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In wave theory, the homogeneous Green’s function
consists of the impulse response to a point source,
minus its time-reversal. It can be represented by
a closed boundary integral. In many practical
situations, the closed boundary integral needs to
be approximated by an open boundary integral
because the medium of interest is often accessible
from one side only. The inherent approximations
are acceptable as long as the effects of multiple
scattering are negligible. However, in case of
strongly inhomogeneous media, the effects of
multiple scattering can be severe. We derive double-
and single-sided homogeneous Green’s function
representations. The single-sided representation
applies to situations where the medium can be
accessed from one side only. It correctly handles
multiple scattering. It employs a focusing function
instead of the backward propagating Green’s function
in the classical (double-sided) representation. When
reflection measurements are available at the accessible
boundary of the medium, the focusing function can
be retrieved from these measurements. Throughout
the paper, we use a unified notation which applies to
acoustic, quantum-mechanical, electromagnetic and
elastodynamic waves. We foresee many interesting
applications of the unified single-sided homogeneous
Green’s function representation in holographic
imaging and inverse scattering, time-reversed wave
field propagation and interferometric Green’s function
retrieval.

1. Introduction
In wave theory, the homogeneous Green’s function
consists of the impulse response to a point source,
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minus its time-reversal. When there are no losses, the impulse response and its time-reversal
obey the same wave equation with a delta-singularity at the position of the point source. When
the difference of these wave equations is taken, the delta-singularities cancel each other. Hence,
the homogeneous Green’s function obeys a wave equation without a delta-singularity.

The homogeneous Green’s function can be represented by a closed boundary integral.
This representation plays an important role in optical, acoustic and seismic holography [1–3],
imaging and inverse scattering [4,5], time-reversal acoustics [6] and Green’s function retrieval
from ambient noise [7,8]. In many practical situations, the closed boundary integral needs
to be approximated by an open boundary integral because the medium of interest is often
accessible from one side only. This can lead to unacceptable errors, particularly when multiple
scattering cannot be ignored. To overcome this problem, we recently formulated a single-sided
homogeneous Green’s function representation [9]. This representation was derived for the scalar
wave equation. In this paper, we use a unified matrix-vector notation for acoustic, quantum-
mechanical, electromagnetic and elastodynamic waves. Based on a unified wave equation,
we derive double- and single-sided representations for the homogeneous Green’s function. In
particular, the single-sided homogeneous Green’s function representation has many interesting
potential applications in holographic imaging and inverse scattering, time-reversed wave field
propagation and interferometric Green’s function retrieval, using scalar or vectorial wave fields.

2. Unified double-sided two-way representation
Throughout this paper, we define a ‘closed boundary’ as two infinite horizontal boundaries, one
above and one below the medium of interest. For this configuration, we derive in this section a
double-sided homogeneous Green’s function representation, expressed as integrals along these
two boundaries. We start in §2a by defining a unified two-way wave equation, which relates the
vertical derivative of a wave vector via an operator matrix to the derivatives of the same wave
vector in the horizontal plane. In §2b, we discuss two-way reciprocity theorems, using specific
symmetry properties of the two-way wave equation. In §2c, we introduce the homogeneous
Green’s function of the two-way wave equation and discuss its symmetry properties. Finally, in
§2d, we use the two-way reciprocity theorem to derive the double-sided two-way representation
of the homogeneous Green’s function.

(a) Two-way wave equation
We define the temporal Fourier transform of a space- and time-dependent quantity f (x, t) as

f (x, ω)=
∫∞
−∞

f (x, t) exp(iωt) dt. (2.1)

Here t denotes time, ω angular frequency, ‘i’ is the imaginary unit and x= (x1, x2, x3) denotes the
Cartesian coordinate vector; the x3-axis is pointing downward. For notational convenience, we
use the same symbol (here f ) for quantities in the time domain and in the frequency domain. The
starting point for our derivations is a unified wave equation in the space-frequency domain, in
matrix-vector form given by

∂3q−Aq= d. (2.2)

Here q= q(x, ω) is a N × 1 vector containing a specific choice of wave field components, d=
d(x, ω) is a N × 1 vector containing the source functions, and A=A(x, ω) is a N ×N operator
matrix containing the medium parameters and the differential operators ∂1 and ∂2 (∂k for k= 1, 2, 3
stands for differentiation in the xk-direction). The value of N depends on the type of wave field
considered. We call equation (2.2) the ‘two-way’ wave equation because, unlike the ‘one-way’
wave equation discussed in §3, equation (2.2) does not explicitly distinguish between ‘downward’
and ‘upward’ propagation. The wave field vector q implicitly contains the superposition of
downgoing and upgoing waves.
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For acoustic waves in fluids, we have N= 2 [10–13], for quantum-mechanical waves N= 2, for
electromagnetic waves in matter N= 4 [14–16], for elastodynamic waves in solids N= 6 [17,18],
for poroelastic waves in porous solids N= 8, for coupled elastodynamic and electromagnetic
waves in piezo-electric materials N= 10, and for coupled elastodynamic and electromagnetic
waves in porous solids N= 12 [19]. From here onward, we consider lossless media, hence, we
exclude the two situations that concern waves in porous solids.

We subdivide the vectors in equation (2.2) into N/2× 1 subvectors and the matrix into N/2×
N/2 submatrices, according to

q=
(

q1
q2

)
, d=

(
d1
d2

)
and A=

(
A11 A12
A21 A22

)
. (2.3)

We illustrate this for acoustic waves and for the Schrödinger equation. The basic acoustic
equations are the equation of motion and the deformation equation

∂ip+ ρ∂tvi = fi (2.4)

and

∂ivi + κ∂tp= q. (2.5)

Here the wave field components are acoustic pressure p= p(x, t) and particle velocity vi = vi(x, t),
the source functions are external force density fi = fi(x, t) and volume-injection rate density
q= q(x, t) (not to be confused with the components q1 and q2 of wave field vector q in equation
(2.3)), the medium parameters are compressibility κ = κ(x) and mass density ρ = ρ(x). Lower
case Latin subscripts (except t) run from 1 to 3, whereas lower case Greek subscripts can take
the values 1 and 2 to denote the horizontal components. The summation convention applies to
repeated subscripts. We transform equations (2.4) and (2.5) to the space-frequency domain, using
equation (2.1). The time derivatives are thus replaced by −iω. Next, by eliminating the horizontal
components of the particle velocity, v1 and v2, we obtain

∂3p− iωρv3 = f3 (2.6)

and

∂3v3 − iωκp+ 1
iω

∂α

(
1
ρ

∂αp
)
= q+ 1

iω
∂α

(
1
ρ

fα

)
, (2.7)

with p= p(x, ω), etc. Equations (2.6) and (2.7) can be cast in the form of two-way wave equation
(2.2) by defining the vectors and operator matrix as follows:

q=
(

p
v3

)
, d=

⎛
⎝ f3

q+ 1
iω

∂α

(
1
ρ

fα

)⎞⎠ and A=

⎛
⎜⎝ 0 iωρ

iωκ − 1
iω

∂α

(
1
ρ

∂α ·
)

0

⎞
⎟⎠ . (2.8)

Schrödinger’s wave equation for a particle with mass m in a potential V=V(x) is given
by [20,21]

ih̄∂tΨ =− h̄2

2m
∂i∂iΨ + VΨ , (2.9)

where Ψ =Ψ (x, t) is the wave function and h̄= h/2π , with h Planck’s constant. We transform this
equation to the space-frequency domain, replace ∂t by −iω, and separate the vertical derivatives
(∂3∂3) from the horizontal derivatives (∂α∂α). This gives

2h̄
im

∂3∂3Ψ − 4i
(

ω − V
h̄

)
Ψ + 2h̄

im
∂α∂αΨ = 0, (2.10)
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with Ψ =Ψ (x, ω). This equation, together with the trivial equation ∂3Ψ = (im/2h̄)((2h̄/im)∂3Ψ ), can
be cast in the form of two-way wave equation (2.2), with

q=
⎛
⎝ Ψ

2h̄
im

∂3Ψ

⎞
⎠ , d=

(
0
0

)
and A=

⎛
⎜⎝ 0

im
2h̄

4i
(

ω − V
h̄

)
− 2h̄

im
∂α∂α 0

⎞
⎟⎠ . (2.11)

The vectors and matrices for the electromagnetic and elastodynamic situation can be found in
several of the aforementioned references. Details of the definitions vary from author to author. In
this paper, we employ the definitions of Appendix C in reference [22], albeit that here we only
consider real-valued medium parameters (because we consider lossless media) and we replace
−j by i (to be consistent with the use of i in Schrödinger’s equation).

For all considered cases, matrix A obeys the following symmetry properties:

NAtN=A and KA†K=−A, (2.12)

where

N=
(

O I
−I O

)
and K=

(
O I
I O

)
, (2.13)

with I and O being identity and zero matrices of appropriate size. Superscript t denotes the
transposed operator and † the adjoint (the complex conjugate transposed). Here transposed and
adjoint operators are introduced via their integral properties∫

A

(U f)tg d2x=
∫
A

ft(U tg) d2x and
∫
A

(U f)†g d2x=
∫
A

f†(U †g) d2x, (2.14)

where A denotes an infinite horizontal integration boundary at arbitrary depth (x3 =constant),
f= f(x) and g= g(x) are vector functions with ‘sufficient decay’ at infinity, ft is the transposed
vector, f† is the complex conjugate transposed vector and U is an operator matrix containing
the differential operators ∂1 and ∂2. Equation (2.14) implies that U t involves transposition of the
matrix and transposition of the operators contained in the matrix, with ∂ t

1 =−∂1 and ∂ t
2 =−∂2.

Other relevant implications are U † = (U t)∗ (where the asterisk denotes complex conjugation) and
(UV )t =V tU t (where V is also an operator matrix).

For all considered cases, the submatrices of A are either real-valued or imaginary-valued,
according to

�A11 =�A22 =�A12 =�A21 =O, (2.15)

where � and � denote the real and imaginary part, respectively. From this equation and the
structure of matrix A defined in equation (2.3), we find the following additional symmetry
property:

JA∗J=A, with J=
(

I O
O −I

)
. (2.16)

The wave vector q for all considered cases is scaled such that the power-flux density in the x3-
direction (or, for quantum-mechanical waves, the probability current density) is given by

J(x, ω)= 1
4 q†Kq= 1

4 {q†
1q2 + q†

2q1}. (2.17)

Finally, table 1 summarizes properties of matrices N, K and J that are frequently used throughout
this paper without always explicitly mentioning this.

(b) Two-way reciprocity theorems
We consider two wave field states A and B, characterized by independent wave vectors qA(x, ω)
and qB(x, ω), obeying wave equation (2.2) with independent source vectors dA(x, ω) and dB(x, ω)
and operator matrices AA(x, ω) and AB(x, ω), respectively. The subscripts of the operator matrices
refer to possibly different medium parameters (or quantum-mechanical potentials) in states A
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Table 1. Frequently used properties of matrices N, K and J.

matrix inversion/transposition mutual relations

N N−1 = Nt =−N N= JK=−KJ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K K−1 = Kt = K K= JN=−NJ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J J−1 = Jt = J J= NK=−KN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and B. We consider a spatial domain D enclosed by two infinite horizontal boundaries ∂D0 and
∂D1 (with ∂D1 below ∂D0), together denoted by ∂D. In this domain, we define the interaction
quantities ∂3{qt

ANqB} and ∂3{q†
AKqB}. Applying the product rule for differentiation, using wave

equation (2.2) in both states, integrating the result over domain D, applying the theorem of Gauss,
and using the symmetry relations of equation (2.12) for operator AA, we obtain the following
two-way reciprocity theorems [23,24]∫

D

(dt
ANqB + qt

ANdB) d3x=
∫
∂D

qt
ANqBn3 d2x−

∫
D

qt
AN(AB −AA)qB d3x (2.18)

and ∫
D

(d†
AKqB + q†

AKdB) d3x=
∫
∂D

q†
AKqBn3 d2x−

∫
D

q†
AK(AB −AA)qB d3x. (2.19)

Here n3 is the vertical component of the outward pointing normal vector on ∂D, with n3 =
−1 at the upper boundary ∂D0 and n3 =+1 at the lower boundary ∂D1. Equation (2.18) is
a convolution-type reciprocity theorem [25,26] because products like qt

ANqB in the frequency
domain correspond to convolutions in the time domain. Similarly, equation (2.19) is a correlation-
type reciprocity theorem [27] because products like q†

AKqB in the frequency domain correspond
to correlations in the time domain. Note that when there are no sources in D and the medium
parameters in D are equal in both states, then only the boundary integrals remain. These are
then so-called two-way propagation invariants, which have been extensively used in the analysis
of symmetry properties of reflection and transmission responses and for the design of efficient
numerical modelling schemes [28–31].

(c) Two-way homogeneous Green’s function
We introduce the two-way Green’s function G(x, xB, ω) as a N ×N matrix obeying wave equation
(2.2), with the source vector replaced by a diagonal point-source matrix, according to

∂3G−AG= Iδ(x− xB), (2.20)

where xB denotes the position of the point source of Green’s function. As boundary condition
we impose the physical radiation condition of outgoing waves at infinity, which corresponds to
causality in the time domain, i.e. G(x, xB, t)=O for t < 0. In other words, G(x, xB, ω) is the forward
propagating Green’s function. Analogous to matrix A, we subdivide Green’s matrix into N/2×
N/2 submatrices, according to

G(x, xB, ω)=
(

G11 G12
G21 G22

)
(x, xB, ω). (2.21)

The first subscript refers to the type of two-way wave field (q1 or q2) observed at x; the second
subscript refers to the type of source (d1 or d2) at xB. For example, for the acoustic situation we
have

G(x, xB, ω)=
(

Gp,f Gp,q

Gv,f Gv,q

)
(x, xB, ω), (2.22)

where subscripts p and v stand for the observed wave quantities acoustic pressure (p) and particle
velocity (v3) at x, and subscripts f and q stand for the source types external force (f3) and volume-
injection rate (q) at xB.
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The two-way homogeneous Green’s function Gh(x, xB, ω) is introduced as a solution of wave
equation (2.20), but without the delta singularity on the r.h.s. We therefore search for a second
solution of wave equation (2.20) (with the singularity), which will be subtracted from G(x, xB, ω) to
form the homogeneous Green’s function. To find this second solution, take the complex conjugate
of wave equation (2.20), and pre- and post-multiply all terms by J. This gives

∂3(JG∗J)− JA∗G∗J= JJδ(x− xB). (2.23)

Using the property JJ= I, this can be rewritten as

∂3(JG∗J)− JA∗JJG∗J= Iδ(x− xB), (2.24)

or, using equation (2.16),

∂3(JG∗J)−A(JG∗J)= Iδ(x− xB). (2.25)

Hence, JG∗(x, xB, ω)J is a second solution of wave equation (2.20). Subtracting wave equations
(2.20) and (2.25), we obtain

∂3Gh(x, xB, ω)−AGh(x, xB, ω)=O, (2.26)

with the two-way homogeneous Green’s function Gh(x, xB, ω) defined as

Gh(x, xB, ω)=G(x, xB, ω)− JG∗(x, xB, ω)J. (2.27)

Note that JG∗(x, xB, ω)J obeys the non-physical radiation condition of incoming waves at infinity,
which corresponds to acausality in the time domain, i.e. JG(x, xB,−t)J=O for t > 0. In other
words, JG∗(x, xB, ω)J is the backward propagating Green’s function. Using equation (2.21) and
the definition of J in equation (2.16), equation (2.27) can be written as

Gh(x, xB, ω)=
(
{G11 −G∗11} {G12 +G∗12}
{G21 +G∗21} {G22 −G∗22}

)
(x, xB, ω)

= 2

(
i�G11 �G12
�G21 i�G22

)
(x, xB, ω).

(2.28)

We conclude this section by deriving a reciprocity relation for Green’s function. To this end, we
use the convolution-type reciprocity theorem (equation (2.18)). For state A, we replace the wave
vector qA(x, ω) by matrix G(x, xA, ω) and the source vector dA(x, ω) by Iδ(x− xA), which defines
the source of Green’s function at xA. Similarly, for state B we replace qB(x, ω) by G(x, xB, ω) and
dB(x, ω) by Iδ(x− xB). We choose xA and xB both in D. We take the medium parameters to be the
same for both states, hence, the last integral in equation (2.18) vanishes. The boundary integral
in equation (2.18) vanishes on account of the Sommerfeld radiation condition of outgoing waves
at infinity. Using the sift-property of the Dirac delta function, the remaining integral in equation
(2.18) gives

NG(xA, xB, ω)+Gt(xB, xA, ω)N=O, (2.29)

or, using N−1 =−N,

NGt(xB, xA, ω)N=G(xA, xB, ω). (2.30)

Using JN=−NJ, it follows that the same relation holds for the two-way homogeneous Green’s
function defined in equation (2.27), i.e.

NGt
h(xB, xA, ω)N=Gh(xA, xB, ω). (2.31)

(d) Double-sided two-way homogeneous Green’s function representation
We use the correlation-type reciprocity theorem (equation (2.19)) to derive a representation for
the two-way homogeneous Green’s function Gh(xA, xB, ω). For states A and B, we make the same



7

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160162

...................................................

n3 = −1

n3 = +1

KG† (x, xA, w)K
G(x, xB, w)

G(x, xB, w)

xB

Gh(xA, xB, w)

KG† (x, xA, w)K

xA

···x···

···x··· ∂   1

∂   0

Figure 1. Visualization of the double-sided two-way homogeneous Green’s function representation (equation (2.33)). Note that
the ‘rays’ in this and following figures (except figure 4) represent the full responses between the source and receiver points,
including multiple scattering and, in the elastodynamic situation, wave conversion. The arrows indicate that G(x, xB,ω) is
forwardpropagating (fromxB tox),KG†(x, xA,ω)K is backwardpropagating (fromx toxA), andGh(xA, xB,ω) is a superposition
of forward and backward propagating Green’s functions (between xB and xA).

replacements as above. Taking also the medium parameters again the same in both states, the last
integral in equation (2.19) vanishes. The remaining two integrals yield

KG(xA, xB, ω)+G†(xB, xA, ω)K=
∫
∂D0∪∂D1

G†(x, xA, ω)KG(x, xB, ω)n3 d2x. (2.32)

Note that the integral along the boundaries ∂D0 and ∂D1 does not vanish because the back-
propagating Green’s function G†(x, xA, ω) obeys the non-physical radiation condition of incoming
waves at infinity. Pre-multiplying all terms by K, using KK= I and equations (2.30) and (2.27),
gives

Gh(xA, xB, ω)=
∫
∂D0∪∂D1

KG†(x, xA, ω)KG(x, xB, ω)n3 d2x. (2.33)

This is the double-sided two-way homogeneous Green’s function representation, which is
illustrated in figure 1. It states that the two-way homogeneous Green’s function Gh(xA, xB, ω),
with both xA and xB in D, can be obtained from measurements at the boundary ∂D. We have
explicitly expressed the boundary ∂D as ∂D0 ∪ ∂D1, to emphasize the fact that measurements
should be carried out at two boundaries. Hence, application of equation (2.33) requires that
the medium is accessible from two sides. Section 4 is dedicated to finding an alternative
representation in terms of an integral along a single boundary, which is applicable for situations
in which the medium is accessible from one side only.

We conclude this section by considering a special case. First, note that for the upper-right
submatrix of Gh(xA, xB, ω), which we will call Gh,12(xA, xB, ω), equation (2.33) gives

Gh,12(xA, xB, ω)=
∫
∂D

(G†
12(x, xA, ω)G22(x, xB, ω)+G†

22(x, xA, ω)G12(x, xB, ω))n3 d2x, (2.34)

with Gh,12(xA, xB, ω)= 2�{G12(xA, xB, ω)}, see equation (2.28). For the acoustic Green’s matrix,
defined in equation (2.22), we replace G12(x, xB, ω) by Gp,q(x, xB, ω)≡G(x, xB, ω) and G22(x, xB, ω)
by Gv,q(x, xB, ω)= (iωρ)−1∂3Gp,q(x, xB, ω) (and similar replacements for G12(x, xA, ω) etc). Equation
(2.34) thus becomes

Gh(xA, xB, ω)=
∫
∂D

1
iωρ(x)

(G∗(x, xA, ω)∂3G(x, xB, ω)− ∂3G∗(x, xA, ω)G(x, xB, ω))n3 d2x, (2.35)

with the acoustic homogeneous Green’s function Gh(xA, xB, ω) defined as

Gh(xA, xB, ω)=G(xA, xB, ω)+ G∗(xA, xB, ω)= 2�{G(xA, xB, ω)}. (2.36)
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Equation (2.35) is the scalar homogeneous Green’s function representation used in [9]. Note
that the source of G(x, xB, ω) is a unit point source of volume-injection rate density (hence,
q(x, ω)= δ(x− xB)). On the other hand, Green’s function is often defined as the response to a
unit source in the Helmholtz equation (for a medium with constant mass density ρ). Let us
call this response G(x, xB, ω). The relationship between these two forms of Green’s function is
G(x, xB, ω)=−iωρG(x, xB, ω). Substituting this into equation (2.35), we obtain

Gh(xA, xB, ω)=
∫
∂D

(G∗(x, xA, ω)∂3G(x, xB, ω)− ∂3G∗(x, xA, ω)G(x, xB, ω))n3 d2x, (2.37)

with
Gh(xA, xB, ω)= G(xA, xB, ω)− G∗(xA, xB, ω)= 2i�{G(xA, xB, ω)}. (2.38)

Equation (2.37) is the classical scalar homogeneous Green’s function representation [1,5].

3. Unified double-sided one-way representation
In this section, we follow a similar path as in §2, except that the ‘two-way’ wave fields will
be replaced by ‘one-way’ (downgoing and upgoing) wave fields. In §3a, we define downgoing
and upgoing wavefields and introduce a unified one-way wave equation which governs the
coupled propagation of these fields. In §3b, we discuss one-way reciprocity theorems, using
specific symmetries of the one-way wave equation. In §3c, we introduce the homogeneous
Green’s function of the one-way wave equation and discuss its symmetry properties. In §3d, we
use the one-way reciprocity theorem to derive the double-sided one-way representation of the
homogeneous Green’s function.

(a) One-way wave equation
We introduce a N × 1 wave vector p and a N × 1 source vector s, according to

p=
(

p+
p−

)
and s=

(
s+
s−

)
. (3.1)

Note that we use different symbols for the vectors than in §2, to distinguish clearly between two-
and one-way quantities (also note that vector p should not be confused with the acoustic pressure
p in §2). Here p+ = p+(x, ω) and p− = p−(x, ω) represent the downgoing (+) and upgoing (−)
wavefield, respectively (recall that the x3-axis is pointing downward). Similarly, s+ = s+(x, ω) and
s− = s−(x, ω) represent the source functions for downgoing and upgoing waves, respectively. We
formally relate the vectors p and s to the vectors q and d in equation (2.2) as follows:

q=Lp and d=Ls, (3.2)

where N ×N matrix L=L(x, ω) is an operator matrix, containing pseudo-differential operators
(such as the square-root Helmholtz operator) [10,12,13,24,32–36]. Substituting these expressions
into equation (2.2) and pre-multiplying all terms by L−1 gives, after some straightforward
manipulations

∂3p−Bp= s, (3.3)

where
B =H −L−1∂3L, (3.4)

with
H=L−1AL, or A=LHL−1. (3.5)

We subdivide N ×N matrices H and L into N/2×N/2 submatrices, according to

H=
(

iH+1 O
O −iH−1

)
and L=

(
L+1 L−1
L+2 L−2

)
. (3.6)
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Equation (3.3) is the unified one-way wave equation. Here ‘one-way’ refers to the fact that
this equation governs ‘downward’ propagation of subvector p+ and ‘upward’ propagation of
subvector p−. Note, however, that the one-way wave fields p+ and p− are coupled via the matrix
L−1∂3L. Using the so-called power-flux normalization [13,14,18,24,36], the following symmetry
relations hold [24]:

NLtN=L−1 and NBtN=B (3.7)

and

JL†K=L−1 and JB†J=−B. (3.8)

For the symmetry properties in the latter equation, evanescent waves are ignored. From the
symmetry properties of B and J=−KN=NK, we find the following additional symmetry
property:

KB∗K=B. (3.9)

Finally, from equations (2.17), (3.2) and (3.8), it follows (for non-evanescent waves) that the power-
flux density in the x3-direction (or the probability current density) is given by

J(x, ω)= 1
4 p†Jp= 1

4 {(p+)†p+ − (p−)†p−} = 1
4 {|p+|2 − |p−|2}. (3.10)

(b) One-way reciprocity theorems
Following a similar derivation as for equations (2.18) and (2.19), but this time using the interaction
quantities ∂3{pt

ANpB} and ∂3{p†
AJpB}, one-way wave equation (3.3) and symmetry relations (3.7)

and (3.8) for operator BA, we obtain the following one-way reciprocity theorems [24,35]
∫
D

(st
ANpB + pt

ANsB) d3x=
∫
∂D

pt
ANpBn3 d2x−

∫
D

pt
AN(BB −BA)pB d3x (3.11)

and ∫
D

(s†
AJpB + p†

AJsB) d3x=
∫
∂D

p†
AJpBn3 d2x−

∫
D

p†
AJ(BB −BA)pB d3x. (3.12)

In the latter equation, evanescent waves are neglected. Note that when there are no sources in
D and the medium parameters in D are equal in both states, then only the boundary integrals
remain. These are then so-called one-way propagation invariants, which have been used in the
derivation of relationships between reflection and transmission responses, including those used
in seismic interferometry [8] and Marchenko imaging [37,38].

(c) One-way homogeneous Green’s function
We introduce the one-way Green’s function Γ (x, xB, ω) as a N ×N matrix obeying wave equation
(3.3), with the source vector replaced by a diagonal point-source matrix, according to

∂3Γ −BΓ = Iδ(x− xB). (3.13)

As boundary condition we impose the physical radiation condition of outgoing waves at infinity,
which corresponds to causality in the time domain, i.e. Γ (x, xB, t)=O for t < 0. We subdivide the
one-way Green’s matrix into N/2×N/2 submatrices, according to

Γ (x, xB, ω)=
(

G+,+ G+,−

G−,+ G−,−

)
(x, xB, ω). (3.14)

The first superscript refers to the type of one-way wave field (p+ or p−) observed at x; the second
superscript refers to the type of source (s+ or s−) at xB (figure 2).

To find a second solution of wave equation (3.13), take the complex conjugate of this equation,
and pre- and post-multiply all terms by K. Using the property KK= I and equation (3.9), we
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G+,–(x, xB, w)

xBx

G+,+(x, xB, w)

G–,+(x, xB, w)

G–,–(x, xB, w)

Figure 2. Visualization of the submatrices of the one-way Green’s matrixΓ (x, xB,ω) (equation (3.14)).

obtain

∂3(KΓ ∗K)−B(KΓ ∗K)= Iδ(x− xB). (3.15)

Hence, KΓ ∗(x, xB, ω)K is a second solution of wave equation (3.13). Subtracting wave equations
(3.13) and (3.15), we obtain

∂3Γ h(x, xB, ω)−BΓ h(x, xB, ω)=O, (3.16)

with the one-way homogeneous Green’s function Γ h(x, xB, ω) defined as

Γ h(x, xB, ω)= Γ (x, xB, ω)−KΓ ∗(x, xB, ω)K. (3.17)

Using equation (3.14) and the definition of K in equation (2.13), equation (3.17) can be written as

Γ h(x, xB, ω)=
(
{G+,+ − (G−,−)∗} {G+,− − (G−,+)∗}
{G−,+ − (G+,−)∗} {G−,− − (G+,+)∗}

)
(x, xB, ω). (3.18)

Following a similar derivation as for equation (2.30), this time starting with the one-way
convolution-type reciprocity theorem (equation (3.11)), we find the following reciprocity relation
for the one-way Green’s function

NΓ t(xB, xA, ω)N= Γ (xA, xB, ω). (3.19)

Using KN=−NK, it follows that the same relation holds for the one-way homogeneous Green’s
function defined in equation (3.17), i.e.

NΓ t
h(xB, xA, ω)N= Γ h(xA, xB, ω). (3.20)

(d) Double-sided one-way homogeneous Green’s function representation
Following a similar derivation as for equation (2.33), starting with the one-way correlation-type
reciprocity theorem (equation (3.12)), we find the following double-sided one-way homogeneous
Green’s function representation:

Γ h(xA, xB, ω)=
∫
∂D0∪∂D1

JΓ †(x, xA, ω)JΓ (x, xB, ω)n3 d2x. (3.21)

Like the double-sided two-way homogeneous Green’s function representation in equation (2.33),
this representation can only be used when the medium is accessible from two sides (figure 3).
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n3 = −1

n3 = +1

GG (x, xB, w)

G (x, xB, w)
JG †(x, xA, w)J

JG †(x, xA, w)J xB

xA

···x···

···x···

Gh(xA, xB, w)

∂   0

∂   1

Figure 3. Visualization of the double-sided one-way homogeneous Green’s function representation (equation (3.21)).

4. Unified single-sided one-way representation
We derive a single-sided one-way representation of the homogeneous Green’s function from the
one-way reciprocity theorems. In §4a, we briefly discuss the two states that will be used in the
reciprocity theorems (a one-way Green’s function and a one-way focusing function). In §4b, we
discuss the one-way focusing function in more detail, and in §4c, we use this focusing function
and Green’s function in the one-way reciprocity theorems to derive the single-sided one-way
representation of the homogeneous Green’s function.

(a) Introduction of the two states
For the derivation of the single-sided representation, we consider another configuration than for
the double-sided representations. Instead of the domain D enclosed by ∂D0 and ∂D1 (figures 1
and 3), we define a domain DA, enclosed by two infinite horizontal boundaries ∂D0 and ∂DA

(with ∂DA below ∂D0), together denoted by ∂D (figure 4). Here ∂D0 represents the accessible
upper boundary of the medium (defined by x3 = x3,0) and ∂DA is chosen at the depth of xA, hence,
it is defined by x3 = x3,A. The boundary ∂D1, which is indicated by dotted lines in figure 4a,b, is
obsolete in the following derivations. In §4c, we will apply the one-way reciprocity theorems to
domain DA, enclosed by ∂D= ∂D0 ∪ ∂DA. For state B we take again the one-way Green’s function
Γ (x, xB, ω) that we also used in the previous section. This Green’s function is illustrated (for
the acoustic case) in figure 4b, with more detail than in figure 3. The orange lines in figure 4b
indicate some interfaces between layers with different medium parameters, and the green rays
between xB (inside the medium) and x (at the upper boundary ∂D0) represent some of the primary
and multiply reflected waves in Green’s function Γ (x, xB, ω). The green rays between xB and xA

represent Green’s function Γ (xA, xB, ω). Note that xB may lie above or below xA, hence inside or
outside domain DA (in this example it lies outside DA). Note that the solid black lines, indicating
the integration boundaries ∂D0 and ∂DA, do not represent interfaces.

For state A, we introduce a one-way focusing function F(x, xA, ω). Although a Green’s function
propagates from a source at xA to x, a focusing function propagates from x to xA, where it
focuses. In the double-sided representations, discussed in §§2 and 3, the backpropagating Green’s
functions KG†(x, xA, ω)K and JΓ †(x, xA, ω)J played this role. This ‘backpropagation approach’
breaks down when the medium is accessible from one side only (here ∂D0), which is why we
need a focusing function instead. In §4b, this focusing function will be formally defined. Here we
introduce it intuitively at the hand of the ray diagram of figure 4a. This figure shows a reference
medium, which is identical to the actual medium of figure 4b in the domain DA, whereas it is
reflection-free in the half-spaces above ∂D0 and below ∂DA. A downgoing focusing function
F+(x, xA, ω) is incident from above (we consider the acoustic case, so the focusing function is
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F+(x, xA, w)|x3 = x3,A

∂   0

∂   A

A

∂   1

∂   0

∂   A

A

∂   1

Figure 4. (a) State A: one-way focusing functions F+(x, xA,ω) and F−(x, xA,ω), defined in a reference medium, which
is identical to the actual medium in DA and reflection-free outside this domain. (b) State B: one-way Green’s functions
Γ (x, xB,ω) andΓ (xA, xB,ω), defined in the actual medium.

a scalar field in this example). The outer red rays indicate the direct arrival of the downward
propagating focusing function, converging to the focal point at xA (these are only two of many
direct rays converging to xA). Before arriving at the focal point, these rays are reflected upward,
indicated by the blue rays and denoted as F−(x, xA, ω). If no further measures were taken, these
rays would reflect downward again, giving rise to additional rays reaching the depth level ∂DA,
but at other positions than the focal point. However, as can be seen in figure 4a, additional red
rays are launched from the upper half-space into the medium, which reach the interfaces at the
same positions as the upgoing blue rays, in such a way that they annihilate the aforementioned
downward reflected rays. As a consequence, only the direct arrival of the downward propagating
focusing function reaches ∂DA and converges at the focal point. Interestingly, assuming the direct
arrival of the focusing function F+(x, xA, ω) is known, the remainder of this function and the entire
function F−(x, xA, ω) (both for x at ∂D0) can be retrieved from reflection measurements at the
accessible boundary ∂D0, using a three-dimensional version of the Marchenko method [38,39].

(b) One-way focusing function
Here we discuss the one-way focusing function in a more formal way. We introduce F(x, xA, ω) as
a N ×N/2 matrix obeying wave equation (3.3) without a source function on the r.h.s. and with an
operator matrix B̄ defined in a reference medium, hence

∂3F− B̄F=O. (4.1)

The reference medium is equal to the actual medium between ∂D0 and ∂DA and reflection-free
above ∂D0 and below ∂DA. Hence, in DA we have B̄ =B, with B =H −L−1∂3L, see equation
(3.4). Outside DA, where the reference medium is reflection-free, the coupling matrix L−1∂3L
is zero, hence B̄ =H outside DA. We subdivide the one-way focusing function into N/2×N/2
submatrices, according to

F(x, xA, ω)=
(

F+(x, xA, ω)
F−(x, xA, ω)

)
, (4.2)

where the superscripts denote downward (+) and upward (−) propagation at x. The downgoing
focusing function F+(x, xA, ω) (variable x, fixed xA) is incident to the medium from the reflection-
free upper half-space (above ∂D0). It propagates through the domain DA, where it interacts with
F−(x, xA, ω) and vice versa due to the inhomogeneities of the medium, after which it focuses at
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xA. The focusing condition is denoted as

F+(x, xA, ω)|x3=x3,A = Iδ(xH − xH,A), (4.3)

where xH = (x1, x2) and xH,A = (x1,A, x2,A) denote the horizontal coordinates of x and xA,
respectively. The field at x3 = x3,A can also be written as

F+(x, xA, ω)|x3=x3,A =
∫
∂D0

T+(x, x′, ω)F+(x′, xA, ω) d2x′, (4.4)

where T+(x, x′, ω) is the transmission response of the medium between ∂D0 and ∂DA. Replacing
the l.h.s. of equation (4.4) by the r.h.s. of equation (4.3), it follows that F+(x′, xA, ω) for x′ at ∂D0,
i.e. the focusing function emitted from the upper boundary, is the inverse of the transmission
response T+(x, x′, ω) of the medium between ∂D0 and ∂DA. This implies that the focusing function
not only compensates for the geometrical spreading of the transmission response, but also for
its multiple scattering (as illustrated in figure 4a) and, in the elastodynamic situation, for wave
conversion. Because there is no sink at xA, the focused downgoing field at xA acts as a virtual
source for downgoing waves in the half-space below ∂DA. Because in the reference medium this
half-space is reflection free, there is no upgoing field at and below ∂DA. Hence, the focusing
condition of equation (4.3) can be extended to

F(x, xA, ω)|x3=x3,A =
(

Iδ(xH − xH,A)
O

)
= I1δ(xH − xH,A), with I1 =

(
I
O

)
. (4.5)

To avoid unstable behaviour of the focusing function, evanescent waves are excluded. This
means that the delta function in equations (4.3) and (4.5) should be interpreted as a spatially
band-limited delta function. Note that the sifting property of the delta function, h(xH,A)=∫

δ(xH − xH,A)h(xH) dxH, remains valid for a spatially band-limited delta function, assuming h(xH)
is also spatially band-limited (which is the case when evanescent waves are excluded).

(c) Single-sided one-way homogeneous Green’s function representation
We use the convolution- and correlation-type one-way reciprocity theorems (equations (3.11)
and (3.12)), with ∂D= ∂D0 ∪ ∂DA, to derive a single-sided representation for the one-way
homogeneous Green’s function Γ h(xA, xB, ω). For state A, we substitute the one-way focusing
function defined in the reference medium, hence, we replace wave vector pA(x, ω) by matrix
F(x, xA, ω), source vector sA(x, ω) by zero, and operator BA by B̄, which in DA is equal to B.
For state B, we substitute the one-way Green’s function defined in the actual medium, hence,
we replace wave vector pB(x, ω) by matrix Γ (x, xB, ω), source vector sB(x, ω) by Iδ(x− xB) (with
xB below ∂D0), and operator BB by B. Making these substitutions in the one-way reciprocity
theorems, using the focusing condition defined in equation (4.5), yields

It
1NΓ (xA, xB, ω)−H(x3,A − x3,B)Ft(xB, xA, ω)N=

∫
∂D0

Ft(x, xA, ω)NΓ (x, xB, ω) d2x (4.6)

and

It
1JΓ ∗(xA, xB, ω)−H(x3,A − x3,B)Ft(xB, xA, ω)J=

∫
∂D0

Ft(x, xA, ω)JΓ ∗(x, xB, ω) d2x, (4.7)

where we used n3 =−1 at ∂D0. H(x3) is the Heaviside step function, hence, the second term on
the l.h.s. of equations (4.6) and (4.7) only contributes when xB lies above xA. Post-multiplying all
terms in equation (4.7) by K, using J=NK and JK=N, and subtracting the resulting equation
from equation (4.6), gives

It
1NΓ h(xA, xB, ω)=

∫
∂D0

Ft(x, xA, ω)NΓ h(x, xB, ω) d2x, (4.8)

with the one-way homogeneous Green’s function Γ h(x, xB, ω) defined in equation (3.17). Note that
the matrix It

1N on the l.h.s. selects the lower two submatrices of Γ h. We can recover the complete
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Figure 5. (a) Visualization of the single-sided one-way homogeneous Green’s function representation (equations (4.10) and
(4.11)). Here the rays represent again full responses. Hence, the ray representing the focusing function stands for all rays in
figure 4a, whereas the (forward propagating parts of the) two rays representing Green’s functions stand for all rays in figure 4b.
(b) Visualization of equations (4.14) and (4.15).

matrix Γ h as follows. First we define a matrix Γ 2 by pre-multiplying the l.h.s. of equation (4.8) by
I2 (defined below). Using equation (3.18), this gives

Γ 2 = I2It
1NΓ h =

(
O O

{G−,+ − (G+,−)∗} {G−,− − (G+,+)∗}

)
, with I2 =

(
O
I

)
. (4.9)

Matrix Γ h(xA, xB, ω), as defined in equation (3.18), is thus recovered via

Γ h(xA, xB, ω)= Γ 2(xA, xB, ω)−KΓ ∗2(xA, xB, ω)K, (4.10)

where, according to equations (4.8) and (4.9), Γ 2(xA, xB, ω) is given by

Γ 2(xA, xB, ω)=
∫
∂D0

I2Ft(x, xA, ω)NΓ h(x, xB, ω) d2x. (4.11)

The above equations together form the single-sided one-way homogeneous Green’s function
representation, which is illustrated in figure 5a. This representation states that the one-way
homogeneous Green’s function Γ h(xA, xB, ω), with both xA and xB below ∂D0, can be obtained
when the medium is accessible from the upper boundary ∂D0 only.

It is interesting to note that Γ h(x, xB, ω) in the r.h.s. of equation (4.11) can be represented in a
similar way. To this end, in equation (4.8), we replace x by x′ at ∂D

′
0, which we define just above

∂D0. Furthermore, we replace xB by x at ∂D0 and xA by xB. This gives

It
1NΓ h(xB, x, ω)=

∫
∂D
′
0

Ft(x′, xB, ω)NΓ h(x′, x, ω) d2x′, (4.12)

or, post-multiplying all terms by N and transposing the result (using equation (3.20)),

Γ h(x, xB, ω)I1 =
∫
∂D
′
0

Γ h(x, x′, ω)F(x′, xB, ω) d2x′. (4.13)

Note that the matrix I1 on the l.h.s. selects the left two submatrices of Γ h. Post-multiplying both
sides of this equation by It

1, we find in a similar way as above that the complete matrix Γ h(x, xB, ω)
is recovered as follows:

Γ h(x, xB, ω)= Γ 1(x, xB, ω)−KΓ ∗1(x, xB, ω)K (4.14)

with

Γ 1(x, xB, ω)=
∫
∂D
′
0

Γ h(x, x′, ω)F(x′, xB, ω)It
1 d2x′, (4.15)

see figure 5b. Here Γ h(x, x′, ω) is a one-way homogeneous Green’s function with its source at x′
and receiver at x, both at the upper boundary.
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5. Applications of the single-sided representation
We briefly discuss applications of the single-sided homogeneous Green’s function representation
in holographic imaging and inverse scattering, time-reversed wave field propagation, and
interferometric Green’s function retrieval. The discussions are not meant to be exhaustive but
only indicate some applications and possible new research directions.

(a) Holographic imaging and inverse scattering
The central process in acoustic, electromagnetic and elastodynamic imaging and inverse
scattering methods is the retrieval of the wave field inside the medium from measurements
carried out at the boundary of that medium. The process to obtain the wave field inside the
medium is in essence a form of holography. Here, we discuss the steps that are needed to
obtain the homogeneous Green’s function Gh(xA, xB, t), with xA and xB inside the medium, from
G(x, x′, t), with x and x′ at the upper boundary of the medium. First, the one-way Green’s function
Γ (x, x′, ω) is obtained from the Fourier transform of G(x, x′, t), according to

Γ (x, x′, ω)=L−1(x, ω)G(x, x′, ω)N{L←−
−1(x′, ω)}tN, (5.1)

(see appendix A, equation (A 7); a left-arrow underneath an operator denotes that this operator is
acting on the quantity left of it). This process is called decomposition. Examples for acoustic and
elastodynamic wave fields can be found in [12].

Next, equations (4.14) and (4.15) are used to retrieve Γ h(x, xB, ω). The one-way homogeneous
Green’s function Γ h(x, x′, ω) in equation (4.15) is obtained from Γ (x, x′, ω) via equation (3.17),
with xB replaced by x′. The time-domain version of the focusing function, F(x′, xB, t), can be
derived from Γ (x, x′, t) with the Marchenko method. For the one-dimensional acoustic situation,
this does not require any additional information [37,40]. For the two- and three-dimensional
acoustic situation, apart from Γ (x, x′, t), an estimate of the direct arrival between xB and x′ is
needed to obtain F(x′, xB, t), but no other information about the medium is required [38,41]. For
the elastodynamic situation, also the forward scattered response between xB and x′ is needed [39],
although in moderately inhomogeneous media a reasonable estimate of F(x′, xB, t) can be obtained
when only the direct arrival is known [42]. Once F(x′, xB, t) has been retrieved, its Fourier
transform is, according to equations (4.14) and (4.15), applied to Γ h(x, x′, ω) to obtain the one-
way homogeneous Green’s function Γ h(x, xB, ω) (figure 5b). Next, according to equations (4.10)
and (4.11), the Fourier transform of F(x, xA, t) is applied to Γ h(x, xB, ω) to obtain Γ h(xA, xB, ω)
(figure 5a). The combination of these two steps, i.e.

Γ h(x, x′, ω)
F(x′,xB,ω)−−−−−→ Γ h(x, xB, ω)

F(x,xA,ω)−−−−−→ Γ h(xA, xB, ω), (5.2)

is visualized in figure 6. Note that in the first step the sources at all x′ at the boundary are focused
to xB, whereas in the second step the receivers at all x at the boundary are focused to xA. The
resulting one-way homogeneous Green’s function Γ h(xA, xB, ω) can be seen as the response to
a virtual source at xB, observed by a virtual receiver at xA (note that xA and xB can be chosen
anywhere inside the medium). This two-step procedure resembles a method called ‘source–
receiver redatuming’ in exploration seismology [43,44], except that in that method only primary
waves are accounted for, whereas equation (5.2) accounts for primaries and all orders of multiple
scattering and wave conversion.

Next, the two-way homogeneous Green’s function Gh(xA, xB, ω) can be obtained from
Γ h(xA, xB, ω) via

Gh(xA, xB, ω)=L(xA, ω)Γ h(xA, xB, ω)NL←−
t(xB, ω)N (5.3)

(see appendix A, equation (A 10)). This process is called composition. Finally, Gh(xA, xB, t) is
obtained by an inverse Fourier transformation. This homogeneous Green’s function can be
used for imaging the internal structures or finding the local medium parameters via inverse
scattering [45–47]. Note, however, that Gh(xA, xB, t) (for variable xA, xB and t) contains a wealth



16

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160162

...................................................

n
3
= −1

I2Ft (x, xA, w)N

xA

xB

Gh
 (x, xB, w)

Gh
 (x, x', w)

Gh
 (xA, xB, w)

···x··· ···x'···

F (x', xB, w)I1
t

∂   ¢0
∂   0

Figure 6. Visualization of the two-step procedure (equation (5.2)). Starting with Γ h(x, x′,ω), the sources at all x′ at the
boundary are focused to xB, yielding Γ h(x, xB,ω). Next, the receivers at all x at the boundary are focused to xA, giving
Γ h(xA, xB,ω).

of additional information about the interior of the medium, of which the advantages need to be
further explored.

An example of obtaining Gh(xA, xB, t) from G(x, x′, t) for the acoustic situation can be found
in [9]. This example shows the evolution of Gh(xA, xB, t) through space and time, with multiple
scattering occurring at interfaces between layers with different material parameters. Apart from
imaging and inverse scattering, the elastodynamic version could be very useful to predict the
propagation of microseismic signals through an unknown complex subsurface.

(b) Time-reversed wave field propagation
In the field of time-reversal acoustics, the response to a source inside a medium is recorded at
the boundary, reversed in time and emitted back from the boundary into the medium [48]. The
back-propagated field focuses at the position of the source and after that the focal point acts
as a virtual source. The generalization of time-reversal acoustics for other types of waves we
call time-reversed wave field propagation. The back-propagated field can be quantified with the
homogeneous Green’s function representation, as follows. Transposing both sides of equation
(2.33), using symmetry properties (2.30) and (2.31), we obtain

Gh(xB, xA, ω)=
∫
∂D0∪∂D1

G(xB, x, ω)JG∗(x, xA, ω)Jn3 d2x. (5.4)

In the time domain, this becomes

Gh(xB, xA, t)=
∫
∂D0∪∂D1

G(xB, x, t)︸ ︷︷ ︸
′propagator′

∗ {JG(x, xA,−t)J}︸ ︷︷ ︸
‘source′

n3 d2x, (5.5)

where the inline asterisk denotes temporal convolution. Green’s function G(x, xA, t) represents
the response to a source at xA inside the medium, observed at x at the boundary. According to the
r.h.s. of equation (5.5), this field is reversed in time and used as a source function which is injected
from all x at the boundary ∂D0 ∪ ∂D1 into the medium. Green’s function G(xB, x, t) propagates
the field from the boundary to xB inside the medium. The homogeneous Green’s function
Gh(xB, xA, t) on the l.h.s. (fixed xA, variable xB and t) describes the time-dependent evolution of the
injected field through the medium. Note that, according to equation (5.5), standard time-reversed
wave field propagation requires that the medium is accessible from two sides. The single-sided
homogeneous Green’s function representations developed in this paper provide an alternative.
Because time-reversed wave field propagation is a physical process, we cannot use equation (4.11)
which contains the non-physical homogeneous Green’s function under the integral on the r.h.s.
Therefore, we start with equation (4.6). Post-multiplying all terms by NL←−

t(xB, ω) and replacing
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N in the r.h.s. by N=−LtNL (equation (3.7)) gives

It
1NΓ (xA, xB, ω)NL←−

t(xB, ω)+H(x3,A − x3,B)Ft(xB, xA, ω) L←−
t(xB, ω)

=−
∫
∂D0

Ft(x, xA, ω)Lt(x, ω)NL(x, ω)Γ (x, xB, ω)NL←−
t(xB, ω) d2x, (5.6)

or, using equation (A 7) and the definition of transposed operators (equation (2.14)),

It
1NΓ (xA, xB, ω)NL←−

t(xB, ω)+H(x3,A − x3,B)Ft(xB, xA, ω) L←−
t(xB, ω)

=
∫
∂D0

{L(x, ω)F(x, xA, ω)}tNG(x, xB, ω)N d2x, (5.7)

or, using symmetry relations (2.30) and (3.19) and transposing all terms

Γ c(xB, xA, ω)I1 +H(x3,A − x3,B)Fc(xB, xA, ω)=
∫
∂D0

G(xB, x, ω)Fc(x, xA, ω) d2x, (5.8)

where the modified focusing function Fc(x, xA, ω) and the modified Green’s function Γ c(x, xA, ω)
are defined as

Fc(x, xA, ω)=L(x, ω)F(x, xA, ω) (5.9)

and

Γ c(x, xA, ω)=L(x, ω)Γ (x, xA, ω). (5.10)

The operator L(x, ω) turns a one-way wave field into a two-way wave field, see equation (3.2).
Hence, these modified functions consist of two-way fields at x and one-way fields at xA. In the
time domain, equation (5.8) becomes

Γ c(xB, xA, t)I1 +H(x3,A − x3,B)Fc(xB, xA, t)=
∫
∂D0

G(xB, x, t)︸ ︷︷ ︸
′propagator′

∗Fc(x, xA, t)︸ ︷︷ ︸
′source′

d2x. (5.11)

This equation shows that, when the medium is accessible from one side only, the modified
focusing function Fc(x, xA, t) should be injected into the medium, instead of the time-reversed
Green’s function (as in equation (5.5)). When reflection measurements are available at the
boundary, this focusing function can be obtained in a similar way as described in §5a, except
that now the required direct arrival between xA and x can be obtained directly from the measured
response to the source at xA.

(c) Interferometric Green’s function retrieval
In the field of interferometric Green’s function retrieval, wave field observations at two points
xA and xB are cross-correlated. Under specific conditions, the time-dependent cross-correlation
function is proportional to the homogeneous Green’s function between xA and xB [8,49–51].
For general wave fields, this principle is quantified by the homogeneous Green’s function
representation. Using symmetry property (2.30) (which also holds in the time domain), we obtain
from equation (5.5)

Gh(xB, xA, t)=−
∫
∂D0∪∂D1

G(xB, x, t) ∗ {KGt(xA, x,−t)K}n3 d2x. (5.12)

The integrand on the r.h.s. describes a cross-correlation of responses to primary sources at x
on ∂D0 ∪ ∂D1, observed at xA and xB (actually the inline asterisk denotes a convolution, but
because of the time-reversal of the second Green’s function, the integrand can be interpreted as a
correlation). The l.h.s. represents the response to a virtual source at xA, observed at xB. When the
primary sources are present only on a single boundary, the single-sided homogeneous Green’s
function representations provide an alternative. Following a similar procedure as in §4b, but this
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time starting with equation (4.8), using equation (A 10) and symmetry relations (2.31) and (3.20),
we obtain

Γ c
h(xB, xA, t)I1 =

∫
∂D0

Gh(xB, x, t) ∗ Fc(x, xA, t) d2x, (5.13)

where Γ c
h(xB, xA, t) is the inverse Fourier transform of

Γ c
h(xB, xA, ω)=L(xB, ω)Γ h(xB, xA, ω). (5.14)

Equation (5.13) shows that, when sources are present on a single boundary only, instead of cross-
correlating two Green’s functions, the homogeneous Green’s function at one observation point
should be convolved with the modified focusing function at the other point. A possible way to
obtain this focusing function is indicated in §5a,b. Investigating alternative ways to obtain this
function from measurements is subject of current research.

Finally, note that instead of Γ c
h(xB, xA, t)I1, the homogeneous one-way Green’s function

Γ h(xB, xA, t) can be obtained, following a similar procedure as outlined at the end of §4,
according to

Γ h(xB, xA, t)= Γ 1(xB, xA, t)−KΓ 1(xB, xA,−t)K, (5.15)

with

Γ 1(xB, xA, t)=
∫
∂D0

Γ h(xB, x, t) ∗ F(x, xA, t)It
1 d2x. (5.16)

From this, the homogeneous two-way Green’s function Gh(xB, xA, t) can be obtained via
equation (A 10).

6. Conclusion
We have captured double- and single-sided representations of the homogeneous Green’s
function in a unified matrix notation. This notation accounts for acoustic, quantum-mechanical,
electromagnetic and elastodynamic wave fields. A double-sided homogeneous Green’s function
representation can only be used in situations where the medium of interest is accessible from two
sides. Nevertheless, it is often used in an approximate sense in situations where the medium
can be accessed from one side only. The inherent approximations are acceptable as long as
the effects of multiple scattering (and wave conversion) are negligible. However, in the case of
strongly inhomogeneous media (or inhomogeneous potentials in the quantum-mechanical case),
the effects of multiple scattering can be quite severe. In this case, approximating a double-sided
Green’s function representation by a single-sided representation leads to unacceptable errors.
For example, in holographic imaging these errors manifest themselves as artefacts in the image
of the interior of the medium. The single-sided homogeneous Green’s function representation,
on the other hand, correctly handles multiple scattering (and wave conversion) in situations
where the medium can be accessed from one side only. It employs a focusing function instead
of a backward propagating Green’s function. Evanescent waves are ignored in the single-sided
representation. When reflection measurements are available at the accessible boundary of the
medium, the focusing function can be retrieved from these measurements and an estimate of
the direct arrival between the boundary and the focal point. By employing the single-sided
homogeneous Green’s function representation in a two-step procedure, sources and receivers at
the boundary are focused to virtual sources and virtual receivers inside the medium. The response
between these virtual sources and receivers, i.e. the homogeneous Green’s function, includes
multiple scattering and wave conversion. We foresee many interesting applications of the unified
single-sided homogeneous Green’s function representation in holographic imaging and inverse
scattering, time-reversed wave field propagation and interferometric Green’s function retrieval.
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Appendix A. Relationship between two- and one-way Green’s functions
Two- and one-way wave vectors obey the simple relation q=Lp (equation (3.2)). The relationship
between two- and one-way Green’s functions is more complex, because it also involves an
operator at the source position. We derive this relation from representations for q and p. Consider
again the two-way convolution-type reciprocity theorem (equation (2.18)). For state A, we replace
the wave vector qA(x, ω) by matrix G(x, xA, ω) and the source vector dA(x, ω) by Iδ(x− xA), with xA

in D. Here D is again enclosed by two horizontal boundaries, together denoted by ∂D. However,
these two horizontal boundaries can be different from ∂D0 and ∂D1 used in the main text. The only
condition is that xA lies between these boundaries. For state B, we replace qB(x, ω) by q(x, ω) and
assume that this wave field obeys a source-free wave equation. We take the medium parameters
the same for both states, hence, the last integral in equation (2.18) vanishes. Making the mentioned
substitutions in the remaining integrals and using symmetry relation (2.30), we obtain

q(xA, ω)=−
∫
∂D

G(xA, x, ω)q(x, ω)n3 d2x. (A 1)

In a similar way, we obtain from the one-way convolution-type reciprocity theorem (equation
(3.11)) and symmetry relation (3.19)

p(xA, ω)=−
∫
∂D

Γ (xA, x, ω)p(x, ω)n3 d2x. (A 2)

Using equation (3.2), this becomes

q(xA, ω)=−L(xA, ω)
∫
∂D

Γ (xA, x, ω)L−1(x, ω)q(x, ω)n3 d2x, (A 3)

or, with the definition of transposed operators (equation (2.14)),

q(xA, ω)=−L(xA, ω)
∫
∂D

({L−1(x, ω)}tΓ t(xA, x, ω))tq(x, ω)n3 d2x, (A 4)

or, using equation (3.7),

q(xA, ω)=−L(xA, ω)
∫
∂D

{NL(x, ω)NΓ t(xA, x, ω)}tq(x, ω)n3 d2x. (A 5)

Comparing this with equation (A 1), taking into account that both equations hold for any source-
free wave field q(x, ω) and any integration boundary ∂D encompassing xA, we find

G(xA, xB, ω)=L(xA, ω){NL(xB, ω)NΓ t(xA, xB, ω)}t. (A 6)

In the following, we denote this as

G(xA, xB, ω)=L(xA, ω)Γ (xA, xB, ω)NL←−
t(xB, ω)N, (A 7)

where L←−
t is the transposed matrix, containing (non-transposed) operators acting on the

quantities left of it. To derive a similar relationship between the two- and one-way homogeneous
Green’s functions, we first consider the second term in equation (2.27), for which we obtain

JG∗(xA, xB, ω)J= JL∗(xA, ω)Γ ∗(xA, xB, ω)NL←−
†(xB, ω)NJ. (A 8)

From equations (3.7) and (3.8), we obtain L∗ = JLK. Using this in equation (A 8) yields

JG∗(xA, xB, ω)J=L(xA, ω)KΓ ∗(xA, xB, ω)NKL←−
t(xB, ω)JNJ,

=L(xA, ω){KΓ ∗(xA, xB, ω)K}NL←−
t(xB, ω)N. (A 9)
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Subtracting equations (A 7) and (A 9), using the definitions of the two-way and one-way
homogeneous Green’s functions (equations (2.27) and (3.17)), we finally obtain

Gh(xA, xB, ω)=L(xA, ω)Γ h(xA, xB, ω)NL←−
t(xB, ω)N. (A 10)
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