� t0Þdt0

þ f2ðx;x00
0 ;�tÞ: (9)

Let tdðx;x00
0 Þ denote the travel time of the first arrival

between x00
0 2 @D0 and x 2 D. By evaluating Eq. (9)

only for t < tdðx;x00
0 Þ, the left-hand side can be replaced

by zero. Equation (9) (with 0 on the left-hand side) only
constrains f2 up to a multiplicative constant and therefore
an ansatz will be made for the form of this function. In the
1D derivation [1], f2ðx; tÞ is defined as a delta pulse trav-
eling in the negative x direction, followed by a scattering
coda caused by the potential uðxÞ. Moreover, the incident
field is shaped such that the scattering coda vanishes
beyond the scattering region, leaving only the delta pulse
for x ! �1. Analogous to the 1D situation, the ansatz for
f2ðx;x00

0 ; tÞ is a superposition of a direct wave and a scat-

tering coda, according to

f2ðx;x00
0 ; tÞ ¼ fTdðx;x00

0 ; tÞginv
þ �ðtþ tdðx;x00

0 ÞÞMðx;x00
0 ; tÞ: (10)

Here fTdðx;x00
0 ; tÞginv is the inverse of the direct arrival of

the transmission response, which focuses at x00
0 ; its travel

time is �tdðx;x00
0 Þ. In practice, it will often suffice to

approximate fTdðx;x00
0 ; tÞginv by the time reversal

Tdðx;x00
0 ;�tÞ, or even by �ðtþ tdðx;x00

0 ÞÞ. Mðx;x00
0 ; tÞ is

the coda following the direct arrival. It is the result of
scattering taking place in the inhomogeneous medium in
D. The coda is assumed to be causal, i.e., Mðx;x00

0 ; tÞ ¼ 0
for t <�tdðx;x00

0 Þ. This causality is expressed by multi-

plying the coda with the Heaviside function �ðtþ
tdðx;x00

0 ÞÞ in Eq. (10). Note that the ansatz limits the

validity of what follows to configurations for which the
ansatz holds true. For example, it holds in layered media
with moderately curved interfaces as long as jxH � x00

Hj is
not too large (to avoid the occurrence of turning waves,
head waves, etc.). The conditions underlying the ansatz
need further investigation, which is beyond the scope of
this paper. Substituting Eq. (10) into (9) (with 0 on the
left-hand side) yields

0 ¼
Z

@D0

dx0
0

Z 1

�1
fTdðx;x0

0; t
0ÞginvRðx0

0;x
00
0 ; t� t0Þdt0

þ
Z

@D0

dx0
0

Z 1

�tdðx;x0
0
Þ
Mðx;x0

0; t
0ÞRðx0

0;x
00
0 ; t� t0Þdt0

þMðx;x00
0 ;�tÞ; (11)

with x 2 D and t < tdðx;x00
0 Þ. This is the 3D single-sided

Marchenko equation. Next we show that it can be solved
with an iterative 3D data-driven focusing scheme.
3D data-driven focusing.—Inspired by the work of Rose

[3], the authors proposed an iterative scheme to design a
downgoing wave field pþðx0; tÞ at @D0 that focuses at
t ¼ 0 at a focal point xF 2 D (and at xF only) [8].
The initial estimate pþ

0 ðx0; tÞ is defined as pþ
0 ðx0; tÞ ¼

fTdðx0;xF; tÞginv. When emitted from @D0 into the inho-
mogeneous medium, this field not only focuses at xF, but it
also causes ghost images at t ¼ 0. These ghost images can
be canceled by updating the incident field, which causes
new ghost images, which again need to be canceled, etc.
The following iterative scheme accomplishes this task [8]:

pþ
k ðx0

0;xF; tÞ ¼ fTdðx0
0;xF; tÞginv

� �ðtþ tdðx0
0;xFÞÞp�

k�1ðx0
0;xF;�tÞ; (12)

p�
k ðx00

0 ;xF; tÞ
¼

Z

@D0

dx0
0

Z 1

�1
Rðx00

0 ;x
0
0; t� t0Þpþ

k ðx0
0;xF; t

0Þdt0:

(13)

Here pþ
k ðx0

0;xF; tÞ is the kth iteration of the downgoing

wave field, intended to focus at xF, whereas p
�
k ðx00

0 ;xF; tÞ
is its upgoing reflection response. The scheme starts for
k ¼ 0, with p��1ðx0

0;xF;�tÞ ¼ 0. Unlike the 1D scheme of

Rose, which only needs the reflection response as input,
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this 3D scheme requires the reflection response Rðx00
0 ;x

0
0; tÞ

and the direct transmission response Tdðx0
0;xF; tÞ.

The reflection response is measured at the boundary @D0.
The transmission response mainly requires an estimate
of the direct arrival time tdðx0

0;xFÞ, for which no detailed

information about the medium is required: a smooth back-
ground model suffices to compute the direct transmission
response Tdðx0

0;xF; tÞ. Note that estimating the background

model is state-of-the-art methodology in geophysical
imaging [14]. All information about the scattering proper-
ties of the medium comes from the measured reflection
response. This is why we call the scheme of Eqs. (12) and
(13) and ‘‘data-driven focusing.’’

Assuming the scheme converges, the final result is
denoted by dropping the subscripts k� 1 and k.
Substituting Eq. (12) into Eq. (13), using source-receiver
reciprocity for the reflection and transmission responses,
gives for t < tdðxF;x

00
0 Þ the 3D Marchenko equation, (11),

with MðxF;x
00
0 ;�tÞ ¼ �p�ðx00

0 ;xF; tÞ. Hence, the iterative
3D data-driven focusing scheme of Eqs. (12) and (13)
solves the 3D Marchenko equation.

3D Green’s function retrieval.—Here we generalize the
approach of Broggini and Snieder [4] to retrieve the 3D
Green’s function. A comparison of Eq. (10) with Eq. (12)
(without the subscripts k� 1 and k) gives f2ðxF;x

0
0; tÞ ¼

pþðx0
0;xF; tÞ. Substituting this into Eq. (9), using Eq. (13)

and source-receiver reciprocity for the Green’s function,
gives (dropping the primes)

Gðx0;xF; tÞ ¼ pþðx0;xF;�tÞ þ p�ðx0;xF; tÞ: (14)

This shows that a combination of the focusing wave field
pþ and its response p� yields the Green’s function with its
virtual source at the position of the focal point inside the
medium. Unlike in other Green’s function retrieval meth-
ods [9–12], no physical receiver is required at the position
of the virtual source. The method is illustrated with a 2D
numerical example. Figure 2(a) shows an inhomogeneous
medium (the colors represent the propagation velocity c).
The yellow dot represents the virtual source position xF

and the yellow triangles represent 23 receiver positions x0

at the surface. Figure 2(b) shows the direct transmission
response Tdðx0;xF; tÞ for all 23 receiver positions, mod-
eled in a smoothed version of the medium. This direct
field is used in the iterative scheme of Eqs. (12) and (13),
together with the reflection response at the surface
(not shown). Figure 2(c) shows the Green’s function
Gðx0;xF; tÞ obtained from Eq. (14) (black dashed traces),
overlain on the directly modeled Green’s function (red
traces). All traces have been multiplied by expð2tÞ to
emphasize the scattering coda. Note that this coda is very
well recovered.

Concluding remarks.—We have derived a 3D version of
the Marchenko equation, which relates the single-sided 3D
reflection response of an inhomogeneous medium to a field
inside the medium. In the derivation we assumed scalar

waves in a lossless medium, ignored evanescent waves,
and further assumed that the scattering coda of the funda-
mental solution follows the inverse of the direct arrival of
the transmission response. These conditions imply some
restrictions that need further investigation. For those situ-
ations in which the conditions are fulfilled, we showed
that the 3D single-sided Marchenko equation is solved by
an iterative data-driven focusing scheme. This scheme
requires the 3D reflection response at one side of the
medium and an estimate of the direct arrival of the trans-
mission response. It is, in fact, through the arrival time of
direct arrivals that one specifies the location of the focal
point. We also showed that a combination of the focusing
wave field and its reflection response gives the 3D Green’s
function with its virtual source located at the focal point.
Because no physical receiver is needed at the position of
the focal point, the focal point can be chosen anywhere
inside the medium. This gives the possibility to obtain
Green’s functions with virtual sources throughout the me-
dium, which can be used for the imaging of objects that are
accessible from one side only. The methodology will be of

(a)

(b)

(c)

FIG. 2 (color online). Numerical example.
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particular interest for situations in which the target image is
blurred by multiple scattering. The next challenge is to
extend the method to vector wave fields. We foresee appli-
cations in many areas, ranging from nondestructive inspec-
tion of construction materials to seismological reflection
imaging and monitoring of structures and processes in the
Earth’s interior.

We thank Jan Thorbecke and Joost van der Neut for their
contributiuons to the numerical experiment.
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