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Abstract. Reciprocity theorems have proven their usefulness in the study of forward and
inverse scattering problems. Most reciprocity theorems in the literature apply to the total
wave field and are thus not compatible with one-way wave theory, which is often applied
in situations in which there is a clear preferred direction of propagation, like in
electromagnetic or acoustic wave guides and in seismic exploration. In this paper we
review the theory for one-way wave fields (or bidirectional beams), and we extensively
discuss the symmetry properties of the square root operator appearing in the one-way
wave equation. Using these symmetry properties, it appears to be possible to derive
reciprocity theorems of the convolution type and of the correlation type for
electromagnetic or acoustic one-way wave fields in dissipative inhomogeneous media along
the same lines as the usual derivation of the reciprocity theorems for the total wave field.
The one-way reciprocity theorem of the convolution type provides a basis for
representations of scattered one-way wave fields in terms of generalized Bremmer series
expansions or generalized primaries. The one-way reciprocity theorem of the correlation
type finds its application in reflection imaging based on inverse one-way wave field
propagators.

1. Introduction
Reciprocity theorems for electromagnetic and

acoustic wave fields have been formulated at the end
of the nineteenth century by H. A. Lorentz and
J. W. S. Rayleigh, respectively. A reciprocity theorem
interrelates the sources and wave fields in two admis-
sable physical and/or computational states in one and
the same domain. It can be obtained by inserting the
appropriate wave equation into an extended version
of Green’s theorem [Morse and Feshbach, 1953]. In
the modern literature, reciprocity theorems also ac-
count for possible differences between the medium
parameters in both states. One can distinguish be-
tween convolution-type and correlation-type reci-
procity theorems [Bojarski, 1983]. These two types of
reciprocity theorems have proven their usefulness in
the study of forward and inverse scattering problems,
respectively. For a discussion on general reciprocity
theorems for electromagnetic and acoustic wave
fields in dissipative media we refer to de Hoop [1987,
1988]. An extensive overview of reciprocity and its
applications in seismic exploration is given by
Fokkema and van den Berg [1993].

In many wave propagation problems one can define
a “preferred direction of propagation.” Electromag-
netic and acoustic waveguides are obvious examples,
but also in laterally unbounded media it is often
advantageous to define a preferred propagation di-
rection, such as in seismic exploration. In all those
situations it is useful to decompose the wave equation
into a system of coupled equations for oppositely
propagating waves. In the literature on electromag-
netic wave theory these oppositely propagating waves
are known as “bidirectional beams” [Hoekstra, 1997;
van Stralen, 1997]; in the acoustic literature one
usually speaks of “one-way wave wave fields” [Claer-
bout, 1971; Fishman et al., 1987]. In this paper we
adopt the latter terminology.

The reciprocity theorems discussed above apply to
the total electromagnetic or acoustic wave field. Ob-
viously, these reciprocity theorems are not compati-
ble with one-way wave theory. In a recent paper we
derived reciprocity theorems for acoustic one-way
wave fields in lossless inhomogeneous fluids [Wap-
enaar and Grimbergen, 1996]. With some minor mod-
ifications these theorems are also applicable to trans-
verse electric or transverse magnetic one-way wave
fields in lossless inhomogeneous media. The aim of
the current paper is to extend those one-way reciproc-
ity theorems to electromagnetic or acoustic wave
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fields in dissipative inhomogeneous media. To this
end, we first formulate a general equation for the
total electromagnetic or acoustic wave field in dissi-
pative inhomogeneous media. Next we decompose
this equation into a coupled system of equations for
oppositely propagating one-way wave fields. The cen-
tral part of the paper is dedicated to deriving the
symmetry properties of the operators that appear in
these equations. This derivation is essentially differ-
ent from our former derivation for the lossless situa-
tion, for which we made use of the well-established
theory of self-adjoint operators. Using the obtained
symmetry properties, in the last part of the paper we
derive reciprocity theorems of the convolution type
and of the correlation type for electromagnetic or
acoustic one-way wave fields in dissipative inhomoge-
neous media.

2. General Wave Equation
In this section we discuss a general equation for

electromagnetic or acoustic wave fields in dissipative
inhomogeneous media. First we give the basic scalar
equations. Next we recast these equations into a
matrix-vector form that will be useful as a starting
point for the decomposition into one-way wave equa-
tions.

2.1. Basic Scalar Equations

We consider a two-dimensional (2-D) configura-
tion, that is, we assume that the medium parameters
and the source distributions (and, consequently, the
wave fields) are functions of two spatial coordinates [x
� ( x1 , x3)] only. With this assumption the vectorial
wave equations reduce to scalar wave equations for
the following situations: electromagnetic waves
(transverse electric waves (TE waves) and transverse
magnetic waves (TM waves)) and acoustic waves
(compressional waves (P waves) in fluids and hori-
zontally polarized shear waves (SH waves) in solids).
We define the Fourier transform with respect to time
t of a real-valued function as

U��� � �
��

�
exp (�j�t)u�t� dt (1)

and its inverse as

u�t� �
1

�
Re �

��

�
exp �j�t�����U��� d�, (2)

where � denotes the angular frequency, j is the
imaginary unit, Re denotes that the real part is taken,
and �(�) is the characteristic function, defined as

���� � �
0 � � 0
1
2

� � 0

1 � � 0.

(3)

In this paper the angular frequency is chosen non-
negative and real-valued, with the remark that its
vanishing imaginary part is chosen negative when u(t)
is a causal function of time and positive when u(t) is
anticausal (i.e., Im (�) 1 0 when u(t) � 0 for t � 0
and Im (�) 2 0 when u(t) � 0 for t � 0).

In the space-frequency (x, �) domain the general
form of the 2-D basic equations is given by

j��P � 	 iQi � B, (4)

j�
Qi � 	 iP � Ci , (5)

where i only takes on the values 1 and 3 and
Einstein’s summation convention applies to repeated
subscripts. After elimination of Qi , (4) and (5) lead to
the 2-D scalar wave equation


	 i� 1



	 iP� � �
� 2P � 
	 i� 1



Ci� � j�
B. (6)

P(x, �), Q1(x, �), and Q3(x, �) represent the wave
fields, B(x, �), C1(x, �), and C3(x, �) are the source
distributions, and �(x, �) and 
(x, �) denote the
medium parameters (which are assumed to be infi-
nitely differentiable). These functions are further
specified in Table 1 for the various wave types dis-
cussed above. In a lossless medium the parameters
�(x, �) and 
(x, �) are real valued, positive, and
frequency independent. In dissipative media, how-
ever, they are complex-valued frequency-dependent
functions. For example, for TE waves, � is given by �
� 
/j�. Note that � and 
 in themselves may be
complex valued and frequency-dependent as well.
The conditions for the behavior of � and 
 follow
from physics. Causality requires that the time domain
counterparts of � and 
 are zero for t � 0 [Landau
and Lifshitz, 1960; Boltzmann, 1876; de Hoop, 1987,
1988]. Moreover, the sign of the imaginary parts of �
and 
 in the frequency domain follows from energy
considerations. To this end, we analyze the quantity
	 i(P*Qi � PQ*i), where the asterisk denotes com-
plex conjugation. Applying the product rule for dif-
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ferentiation, substituting (4) and (5), integrating the
result over some 2-D domain � with boundary 	�
and outward pointing normal vector n � (n1 , n3),
and applying the theorem of Gauss yields

Re �
�

�B*P � C*iQi � d 2x � Re �
	�

P*Qini dx

� Re �
�

�j��P*P � j�
Q*iQi � d 2x. (7)

The term on the left-hand side represents the power,
generated by the sources in �. The first term on the
right-hand side represents the power flux propagating
outward through 	� whereas the second term on the
right-hand side represents the dissipated power in �.
Hence, in order to comply with physics, the latter
term should be nonnegative, so the imaginary parts of
� and 
 should be either zero (for lossless media) or
negative (for dissipative media).

For the derivation of the reciprocity theorems in
section 5 it is useful to distinguish between dissipative
and effectual media. A wave propagating through an
effectual medium gains energy. Effectual media will
usually be associated with a computational state. For
effectual media the time domain counterparts of �
and 
 are anticausal functions of time (i.e., they are
zero for t � 0), and the imaginary parts of � and 
 in
the frequency domain are positive.

Also for later use, we introduce time-reverse ad-
joint medium parameters �	 and 
	, according to

�	�x, �� � �*�x, ��, (8)


	�x, �� � 
*�x, ��. (9)

Note that when a medium is dissipative, its time-
reverse adjoint medium is effectual and vice versa. In
light of the discussion below equations (1) and (2), it

should be noted that the primes involve a change of
sign not only of the imaginary parts of � and 
 but
also of the vanishing imaginary part of �.

2.2. Wave Equation in Matrix-Vector Form
From here onward we assume that the preferred

propagation direction is along the x3 axis; see Figure
1. Hence x1 and x3 will be referred to as the lateral
and axial coordinates, respectively. In the lateral
direction the medium may be bounded or un-
bounded, hence x1,a and x1,b in Figure 1 are finite
(with x1,a � x1,b) or infinite (with x1,a 3 �� and
x1,b 3 ��). In the former case, homogeneous
Dirichlet or Neumann boundary conditions will be
imposed at x1 � x1,a and x1 � x1,b . In the latter case
it will be assumed that the medium is laterally homo-
geneous, lossless, and source-free beyond some finite
�x1 � value; moreover, the wave fields are assumed to
lie in the appropriate Sobolev space; that is, they are
assumed to have “sufficient decay” for x1 3 
�
[Rudin, 1973; de Hoop, 1992].

We reorganize the general wave equation into a

Table 1. Overview of Electromagnetic and Acoustic Field Quantities, Medium Parameters, and Source Functionsa

P Q1 Q3 � 
 B C1 C3

TE E2 H3 �H1 � � 
/j� � � �/j� �J2
e �J3

m J1
m

TM H2 �E3 E1 � � �/j� � � 
/j� �J2
m J3

e �J1
e

P (fluids) �T33 V1 V3 � | D11 � D33 F1 F3
SH (solids) V2 �T21 �T23 | 1/� F2 D12 � D21 D23 � D32

aFor electromagnetic waves, field quantities are Ei (electric field strength) and Hi (magnetic field strength), medium parameters are
� (permittivity), � (permeability), 
 (conductivity), and � (magnetic hysteresis loss term), and source functions are J i

e (electric current
density) and J i

m (magnetic current density). For acoustic waves, field quantities are Vi (particle velocity) and Tij (stress), medium
parameters are � (compressibility), � (shear modulus), and | (mass density) and source functions are Fi (force density) and Dij
(deformation rate density).

Figure 1. Configuration for which we will derive a reci-
procity theorem for one-way wave fields. The direction of
preference is chosen parallel to the x3 axis. The coupled
one-way wave fields P � and P � will be defined in section
3.3.
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form that acknowledges the direction of preference.
By eliminating Q1 from the system of equations (4)
and (5) we obtain

	3Q � ÂQ � D, (10)

where the wave field vector Q and the source vector D
are given by

Q � � P
Q3

� and D � �
C3

B �
1

j�
	1� 1



C1�� (11)

and the operator matrix Â is given by

Â � � 0 �j�


�j�Â 0 � , (12)

with

Â � � �
1

� 2 	1� 1



	1 � � . (13)

The circumflex denotes an operator containing the
lateral differentiation operator 	1. Finally, we intro-
duce an operator Â	 for the time-reverse adjoint
medium, defined by the parameters �	 and 
	. Ac-
cording to (8), (9), and (13) this operator is given by

Â	 � Â*. (14)

Note that an “operator for the time-reverse adjoint
medium” is not by definition the same as the “adjoint
operator for the original medium.” We come back to
this in section 4.3.

3. One-Way Wave Equation
In this section we derive the matrix-vector form of

the coupled system of equations for electromagnetic
or acoustic one-way wave fields in dissipative inho-
mogeneous media (which we will call for short the
“one-way wave equation”). First we introduce the
square root operator that plays a central role in the
one-way wave equation. Next we use this operator to
diagonalize the operator matrix Â. Finally, we de-
compose the wave field vector Q into one-way wave
fields and derive the one-way wave equation, employ-
ing the diagonalized form of the operator matrix Â.

3.1. Introduction of the Square Root Operator
We start by introducing an operator �̂2 via [Brek-

hovskikh, 1960; Wapenaar and Berkhout, 1989, Ap-
pendix B]

�̂2 � � 2
 1/ 2�Â
 1/ 2 � �, (15)

or, using (13),

�̂2 � k 2 � 	1
2, (16)

where

k 2 � ��

c � 2

� �
� 2 �
3�	1
� 2

4
 2 �
	1

2


2

. (17)

Note that �̂2, as defined in (16), represents the
Helmholtz operator; (17) has the form of the Klein-
Gordon dispersion relation, known from relativistic
quantum mechanics [Messiah, 1962; Anno et al.,
1992], with c(x, �) being the (complex-valued) prop-
agation velocity and k(x, �) being the wave number.

We introduce an operator �̂1 as the square root of
the Helmholtz operator �̂2, according to [Claerbout,
1971; Berkhout, 1982; Fishman et al., 1987; de Hoop,
1992, 1996; Wapenaar and Grimbergen, 1996]

�̂1�̂1 � �̂2 , or �̂1 � �̂2
1/ 2. (18)

Unlike �̂2, the square root operator �̂1 cannot be
written as a polynomial in 	1. Therefore �̂1 is a
so-called pseudodifferential operator [Kumano-go,
1974; Treves, 1980; Fishman, 1992]. The square root
of an operator is not uniquely defined. In the follow-
ing we assume that the square root is taken such that
the imaginary part of the eigenvalue spectrum of �̂1
is negative for dissipative media and positive for
effectual media, analogous to the imaginary parts of �
and 
. An example of the eigenvalue spectra of �̂2
and �̂1 for dissipative and effectual media is shown in
Figure 2.

Given the Helmholtz and square root operators in
a specific medium (either dissipative or effectual), we
obtain for the operators in the time-reverse adjoint
medium, analogous to (14),

�̂	2 � �̂*2 and �̂	1 � �̂*1 . (19)

For the limiting case of a lossless medium, �̂	2
reduces to �̂2. However, for the square root operator
we have �̂	1 � �̂1: The prime changes the sign of the
vanishing imaginary part of the frequency � and,
consequently, of the imaginary part of the eigenvalue
spectrum; see Figure 3.

3.2. Diagonalization of the Operator Matrix

Using (15), we may reformulate the operator ma-
trix Â, as defined in (12), as follows:
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Â � �
0 �j�


1

j�
 1/ 2 ��̂2
 �1/ 2 � � 0 � . (20)

Using the square root operator introduced in (18), we
may thus write for the operator matrix Â

Â � L̂ĤL̂ �1, (21)

where Ĥ is a diagonal operator matrix, containing the
square root operator on its diagonal, according to

Ĥ � ��j�̂1 0

0 j�̂1
� (22)

and where

L̂ � �L̂1 L̂1

L̂2 �L̂2
� , L̂ �1 �

1

2 �L̂1
�1 L̂2

�1

L̂1
�1 �L̂2

�1� , (23)

with

L̂1 � ��


2 � 1/ 2

�̂1
�1/ 2,

1

2
L̂1

�1 � 
�̂1
1/ 2�2�
� �1/ 2 � �,

(24)

L̂2 � �2�
� �1/ 2�̂1
1/ 2,

1

2
L̂2

�1 � 	�̂1
�1/ 2��


2 � 1/ 2

� 
 .

(25)

Note that �̂1
1/2 represents the square root of the

square root operator. Similarly to the above, we
assume that this square root is taken such that the
imaginary part of the eigenvalue spectrum of �̂1

1/2 is
negative for dissipative media and positive for effec-
tual media. Analogous to (19), we have the following
relations for the operators L̂	1 and L̂	2 in the time-
reverse adjoint medium

L̂	1 � L̂*1 and L̂	2 � L̂*2 . (26)

Figure 2. Example of eigenvalue spectra (in the complex plane) of the Helmholtz operator �̂2 and the
square root operator �̂1, for a dissipative and an effectual medium. The solid lines denote the
continuous (or essential) part of the spectrum; the dotted lines denote the discrete eigenvalues, usually
associated with guided modes [Grimbergen et al., 1998].
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3.3. One-Way Wave Equation in Matrix-Vector
Form

We introduce a “one-way wave field vector” P,
according to

P � �P �

P �� , (27)

where P � and P � are the one-way wave fields that
propagate in the positive and negative x3 direction,
respectively; see Figure 1. In a homogeneous me-
dium, P � and P � propagate independently; hence,
for this situation, P satisfies an equation of the same
form as (10), with operator matrix Â replaced by the
diagonal operator matrix Ĥ. Our aim is to find an
equation for P in an inhomogeneous medium, such
that the leading term of the operator matrix is again
given by the diagonal operator matrix Ĥ [Corones,
1975; Fishman et al., 1987]. To this end, we substitute
(21) into (10) and multiply both sides by L̂�1, which
gives

L̂ �1	3Q � Ĥ L̂ �1Q � L̂ �1D. (28)

This suggests that we define P as

P � L̂ �1Q or, equivalently, Q � L̂P, (29)

in order to arrive at the desired equation for P. Note
that L̂�1 is then by definition a decomposition oper-
ator, and consequently, L̂ is a composition operator.
After some straightforward manipulations we obtain
the one-way wave equation

	3P � B̂P � S, (30)

where the one-way operator matrix B̂ is defined as

B̂ � Ĥ � L �1	3 L̂ (31)

and the one-way source vector S is defined as

S � L̂ �1D or, equivalently, D � L̂S. (32)

In analogy to (27) we write

Figure 3. Example of eigenvalue spectra (in the complex plane) of the Helmholtz operator �̂2 and
the square root operator �̂1, for a lossless medium. Note that the sign of the imaginary part of the
eigenvalue spectrum of the square root operator depends on the sign of the vanishing imaginary part
of �.

WAPENAAR ET AL.: RECIPROCITY THEOREMS FOR ONE-WAY WAVE FIELDS856



S � �S �

S �� , (33)

where S � and S � are the sources for the one-way
wave fields P � and P � , respectively. Using (22) and
(23), we may write for B̂, as defined in (31),

B̂ � ��j�̂1 0

0 j�̂1
� � � T̂ �R̂

�R̂ T̂ � , (34)

where R̂ and T̂ are reflection and transmission oper-
ators, respectively, given by

R̂ � �L̂1
�1	3 L̂1 � L̂2

�1	3 L̂2 �/2, (35)

T̂ � ��L̂1
�1	3 L̂1 � L̂2

�1	3 L̂2 �/2. (36)

It appears that unlike the operator matrix Â, the
one-way operator matrix B̂ distinguishes explicitly
between propagation (the diagonal matrix in (34))
and scattering (the full matrix in (34); note that this
latter operator matrix vanishes in any region where
the medium parameters do not vary in the axial
direction).

On account of (26) we have

R̂	 � R̂* and T̂	 � T̂*. (37)

Hence, given the one-way operator matrix B̂ in a
specific medium (either dissipative or effectual), we
obtain for the one-way operator matrix in the time-
reverse adjoint medium, using (19) and (37),

B̂ � ��j�̂*1 0

0 j�̂*1
� � � T̂* �R̂*

�R̂* T̂* � . (38)

Note that for the limiting case of a lossless medium
we have B̂� � B̂; see the discussion below (19).

4. Symmetry Properties of the One-Way
Operator Matrix

The one-way wave equation (30) that we derived in
section 3.3 will be used in section 5 for the derivation
of reciprocity theorems for one-way wave fields. For
this purpose we first need to establish a number of
symmetry properties of the one-way operator matrix
B̂, defined in (31). This is the subject of the current
section. First we briefly review the concept of trans-
posed and adjoint operators. Next we derive symme-
try properties of square root operators. Finally, we
employ the results to derive the symmetry properties
of the one-way operator matrix B̂.

4.1. Transposed and Adjoint Operators

For two scalar functions f( x1) and g( x1) we define
the bilinear form as [Rudin, 1973; Reddy, 1986]

�f, g�b � �
x1,a

x1,b

f�x1 �g�x1 � dx1 (39)

and the sesquilinear form as

�f, g� s � �
x1,a

x1,b

f*�x1 �g�x1 � dx1 . (40)

The integration limits x1,a and x1,b may be either
finite or infinite; in the latter case, f( x1) and g( x1)
are assumed to lie in the appropriate Sobolev space.
Consider a scalar operator �̂ � �̂( x1 , 	1). We
introduce the transposed operator �̂ t via

��̂f, g�b � �f, �̂ tg�b (41)

and the adjoint operator �̂† via

��̂f, g� s � �f, �̂ †g� s . (42)

Note that the following relation holds between the
transposed and the adjoint operators

�̂ † � ��̂ t�*. (43)

An operator is called symmetric when it obeys the
relation

�̂ t � �̂. (44)

On the other hand, it is self-adjoint when

�̂ † � �̂. (45)

For two vector functions f( x1) and g( x1) we define
the bilinear form as

�f, g�b � �
x1,a

x1,b

f t�x1 �g�x1 � dx1 (46)

and the sesquilinear form as

�f, g� s � �
x1,a

x1,b

f †�x1 �g�x1 � dx1 . (47)

Note that we use the superscript t for transposed
operators (equation (41)) as well as for transposed
vectors or matrices (equation (46)). Similarly, the
superscript dagger is used to denote adjoint operators
(equation (42)) as well as adjoint (i.e., complex
conjugate transposed) vectors or matrices (equation
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(47)). In the following we use these superscripts also
for transposed and adjoint matrices containing oper-
ators. Consider an operator matrix

Û � Û�x1 , 	1 � � ��̂11 �̂12

�̂21 �̂22
� . (48)

We introduce the transposed operator matrix Û t via

�Û f, g�b � �f, Û t g�b . (49)

From the relations above it easily follows that

Û t � ��̂11
t �̂21

t

�̂12
t �̂22

t � ; (50)

hence Û t is a transposed matrix, containing trans-
posed operators. The adjoint operator matrix Û† is
introduced via

�Û f, g� s � �f, Û †g� s . (51)

Note that the following relation holds between the
transposed and the adjoint operator matrices

Û † � �Û t�*. (52)

4.2. Symmetry of Square Root Operators

We demonstrate the symmetry of square root op-
erators, using a generic notation. The approach we
follow is modified after Dillen [2000]. Let �̂ � �̂( x1 ,
	1) be an arbitrary symmetric operator (in the sense
of equations (39), (41), and (44)), and let �̂ � �̂( x1 ,
	1) be its square root: �̂ � �̂1/2. In order to derive
the symmetry properties of �̂ we construct the fol-
lowing pseudodifferential equation:

	 z f � �j�̂f, (53)

with f � f( x1 , z) (note that z is a new variable, which
bears no relation to x3). We assume that the square
root is taken such that the imaginary part of the
eigenvalue spectrum of �̂ is either negative (for all
eigenvalues) or positive (again for all eigenvalues).
This is equivalent to stating that either

lim
z3�

f � 0 or lim
z3��

f � 0, (54)

for any f obeying (53). Obviously, when �̂ is the
Helmholtz operator for a dissipative medium, (53)
(together with the first condition of (54)) has the form
of a one-way wave equation for P � waves in the ( x1 ,
z) coordinate system. Throughout this analysis, how-
ever, �̂ is an arbitrary symmetric operator, so in

general we cannot assign a physical interpretation to
(53). Note that since �̂ is not a function of z, (53)
implies

	 z
2f � ��̂f. (55)

Let f and g be two linearly independent solutions of
(53). We introduce an interaction quantity �, accord-
ing to

� � �f, 	 zg�b � �	 z f, g�b . (56)

On account of (54) we have either

lim
z3�

� � 0 or lim
z3��

� � 0. (57)

We evaluate the z derivative of �, which yields

	 z� � �	 z f, 	 zg�b � �f, 	 z
2g�b � �	 z f, 	 zg�b � �	 z

2f, g�b

� ��̂f, g�b � �f, �̂g�b . (58)

Since �̂ is assumed to be a symmetric operator, we
obtain

	 z� � 0. (59)

From (57) and (59) we obtain � � 0 for all z, or, using
(56),

�f, 	 zg�b � �	 z f, g�b . (60)

This implies, together with (53),

�f, �̂g�b � ��̂f, g�b , (61)

or, according to (41),

�̂ t � �̂. (62)

Hence, under the assumptions made above, the
square root of a symmetric operator is symmetric.
Using induction it follows that the operator �̂1/2n

is
symmetric for any n � 0:

��̂ 1/ 2 n
� t � �̂ 1/ 2 n

. (63)

4.3. Symmetry Properties of the One-Way
Operator Matrix

First we show that the Helmholtz operator is
symmetric. For fixed � and fixed x3 the Helmholtz
operator defined in (16) is of the form �̂2 � �̂2( x1 ,
	1). Substituting this operator in the left-hand side of
(41) and applying integration by parts twice yields
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��̂2 f, g�b � �
x1,a

x1,b


k 2fg � �	1 f��	1g�� dx1 � �	1 f�g�x1,a

x1,b

� �f, �̂2g�b � �	1 f�g�x1,a

x1,b � f�	1g��x1,a

x1,b . (64)

When x1,a and x1,b are finite, the last two terms on
the right-hand side vanish by imposing homogeneous
Dirichlet or Neumann boundary conditions for f and
g at x1,a and x1,b . When x1,a and x1,b are infinite,
these terms vanish when f and g lie in the appropriate
Sobolev space. In both cases we have ��̂2 f, g�b � �f,
�̂2g�b , or according to (41),

�̂2
t � �̂2 . (65)

Note that this symmetry relation is valid for any fixed
x3 value, no matter whether the medium parameters
vary in the x3 direction or not. Hence, for any fixed x3
value in an inhomogeneous medium we may use the
derivation of section 4.2 to show that the square root
operators �̂1 � �̂2

1/2, etc., are symmetric, according
to

�̂1
t � �̂1 , ��̂1

1/ 2� t � �̂1
1/ 2, etc. (66)

The condition for this derivation is that each square
root is taken such that the imaginary part of its entire
eigenvalue spectrum is either negative or positive,
which corresponds to a dissipative or an effectual
medium, respectively. Hence this derivation excludes
the limiting situation of a lossless medium, because in
that case a part of the eigenvalue spectrum of the
square root operator is real valued. However, for the
lossless situation the symmetry relations have been
established previously by modal decomposition of the
operator kernels [Wapenaar and Grimbergen, 1996].
Hence we may conclude that (66) is valid for dissipa-
tive, lossless, and effectual media. Note that accord-
ing to (43), (65), (66), and (19) the adjoint Helmholtz
and square root operators are given by

�̂2
† � �̂	2 , �̂1

† � �̂	1 , ��̂1
1/ 2� † � ��̂1

1/ 2�	, etc. (67)

For the limiting case of a lossless medium the Helm-
holtz operator is self-adjoint (i.e., �̂2

† � �̂2), but the
square root operators are not (see the discussion
below equation (19)).

Using the fact that the inverse of a symmetric
operator is symmetric as well, we have (�̂1

�1/ 2) t �
�̂1

�1/ 2 . Consequently, for the transposed operators
L̂1

t and L̂2
t we obtain

L̂1
t �

1

2
L̂2

�1 and L̂2
t �

1

2
L̂1

�1; (68)

see (24) and (25). With these results we find for the
transposed reflection and transmission operators, de-
fined in (35) and (36),

R̂ t � 
�	3 L̂2
�1�L̂2 � �	3 L̂1

�1�L̂1 �/2, (69)

T̂ t � �
�	3 L̂2
�1�L̂2 � �	3 L̂1

�1�L̂1 �/2. (70)

Using the property (	3 L̂1
�1)L̂1 � L̂1

�1	3 L̂1 �
	3(L̂1

�1 L̂1) � 0, or (	3 L̂1
�1)L̂1 � �L̂1

�1	3 L̂1 (and
a similar property for L̂2), we obtain

R̂ t � R̂ and T̂ t � �T̂. (71)

Note that according to (43), (71), and (37) the adjoint
reflection and transmission operators are given by

R̂ † � R̂	 and T̂ † � �T̂	. (72)

The latter result illustrates the fact that an operator
for a time-reverse adjoint medium (T̂	) is not neces-
sarily the same as the adjoint operator for the original
medium (T̂ †).

We have now derived everything we need to find
the symmetry properties of the one-way operator
matrix B̂, defined in (34). From (50), (66), and (71) it
follows that the transposed one-way operator matrix
is given by

B̂ t � ��j�̂1 � T̂ �R̂

�R̂ j�̂1 � T̂� , (73)

or

B̂ tN � �NB̂, (74)

with

N � � 0 1
�1 0� . (75)

From (52) and (73) it follows that the adjoint one-way
operator matrix is given by

B̂ † � � j�̂*1 � T̂* �R̂*

�R̂* �j�̂*1 � T̂*� , (76)

or

B̂ †J � �JB̂�, (77)
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with B̂� being the one-way operator matrix in the
time-reverse adjoint medium (see equation (38)) and

J � �1 0
0 �1� . (78)

5. Reciprocity Theorems for One-Way
Wave Fields

We derive reciprocity theorems that interrelate the
one-way wave vectors, operator matrices, and source
vectors in two different states. These states will be
distinguished by the subscripts A and B; see Table 2.
The domain � for which we derive the reciprocity
theorems is defined as � � {x�x1,a � x1 � x1,b �
x3,a � x3 � x3,b}; see Figure 1. For the boundary 	�
of this domain we write 	� � 	�1 � 	�3, where
	�1 � {x�x1 � x1,a � x3,a � x3 � x3,b} � {x�x1 �
x1,b � x3,a � x3 � x3,b} and 	�3 � {x�x3 � x3,a �
x1,a � x1 � x1,b} � {x�x3 � x3,b � x1,a � x1 �
x1,b}; see Figure 1. The wave field conditions that
have been discussed above equation (10) are assumed
to apply to PA as well as to PB .

5.1. Convolution-Type Reciprocity Theorem
for One-Way Wave Fields

We define a convolution-type “interaction quan-
tity” between oppositely propagating waves in both
states, according to

	3 �PA
�PB

� � PA
�PB

��, (79)

or, using a more compact notation,

	3 �PA
t NPB �. (80)

We speak of “convolution type” since the products in
the frequency domain (PA

�PB
� , etc.) correspond to

convolutions in the time domain. Applying the prod-
uct rule for differentiation, substituting the one-way
wave equation (30) for states A and B, integrating the
result over domain � with boundary 	�, and applying
the theorem of Gauss, yields

�
	�3

PA
t NPBn3 dx1 �

�
�

�PA
t NB̂BPB � �B̂APA � tNPB � d 2x

� �
�

�PA
t NSB � SA

t NPB � d 2x, (81)

where the component n3 of the outward pointing nor-
mal vector on 	�3 is defined as n3 � �1 for x3 � x3,a
and n3 � �1 for x3 � x3,b. Note that the domain
integrals could be written as

�
�

� � d 2x � �
x3,a

x3,b

dx3�
x1,a

x1,b

� � dx1 .

Hence, on account of equations (46), (49), and (74)
we obtain for the x1 integral in the second term on
the right-hand side of (81)

�B̂APA , NPB b � �PA , B̂A
t NPB �b

� ��PA , NB̂APB �b . (82)

Using this result, we may rewrite (81) as

�
	�3

PA
t NPBn3 dx1 � �

�

PA
t N�B̂B � B̂A �PB d 2x

� �
�

�PA
t NSB � SA

t NPB � d 2x. (83)

Equation (83) formulates a reciprocity theorem of the
convolution type for one-way wave fields. It relates
the one-way wave field vectors at the boundary 	�3 to
the one-way sources and the contrast between the
one-way operators in both states in domain �. Equation
(83) applies to lossless as well as dissipative and effec-
tual media. In its general form, (83) provides a basis for,
amongst others, representations of scattered one-way
wave fields in terms of generalized Bremmer series
expansions or in terms of generalized primaries [Coro-
nes, 1975; de Hoop, 1996; Wapenaar, 1996; van Stralen et
al., 1996]. Note that the contrast term in the right-hand
side of (83) vanishes when the medium parameters in
both states are identical. Upon substituting (27), (33),
and (75) in the remaining terms we may rewrite (83) as

�
	�3

�PA
�PB

� � PA
�PB

��n3 dx1 � �
�

�PA
�SB

� � PA
�SB

�

� SA
�PB

� � SA
�PB

�� d 2x. (84)

Table 2. States in the One-Way Reciprocity Theorems

State A State B

Wave field PA PB

Operator B̂A B̂B

Source SA SB
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For comparison, for the same situation the convolu-
tion-type reciprocity theorem for the total wave fields
defined in Table 1 reads [de Hoop, 1987, 1988;
Fokkema and van den Berg, 1993]

�
	�3

�PAQ3,B � Q3, APB �n3 dx1 � �
�

�PABB � Qi, ACi,B

� Ci, AQi,B � BAPB � d 2x. (85)

Note that when there are only outgoing waves at 	�3
(i.e., PA

� � PB
� � 0 at x3 � x3,a and PA

� � PB
� �

0 at x3 � x3,b), then the term on the left-hand side of
(84) vanishes as well. Finally, for the special case of
one-way point sources defined as SA

� � �(x � xA),
SB

� � �(x � xB), and SA
� � SB

� � 0, with xA � �
and xB � �, we obtain

PA
��xB , �� � PB

��xA , ��. (86)

The left-hand side represents the one-way wave field
PA

� at observation point xB , due to the one-way
source SA

� at source point xA ; the right-hand side
represents the one-way wave field PB

� at observation
point xA , due to the one-way source SB

� at source
point xB . Hence (86) is a one-way version of the
well-known principle that an electromagnetic or
acoustic response remains the same when source and
receiver are interchanged.

5.2. Correlation-Type Reciprocity Theorem
for One-Way Wave Fields

We define a correlation-type interaction quantity,
according to

	3 ��PA
��*PB

� � �PA
��*PB

��, (87)

or, using a more compact notation,

	3 �PA
†JPB �. (88)

We speak of “correlation type” since the products in
the frequency domain ((PA

�)*PB
� , etc.) correspond

to correlations in the time domain. Applying the
product rule for differentiation, substituting the one-
way wave equation (30) for states A and B, integrat-
ing the result over domain � with boundary 	�, and
applying the theorem of Gauss, yields

�
	�3

PA
†JPBn3 dx1 �

�
�

�PA
†JB̂BPB � �B̂APA � †JPB � d 2x

� �
�

�PA
†JSB � SA

†JPB � d 2x. (89)

On account of (47), (51), and (77) we obtain for the
x1 integral in the second term on the right-hand side
of (89)

�B̂APA , JPB � s � �PA , B̂A
†JPB � s

� ��PA , JB̂�APB � s . (90)

Using this result, we may rewrite (89) as

�
	�3

PA
†JPBn3 dx1 � �

�

PA
†J�B̂B � B̂�A �PB d 2x

� �
�

�PA
†JSB � SA

†JPB � d 2x. (91)

Equation (91) formulates a reciprocity theorem of the
correlation type for one-way wave fields. It applies to
lossless as well as dissipative and effectual media.
Equation (91) provides a basis for reflection imaging
based on inverse one-way wave field propagators
[Wapenaar, 1996]. Note that the contrast term in the
right-hand side of (91) vanishes when the medium
parameters in one state are the time-reverse adjoint
versions of the medium parameters in the other state.
Upon substituting (27), (33), and (78) in the remain-
ing terms we may rewrite (91) as

�
	�3

��PA
��*PB

� � �PA
��*PB

��n3 dx1 � �
�

��PA
��*SB

�

� �PA
��*SB

� � �SA
��*PB

� � �SA
��*PB

�� d 2x. (92)

For comparison, for the same situation the correla-
tion-type reciprocity theorem for the total wave fields
defined in Table 1 reads [de Hoop, 1987, 1988;
Fokkema and van den Berg, 1993]

�
	�3

�P*AQ3,B � Q*3, APB �n3 dx1 � �
�

�P*ABB

� Q*i, ACi,B � C*i, AQi,B � B*APB � d 2x. (93)
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Equation (92) applies, for example, to the situation
where state B corresponds to a physical wave field in
an actual dissipative medium and state A corresponds
to a computational wave field in an effectual medium
that is the time-reverse adjoint of the actual dissipa-
tive medium. Of course, the computational state A
should be treated with care because of the instabilities
inherent to wave propagation in an effectual medium.
In numerical implementations, stability may be ob-
tained by suppressing a part of the eigenvalue spec-
trum of the square root operator for the effectual
medium (Figure 2).

For the limiting case of a lossless medium, (92) is
valid when the medium parameters in both states are
identical and the square root operator in one state
(for example, the physical state B) is defined via the
limit Im (�) 1 0 and that in the other state (for
example, the computational state A) is defined via the
limit Im (�) 2 0; see Figure 3. Again, the latter
choice will lead to instabilities in numerical imple-
mentations. A simple robust way of stabilizing the
numerical implementation of (92) for lossless media
is by defining the square root operator via the limit Im
(�) 1 0 in both states, which of course involves an
approximation [Wapenaar and Grimbergen, 1996].

6. Conclusions
We have derived reciprocity theorems of the con-

volution type (equation (83)) and of the correlation
type (equation (91)), both for electromagnetic or
acoustic one-way wave fields in dissipative inhomoge-
neous media. The same results were derived before
for lossless inhomogeneous acoustic media. Both
theorems honor the natural separation between prop-
agation and scattering in the one-way wave equations
(see equations (30) and (34)). They are particularly
suited for wave propagation problems in which there
is a “preferred direction of propagation,” like in
electromagnetic or acoustic wave guides and in seis-
mic exploration. Both theorems relate the one-way
wave field vectors at the boundary 	�3 of some
domain � (Figure 1) to the one-way sources and the
contrast between the one-way operators in both states
in the domain �. The contrast term in the reciprocity
theorem of the convolution type vanishes when the
medium parameters in both states are identical; the
contrast term in the reciprocity theorem of the cor-
relation type vanishes when the medium parameters
in one state are the time-reverse adjoint versions of
the medium parameters in the other state. The one-

way reciprocity theorem of the convolution type
provides a basis for representations of scattered one-
way wave fields in terms of generalized Bremmer
series expansions or in terms of generalized prima-
ries. The one-way reciprocity theorem of the correla-
tion type finds its application in reflection imaging
based on inverse one-way wave field propagators.
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S � �S �

S �� , (33)

where S � and S � are the sources for the one-way
wave fields P � and P � , respectively. Using (22) and
(23), we may write for B̂, as defined in (31),

B̂ � ��j�̂1 0

0 j�̂1
� � � T̂ �R̂

�R̂ T̂ � , (34)

where R̂ and T̂ are reflection and transmission oper-
ators, respectively, given by

R̂ � �L̂1
�1	3 L̂1 � L̂2

�1	3 L̂2 �/2, (35)

T̂ � ��L̂1
�1	3 L̂1 � L̂2

�1	3 L̂2 �/2. (36)

It appears that unlike the operator matrix Â, the
one-way operator matrix B̂ distinguishes explicitly
between propagation (the diagonal matrix in (34))
and scattering (the full matrix in (34); note that this
latter operator matrix vanishes in any region where
the medium parameters do not vary in the axial
direction).

On account of (26) we have

R̂	 � R̂* and T̂	 � T̂*. (37)

Hence, given the one-way operator matrix B̂ in a
specific medium (either dissipative or effectual), we
obtain for the one-way operator matrix in the time-
reverse adjoint medium, using (19) and (37),

B̂ � ��j�̂*1 0

0 j�̂*1
� � � T̂* �R̂*

�R̂* T̂* � . (38)

Note that for the limiting case of a lossless medium
we have B̂� � B̂; see the discussion below (19).

4. Symmetry Properties of the One-Way
Operator Matrix

The one-way wave equation (30) that we derived in
section 3.3 will be used in section 5 for the derivation
of reciprocity theorems for one-way wave fields. For
this purpose we first need to establish a number of
symmetry properties of the one-way operator matrix
B̂, defined in (31). This is the subject of the current
section. First we briefly review the concept of trans-
posed and adjoint operators. Next we derive symme-
try properties of square root operators. Finally, we
employ the results to derive the symmetry properties
of the one-way operator matrix B̂.

4.1. Transposed and Adjoint Operators

For two scalar functions f( x1) and g( x1) we define
the bilinear form as [Rudin, 1973; Reddy, 1986]

�f, g�b � �
x1,a

x1,b

f�x1 �g�x1 � dx1 (39)

and the sesquilinear form as

�f, g� s � �
x1,a

x1,b

f*�x1 �g�x1 � dx1 . (40)

The integration limits x1,a and x1,b may be either
finite or infinite; in the latter case, f( x1) and g( x1)
are assumed to lie in the appropriate Sobolev space.
Consider a scalar operator �̂ � �̂( x1 , 	1). We
introduce the transposed operator �̂ t via

��̂f, g�b � �f, �̂ tg�b (41)

and the adjoint operator �̂† via

��̂f, g� s � �f, �̂ †g� s . (42)

Note that the following relation holds between the
transposed and the adjoint operators

�̂ † � ��̂ t�*. (43)

An operator is called symmetric when it obeys the
relation

�̂ t � �̂. (44)

On the other hand, it is self-adjoint when

�̂ † � �̂. (45)

For two vector functions f( x1) and g( x1) we define
the bilinear form as

�f, g�b � �
x1,a

x1,b

f t�x1 �g�x1 � dx1 (46)

and the sesquilinear form as

�f, g� s � �
x1,a

x1,b

f †�x1 �g�x1 � dx1 . (47)

Note that we use the superscript t for transposed
operators (equation (41)) as well as for transposed
vectors or matrices (equation (46)). Similarly, the
superscript dagger is used to denote adjoint operators
(equation (42)) as well as adjoint (i.e., complex
conjugate transposed) vectors or matrices (equation
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