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For electromagnetic imaging the vectorial character of the emitted field and the radiation
characteristics of both source and receiver play an important role. Recently, a new imaging
algorithm was presented dedicated to the electromagnetic case. The radiation characteristics
of GPR source and receiver antennas and the vectorial nature of the electromagnetic waves
are taken into account for a monostatic fixed offset GPR survey. This resulted in a representa-
tive image of a point scatterer. Comparison with scalar imaging algorithms shows that for a
homogeneous space the SAR image has an opposite sign compared to the multi-component
image, whereas the Gazdag image has a phase shift of about 90° with respect to the multi-
component image. In this paper, modified scalar imaging algorithms are introduced that mini-
mize these differences. However, between the images obtained in a homogeneous half-space
phase differences of 10-20° are still present. These differences indicate the possible error in
nature of the physical property contrast when it is determined with the modified scalar imaging
algorithms. The multi-component imaging algorithm returns a representative image because it
uses the appropriate Greens functions to eliminate the propagation effects. For practical imag-
ing strategies, only far-field radiation characteristics can be used to compensate for the propa-
gation effects due to the large computing time needed to evaluate the total-field expressions.
Synthetic analysis of the imaging of a point scatterer calculated using total-field expressions
shows that using the far-field expressions in the multi-component imaging algorithm the images
better approximate the actual contrast than using the modified scalar imaging algorithms.
Experimental results are presented from imaging several buried objects with different medium
properties and different orientations. The phase differences in the experimental data are similar
to those obtained synthetically. This likeness indicates that using the multi-component imaging
algorithm, a more reliable image is obtained than with the modified scalar imaging algorithms.
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1. Introduction

Ground Penetrating Radar (GPR) is an electromagnetic high res-
olution tool, that has been employed successfully to perform numerous
environmental, engineering and archaeological investigations [1]. Com-
monly used imaging strategies for GPR data used in the literature are simi-
lar to the (scalar) seismic processing algorithms. A tutorial paper [2]
mentions that three methods of wavefield extrapolation, which describe
the propagation effects of the wavefield, are commonly used in seismics,
i.e., the Kirchhoff-summation approach [3], the plane-wave method (k—f
method) [4], and the finite-difference technique. The forward and inverse
wavefield extrapolation of single- and multi-component seismic data is
described in [3].

Because of similarities between acoustic and electromagnetic pros-
pecting methods, seismic imaging techniques were initially used for the
imaging of GPR data [6,7,8,9,10,11]. However, there are also important
differences between acoustic and electromagnetic prospecting methods. The
most important difference is the vectorial character of electromagnetic
waves compared to the scalar acoustic waves.

For a GPR measurement, the source and receiver are usually present
on the interface between air and ground. This causes angle-dependent
amplitude and polarization variations in the vectorial radiation character-
istics of an elementary antenna [12,13]. Recently, these radiation character-
istics of elementary GPR antennas for GPR data imaging have been taken
into account. A modified Kirchhoff integral is used by inclusion of a half-
space interfacial radiation pattern in [14]. Coincidental georadar data sets
were combined with two pairs of parallel source-receiver antennas, one
oriented perpendicular to the other to obtain a “pseudo scalar” wavefield
[15]. Next, this pseudo scalar wavefield was imaged using a standard 3-D
Kirchhoff time-migration scheme. A regular Kirchhoff migration was modi-
fied in [16] by limiting the migration to those paths that are within the
predicted angle of orientation. However, all these algorithms were still
adapted from scalar imaging algorithms and use the knowledge of the radi-
ation characteristics of elementary GPR antennas heuristically to obtain a
better image. A vectorial GPR imaging algorithm was derived using the
generalized Radon transform [17]. However, the forward model that is used
in the imaging operator does not fully account for variations of amplitude.

Recently, a multi-component imaging algorithm is presented [18],
which is dedicated to the electromagnetic case. Improved images were
obtained for a monostatic fixed offset GPR survey by properly taking into
account the polarization of the emitted and measured wavefield and the
radiation characteristics of the source and receiver. Comparison of the
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results of this new imaging algorithm, the multi-component imaging algo-
rithm, with two of the scalar imaging algorithms ; the SAR imaging algo-
rithm and the Gazdag phase shift method showed that in a homogeneous
space the SAR image has an opposite sign (phase shift of 180°), whereas
the Gazdag has a phase shift of 90°.

In this paper, modified scalar imaging algorithms are introduced that
minimize these phase shifts of 90° and 180°. Note that the SAR and Gazdag
imaging algorithms are based on the scalar scattering representation. For
practical imaging strategies, when the source and receiver are present on
a dielectric medium, only far-field radiation characteristics can be used
in the multi-component imaging algorithm to eliminate the propagation
effects due to the large computing time needed to evaluate the total-field
expressions. In this paper, the effect of using these far-field expressions is
investigated by calculating the response for a point scatterer using total-
field expressions and imaging with the far-field expressions.

First, the far-field and total-field expressions for a dipole in a homo-
geneous space and homogeneous half-space are compared. After calculating
the scattered electric field for a point source using the far- and total-field
expressions and discussing the analytical results for the imaging of a point
scatterer, the modified scalar imaging algorithms are introduced. Next, the
imaging is performed for a point scatterer by using the modified SAR, modi-
fied Gazdag and multi-component imaging algorithm. The scattered field of
the point scatterer is calculated using the total-field expressions and the
multi-component imaging is performed using both the far- and total-field
expressions. Finally, we present scalar and multi-component images com-
puted from experimental field data.

2. Forward Model

To specify position in the used configuration we employ the coordi-
nates (x;, X», x3) with respect to a fixed, right-handed, orthogonal, Cartesian
reference frame with origin ~ and with three orthogonal base vectors
(i, 1»,13), where i3 is pointing downwards. The subscript notation is chosen
to describe the relations between the wavefield vectors and medium proper-
ties. Any repeated subscript implies the application of the summation con-
vention. In this way, the position in our configuration may be written as
X = Xyd) + Xady + X33 OF X = X,i, with pe {1,2,3} and xeR’.

The configuration for the forward source problem consists of an
unbounded inhomogeneous medium D with known electromagnetic proper-
ties. In this medium, sources are present that occupy the bounded domain
D°, being a subdomain of D. The electric field (E}) values in all space are



64 van der Kruk et al.

obtained as

Ei(x", ) :j G (x| x, )T (x, 0) dV, (D
xeD*

where x®eD. Latin subscripts can take the values {1,2,3}. Equation (1)

shows that the electromagnetic field from a known electric (J;) source in

a known medium can be calculated in all space once the fields radiated by

an appropriate point source (the Green’s tensor function, G1’) has been

calculated.

Many environmental and engineering targets of interest are located
within a few wavelengths of the antennas. It is important that the behavior
of the propagation of the electromagnetic field is known in this region. The
total-field expressions describe the propagation of the electromagnetic field
very accurately. For a homogeneous half-space they have to be obtained by
evaluation of integral expressions which is a time consuming task. For a
fast and efficient imaging algorithm, it is indispensable to have closed-
form expressions of the electromagnetic field and therefore the far-field
expressions are commonly used. The total- and far-field expressions for the
electromagnetic field are compared for a homogeneous space and a homo-
geneous half-space.

2.1. Electromagnetic Field in Homogeneous Space

The total-field expression for the Greens function G5 (x*|x, ®) in a
homogeneous space can be written as G (x® — x, w) and is given by

GE (x, @)= 17"[040, + K*81]G(R, w), (2a)
- exp(—/kR)
G(R, w)= ———— 2b
(R, o) AnR (2b)
R= x|, (2¢)
k=2, 2d)
C

where ¢ is the propagation velocity and o = 2xf and exp(—jkR) is the propa-
gation factor. Due to the spatial derivatives, particular direction patterns
arise, which depend on the orientation of the source and the direction of
observation. Another fact that arises due to the spatial derivatives is that
the field can be divided in three different contributions ; the near field is
proportional to |x|, the intermediate field proportional to |x|™ and the far
field proportional to |x|™' [19]. These closed form representations facilitate
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a thorough analysis of the radiation characteristics of each separate near,
intermediate- and far-field term. For [kR|> 1, the near and intermediate field
can be neglected compared to the far-field contributions.

We will concentrate on the amplitudes of the electric field in spherical
coordinates (R, ¢, 0). The analysis is carried out in two planes ; the E-plane
(¢ =0), and the H-plane (¢ = m/2). The E-plane is parallel to the direction
of the current source dipole, while the H-plane is perpendicular to it. The
configuration is given in Figure 1(a). The electric current source is posi-
tioned at the origin and is oriented in the #;-direction (¢ = 0). For different
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Figure 1. (a) Different planes of investigation ; the E-plane and the H-plane. The amplitude
of the total- and far-field amplitudes for (b) £, in the H-plane and (c) Eo and (d) Ey in the E-
plane for R=1m=3.34, /=500 MHz, 6=0S/m, and €, =4. The orientation of the field is
indicated by the symbol O and an arrow.
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angles 0 the electric field is analyzed at a fixed radius of 1 m, which is =3.3A
for f=500 MHz and a relative permittivity of €, = 4. This is a representative
distance of a possible scatterer with respect to the position of the source
and receiver antennas.

The amplitude and polarization of the electric total- and far-field are
plotted in Figure 1(b,c) for the H- and the E-plane, respectively. In Figure
1(b) a circle is present in the origin, indicating the direction of the source,
which is perpendicular to the H-plane and in Figure 1(c) an arrow is present
in the origin of the E-plane, indicating the direction of the source, which is
parallel to the E-plane. The solid and dashed lines indicate the amplitude
of the electric total- and far-field, respectively. The dotted circles indicate
equal amplitudes. The only component of the electric field in the H-plane is
in the #,-direction and is omnidirectional. The electric field components in
the E-plane are in the #;- and i;-direction. E, has a zero for x; =0 in the E-
plane. Because |kR| =207/3> 1, the near- and intermediate-field have a low
amplitude compared to the far-field and the contribution of the near- and
intermediate-field to £, and E, can be neglected. The difference between
the total- and far-field was about 0.1% and not distinguishable in Figures
1(b,c). The electric field shown in Figures 1(b,c) contributes to the radiated
power. However, it is still important to know also the electric field in the
radial direction (Eg), which is shown for the E-plane in Figure 1(d). Ex is
zero in the H-plane (x; = 0). In the E-plane, Ex has no far-field contribution
and is mainly proportional to |x| and thus mainly due to the intermediate
field. The maximum amplitude for Er is a factor 10 less compared to the
amplitude for E, and E, for the parameters used in this analysis (|kR|=
207/3) and may have to be taken into account for a scatterer that is rela-
tively close to the source and receiver antennas.

2.2. Electromagnetic Field in Homogeneous Half-Space

Far-field asymptotic solutions for a lossless half-space are given in
[13]. Total-field solutions are obtained by numerically evaluating the inte-
gral equations using standard integration routines [20]. The same configur-
ation is used as is given in Figure 1(a). However, now a dielectric medium
(e,=4) is present for 0 <0 <m/2, while for 7/2< 6 < air is present. The
different contributions to the total-field are shown in Figure 2(a). The far-
field expressions only describe the body wave in air and ground and have a
zero at the interface, whereas the total-field expressions also describe the
head wave in the ground and the inhomogeneous wave in air. The critical
angle 6. is given by 6. =sin"'(1/e,) for a lossless medium. For different
angles 6 the two expressions for the electric field are compared.
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Figure 2. (a) Wavefronts generated by a dipole source on the surface of a half-space earth
with 1: Body wave in air, 2: Body wave in ground, 3: Inhomogeneous wave in air, and 4: Head
wave in ground. Comparison between the total-field and far-field amplitudes of the spherical
electric field component, (b) E¢ in the H-plane, and (c) Ee, and (d) E in the E-plane for R =
I m=3.34, f=500 MHz, 6=0S/m, and ¢, = 4.

In Figure 2(b—d) the far-field and the total-field spherical electric
components are depicted at a radius of 1 m=3.3A for =500 MHz. E¢ in
the H-plane is depicted in Figure 2(b) and E, and Eg in the E-plane are
depicted in Figures 2(c,d), respectively. It is observed that the far-field
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expressions do not resemble the total-field in the lower half-space at the
critical angle (6.), where the far-field result has a maximum amplitude in
the H-plane and a minimum amplitude in the E-plane. Ey has no far-field
contribution. The maximum amplitude for E is a factor 7 less compared
to the amplitude for £, and E,. This indicates that for a homogeneous half-
space the intermediate field has a larger amplitude than in a homogeneous
space.

The large contribution of the intermediate field near the critical angle
(6.), which also contains the head wave that is not incorporated in the far-
field, causes the maximum of the radiation pattern for the total-field not to
be present at the critical angle, but at an angle larger than the critical angle.
Far-field expressions are compared to FDTD modeling in [21] and [22] and
similar phenomenon are observed. Further research is needed to obtain
closed-form expressions for the intermediate field, which eventually can be
used for imaging purposes.

3. Scattering Formalism

We investigate the scattering of electromagnetic fields by a con-
trasting domain of bounded extent present in an unbounded homogeneous
medium D that has a conductivity o, permittivity €, and permeability p. D*
is the bounded domain occupied by the scatterer with conductivity ¢*(x),
permittivity €°(x) and permeability y'(x) = u. The contrast source volume
density J; of electric current, also denoted as scatter source, is given by

Ji= 1 Ex. 3
in which the medium contrast function is found as
X" =11 =(0"~0)+jo(e ~¢). (4)

Once the total-field strengths (E; in Eq. (3)) inside the scatterer are known,
the scattered field values in all space can then be obtained upon substituting
the relevant values for the scatter source into the following equation

Ei(x", 0) = J G (x"—x, 0)]; (x, 0)dV, (%)
xeD’

which is similar to Eq. (1). Using the so-called first-Born approximation
[23], we assume that

Ji (x, 0)=x"Ei(x, o). (6)



Improved 3-D Image Reconstruction Technique for Multi-Component GPR Data 69
Substitution Eq. (6) into Eq. (5) yields

E; (x®, 0) = J GE (" —x, 0)x" (X)EL(x, @) dV. (7)
xeD’

We assume that the incident electromagnetic field is generated by external

point sources J¢ = S(0)8(x — x*)b,, where S(w) represents the source wavelet

for the electric current sources and b, represents the orientation of the elec-

tric current source. Substitution in Eq. (1) enables that the incident electric

field generated by these point sources can be written as

El(x°, 0) = GE (x* - x°, ©)S(0)b,. (8)

Substitution of Eq. (8) and the expression for the scatter source, Eq. (6),
into Eq. (5) yields the expressions for the scattered field due to a small
contrast

E; (x*, %%, w) = S(w) f Gl (" =x, )" (x)G (x° = x°, )b, dV,
x‘eD’
)
where we have used
7E (x = x5, 0) = GE (x° — x°, w). (10)

The Green’s tensor function GZ’ (x* — x°) describes the propagation of the
electric field from the primary electric-current source at x° towards the scat-
terer at x“. Similarly, the Green’s tensor function G£/(x* — x°) describes the
propagation of the electric field from the secondary electric-current source
present at x* towards the receiver located at x*.

Taking into account that the orientation of the source and receiver
is parallel to the interface to obtain a better coupling, four different source-
receiver combinations are possible. Eq. (9) reduces to

ES(x® x5, 0) = S(w) j 2" (x)GE ("= x, 0)G L (x° - x¢, w)bg dV,
x‘eD’®
(1)

where {o, B} = {1,2}. We assume that the source and receiver are present
on the same horizontal plane, {x°, x®}e D%, where x3 = x§ = 0. The con-
figuration is depicted in Figure 3.

The source and receiver coordinates are now written as x° = x™ —x
and x*=x"+ x”, where x" is the midpoint between the two antennas and
x'" is half of the offset. Because four different source-receiver combinations
are possible, we introduce E,;(x", x”, ®), where

Ep(x" +x" x"—x", ) = Ep(x™, x”, 0)bg, (12)

H
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Figure 3. The configuration of the four possible source-receiver setups.

and E"a,j is given by

Eocﬁ (xM; st (D)

= S‘(w)J 2" (x)GE (M + x =X, 0)G R (xM - x" = x5, w) dV, (13)

- S
x‘eD

where o and f indicate the orientation of the receiver and the source,
respectively. This notation is convenient when discussing the four different
measurements separately.

Note that in this representation we have taken into account the pola-
rization of the electromagnetic field that propagates through a homo-
geneous medium or homogeneous half-space. We have assumed that each
point in the subsurface acts as an independent point diffractor and no
multiples are present in the data. Using the Born approximation (valid for
small contrast scatterers), lincarized expressions of the scattered field are
obtained which will be amenable to use as a starting point of the imaging
procedure.

4. Modeling Results

To show the vectorial character and the influence of the radiation
characteristics on the scattered field, synthetic results are calculated for a
buried scatterer with a conductivity contrast using the scattering formalism
as given in Eq. (13). The two Green’s functions can be calculated using far-
field and total-field expressions (as shown in Figures 1 and 2).
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4.1. Measurements on an Acquisition Surface

For a buried point diffractor at x = (0,0, 0.5), the scattered field is
calculated at intervals of Ax} = Ax}’ =0.05m in both horizontal directions
using the far-field expressions for an acquisition surface —1.6<x}'<1.6,
-1.6<x3'<1.6m, and x4’ =0m for a frequency of 500 MHz in a homo-
geneous space and a homogeneous half-space (e,=4) for a zero-offset
(x™ = 0) source-receiver configuration.

In Figure 4(a,b) the calculated results are given for a homogeneous
space for Ej; and E,,, respectively. Due to the radiation patterns of the
source and receiver, more information is obtained for larger |x,| compared
to |x;| for the perpendicular-broadside (co-pole) configuration (£i;). The
parallel-perpendicular (cross-pole) configuration (E»;) shows a zero for
{X] . Xz} =0.

In Figure 5(a,b) the calculated results are given for a homogeneous
half-space for E,, and E,,. Due to the radiation pattern of the source and
receiver a maximum occurs for (Ej;) at the critical angle for x; =0 and x, =
{=0.6, 0.6}, while a minimum occurs at the critical angle for x, =0 and x, =
{~0.6,0.6}. The parallel-perpendicular configuration (E,;) shows again a
zero for {x;, x,} =0.

4.2. Measurements along an Acquisition Line in a Homogeneous Half-
Space

Along the survey line, which is indicated in Figure 5(a,b), the scat-
tered electric field in time domain was calculated for 21 positions with a
stepsize Ax™ = (0, 0.05,0)m, zero-offset configuration (x"'=(0,0,0)) and
starting at position (0.25,-0.5, 0). A Gaussian wavelet was used as a source
wavelet. The total-field and far-field results are presented for the perpen-
dicular—broadside (E;;) and the parallel perpendicular (E,;) configuration
in Figure 6(a,b), respectively. A significant difference between the total-field
and the far-field is observed. This is due to the fact that the scatterer is
located close to the source and receiver and as a consequence the far-field
does not resemble the total-field. It is stressed that the measured reflections
for positive and negative positions differ in sign for the cross-pole measure-
ments shown in Figure 6(b).

5. Imaging

An imaging algorithm basically consists of two steps ; the first step
corrects for propagation effects for each separate frequency component
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(a)

Figure 4. Far-field response for f= 500 MHz obtained from a buried point scatterer in a homo-
geneous space for (a) perpendicular—broadside £, (co-pole) and (b) parallel—perpendicular £,
(cross-pole) configuration.

(inverse wavefield extrapolation). The second step involves a time zero selec-
tion for each position, which is carried out by adding all (positive and nega-
tive) frequencies. This operation is known as the imaging principle [24]. For
all discussed imaging algorithms, the imaging principle is equivalent. The
discussion of the inverse wavefield extrapolators is thus our main concern.
To investigate the performance of scalar inverse extrapolators and to derive
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Figure 5. Far-field response for f'= 500 MHz obtained from a buried point scatterer in a homo-
geneous half-space on a limited acquisition surface for (a) perpendicular—broadside configur-
ation, E;, and (b) parallel-perpendicular configuration, Ex,.

systematically a bounded inverse extrapolator dedicated to the electromag-
netic case, we first discuss the scattering formalism.

We rewrite the linearized expression for the scattering formalism
Eaﬁ, which is given by Eq. (13) as

Eaﬁ (xMa xH7 w) = S(w)J Daﬁ (xM: xHa xC, a))xﬁ (x(f) dV7 (14)

x‘eD’
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where the forward wavefield extrapolator D, describes the inner product
between the two Green’s functions and is given by

Dop(x", x", x°, 0) = GEL(x™ + x" = x°, )Gl (x™ —x" = x, w).  (15)

The forward wavefield extrapolator ﬁaﬁ describes the inner product of
the Green’s function describing the downward propagation from source
towards scatterer and the Green’s function describing the upward propa-
gation from scatterer towards receiver in a homogeneous space or a homo-
geneous half-space.

To enable a thorough analytical discussion of the performance of the
different inverse wavefield operators, we will first determine the forward
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wavefield extrapolators in a lossless homogeneous space for a zero-offset
configuration, with x*=x®=x"=(x}", x3*,0), and x” =0. Equation (14)
can now be written as

Eup(x", 0) = S() f Dap(x™ —x, 0) 2" (x) dV. (16)

x‘eD’

The expression for the Greens function in a homogeneous space,
GE(x, w), is given by Eq. (2a). The forward wavefield extrapolator can be
rewritten by separating the phase delay and the corresponding amplitude
factor as

Dop(x, 0)= GEl(x, )G (x, ),

= Ayp(x, ®) exp(-2/kR). (17)

Because the wavefield extrapolator in Eq. (17) is derived for a zero-offset
measurement a factor 2 occurs in the two-way phase delay exp(—2jkR),
which indicates that the wavefield has traveled twice along the same path.
The separate elements of /10,,3 in Eq. (17) are evaluated for the far-field
contributions using Eqgs. (2a)-(2d) and can be written as

An(x, @)= Rz};’c% C(), (18a)
A (x, 0)= —x;fz C(o), (18b)
Aoy (x, 0)= —x;{fz C(o), (18¢)
Ana(x, @)= RZI;X% C(), (18d)
where
Clw) = 172(4;)2' (19)

The zero-offset assumption in a homogeneous space enables a thorough
analytical discussion of the performance of the different inverse wavefield
extrapolators. In the following sections, the zero-offset assumption will
hold.
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5.1. Wavefield Extrapolator in Wavenumber-Frequency Domain

A horizontal spatial Fourier transformation is carried out using the
stationary phase approximation to obtain the expression for Dys(x;, X2,
x3,®) 1in the wavenumber-frequency domain,* ﬁaﬁ ki, ks, x5, @),
yielding [18]

Daﬁ (ki,ka, x5, @) = 670:13 exp(—ks |x3|), (20)
where k3 is given by

. _{ VHE-IG-I3,  forki+K3=4k2,
-

21
—iVIE+IG—-4K2,  for kG + k3> 4k, @1
and

5 20jC(@) )2 2
dyi (ki kyy x5, )= —————[(2k)” — k1], 22
ki, ka2, X3, 0) 2| [(2k) = ki] (22a)
~ 2rjC(w)
dia(ki kyy x5, )= ——kiks,, 22b
ki, ka, X3, @) (2k)3|x3| 1%2 ( )
~ 2rjC(w)
oy (ki kyy X3, )= ———F— , 22
b1 (ks ko s X3, ) (2k)3|x3| 112 (22¢)
5 27jC(w) 2_ g2
doy (ki kyy X3, )= —————[(2k)" — k3] 22d
ki, kay, X3, ©) (2k)3|x3| [(2k) ] ( )

Note that the method of stationary phase can also be applied to evaluate
the inverse spatial Fourier transformation.

5.2. Scalar Inverse Wavefield Extrapolators

In this section, the relation between conventional scalar inverse
wavefield extrapolators and the scattering formalism is shown. The symbol
H is used to describe the different inverse wavefield extrapolators. We limit
the number of extrapolators by only discussing imaging algorithms defined
in the space-frequency or the wavenumber-frequency domain.

The phase shift of the forward wavefield extrapolator in the space-
frequency domain as given in Eq. (17) yields

exp(=2jkR) (23)

*Also known as k—f domain, in this case we should actually speak of k;, k», @ domain.
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and the phase shift of the forward wavefield extrapolator in the wave-
number-frequency domain as given in Eq. (20) yields

exp(—jks|xs)), 24

where Eq. (21) indicates the region of the propagating waves and evanescent
waves. It will be shown that the basis of conventional inverse wavefield
extrapolators is to correct for the phase shift in either the space-frequency
or horizontal Fourier domain.

5.2.1. Synthetic Aperture Radar Imaging

Synthetic Aperture Radar (SAR) imaging was originally developed
for remote sensing [25]. This process is in many ways similar to the problem
of seismic imaging of the earth’s interior and is essentially a ray-tracing
algorithm. In seismics, this imaging algorithm is known as diffraction sum-
mation migration. The inverse wavefield extrapolator for the SAR imaging
algorithm is defined in the space-frequency domain and is the inverse of the
phase shift given in Eq. (23)

H*(x, w) = exp(2jkR). (25)

The equivalent of Eq. (25) in the wavenumber-frequency domain is obtained
by using the stationary phase approximation and is given by

o 4rjk
H* (ki ka2, x5, @) = 4z |)7C%|
(k%)

exp(jk¥ xs)). (26)

Note that the inverse wavefield extrapolator in the wavenumber-frequency
domain (Eq. (26)) has an increasing amplitude for increasing horizontal
wavenumbers in the propagating wave region. Moreover, for wide angle
measurements containing horizontal wavenumbers near the propagating
and evanescent wave boundary, the amplitude of the inverse wavefield extra-
polator is not bounded, because the denominator approaches zero, whereas
the inverse wavefield extrapolator in the space-frequency domain (25) is
bounded.

So a bounded expression in the space-frequency domain can be
unbounded in the horizontal Fourier domain when it is determined using
the stationairy phase approximation. Note that Eqgs. (25) and (26) are
related by the stationary phase approximation, which is based on the
assumption of an infinite acquisition plane. The implementation in the
space-frequency domain, which inherently is carried out for a bounded
acquisition plane, results in a band limitation, which prevents amplitudes of
the SAR inverse wavefield extrapolator becoming unbounded.
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5.2.2. Gazdag Phase Shift Extrapolator

The Fourier transform method in seismic migration was introduced
in [26]. A simple mapping from temporal frequency @ to vertical wave-
number k; involves interpolation for the required data samples. The phase-
shift method was published in [4], which led to a further understanding of
wavefield extrapolation in the transform domain. Since then, several names
were introduced for the Gazdag phase shift method. Some of them are:
backpropagation imaging, plane wave method or wavenumber-frequency
migration. It was shown in [3] that the Kirchhoff integral extrapolator,
which is defined in the space-time domain, is similar to the Gazdag phase
shift extrapolator, which is defined in the horizontal Fourier domain for a
specific combination of source and receiver types in the acoustic case. The
Gazdag phase-shift is commonly used in combination with the exploding
reflector assumption, which does not account correctly for geometrical
spreading. The inverse wavefield extrapolator, which forms the basis of Gaz-
dag phase-shift imaging [4], is defined in the horizontal Fourier domain and
is an approximate inverse of the phase shift given in Eq. (24). To obtain a
bounded inverse wavefield extrapolator, the complex conjugate of the verti-
cal wavenumber is taken. In reality, this means that only the propagating
wave region is used. The Gazdag inverse wavefield extrapolator is given by

I:Igd(kl s k27 X3, (D) = exp(‘]k;k |X3|). (27)

Note, that within the propagating wave region the amplitude of the inverse
wavefield extrapolator given in Eq. (27) is unity. Using the stationary phase
approximation, the expression for this operator in the space-frequency
domain is obtained as

jk|x3|

H¥(x, w) = —
(x, @) TR

exp(2jkR). (28)

5.3. Comparison of Scalar Inverse Wavefield Extrapolators

The SAR and Gazdag inverse wavefield extrapolators both consist
of a phase shift of the original measured signal weighted with some fre-
quency- and angle-dependent factors (Table 1). In the space-frequency
domain, the phase shift is given by exp(2jkR) and in the wavenumber-
frequency domain, it is given by exp(jk¥ |xs]).

The Gazdag and SAR operators are basically phase shifts in the
space-frequency domain and in the wavenumber-frequency domain, respect-
ively. Neither operator takes into account the vectorial character and the
radiation characteristics of the source and receiver antennas.
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Table 1. Overview of the Scalar Inverse Wavefield Extrapolators in the
Space-Frequency (x—®) Domain and in the Wavenumber-Frequency
Domain (k— )

Inverse x — o domain k — o domain
extrapolator H H
4mjk
SAR exp(j2kR) Rl "f' exp(jk|xs))
(k%)
—jk
Gazdag / 1'?' exp(2jkR) exp( jk¥|xs|)
T

Note that when these inverse wavefield extrapolators are known
in both the space-frequency domain and the wavenumber-frequency
domain, the wavefield extrapolation can be carried out in either the space-
time domain, the space-frequency domain or the wavenumber-frequency
domain. Each domain has its own limitations and advantages. When
some topographic adjustments are needed, implementation in the wave-
number-frequency domain is not an option. Frequency-dependent medium
parameters can be taken into account in the space-frequency as well as
wavenumber-frequency domain. Furthermore, the wavenumber-frequency
domain implementation is more efficient compared to the space-frequency
domain implementation ; in the space-frequency domain, a two-dimensional
horizontal convolution must be carried out, while in the wavenumber-
frequency domain, a multiplication has to be carried out. The implemen-
tation of the inverse wavefield extrapolation in the wavenumber-frequency
domain requires a regular sampling of the measured data. An overview of
the specific domain-related properties of the different implementations is
given in Table 2. When the inverse extrapolator is calculated in the space-
frequency domain, while the actual inverse extrapolation is carried out in

Table 2. Overview of the Advantages and Disadvan-
tages of the Different Domains of the Implementation
of the Scalar Wavefield Extrapolators

Domain of implementation

Space- Wavenumber-
frequency frequency
Irregular sampling + - -
Topographic correction + - -
Efficiency - + +
Frequency-dependent + + +

medium parameters
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the wavenumber-frequency domain, we speak of a combined space-
frequency wavenumber-frequency implementation. This is indicated in the
table by the middle column and will be the way the multi-component inverse
extrapolator is calculated.

5.4. Multi-Component Inverse Wavefield Extrapolator

It has been shown in [18] that single-component inverse wavefield
extrapolators based on the forward wavefield extrapolator for a homo-
geneous space are not bounded, and that the inverse wavefield extrapolation
has to be carried out by combining more components of the measured scat-
tered electric field. To combine more components of the emitted and meas-
ured electric field, a multi-component scattering formalism was achieved by
converting Eq. (16), which describes the components Eaﬁ individually, into
a matrix:

E(xY, 0) = S(w) j DM - x°, 0)x" (x) dV. (29)

x‘eD’
where E(x", o) is given by

L Ell EIZ
Ex", 0)=|. . M ), 30
(x ) |:E21 E22:| (x ) ( )

and D(x, o) is the corresponding 3D forward wavefield extrapolator for
zero-offset, which is given by

D(x, ) = A(x, ®) exp(—2jkR), (31)
where
Ax, 0) = [’a“ A”} (x, ®) (32)
’ /2121 /122 ’ ’

and /iaﬁ are giyen by Egs. (18a—d). Combining Egs. (20) and (22a—d) the
expression for D(ky, k5, x5, @) is obtained as
r)(kl ko, x5, @) = a(kl ko, X3, ) exp(—jk3|x3|), (33)
where
- -2mjiC 2k’ ki —kik
d(kl,kz,xg,w)z’ﬂ(“’)[( yok ] (34)
(Zk) |.X3| _klkz (2k) _kz

To obtain an approximate inverse of the multi-component 3-D
forward wavefield extrapolator D(k,, k», x5, ®), the complex conjugate of
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the exponent and the inverse of the matrix in Eq. (34), was taken yielding
ﬁinv(kl ) k2> X3, a)) = l~linv(lcl ) k2> X3, w) eXp(‘]kg: |x3|)7 (35)

where

l“iinv(kl ) k2’ X3, (})) =

jk|x3| [(2k) —k3 kiks, ] (36)

rCkel kik,  QkY -k

Using the stationary phase approximation, the spatial equivalent of Egs.
(35) and (36) is obtained as

(yinv __

_ 4K* [(Rz—xi)/R2 X%/ R?
A’ C(w)

o/ R (R ) /Rz] exp(2jkR). 37)

Note that the components of this multi-component inverse wavefield extra-
polator are bounded.

5.5. Imaging Principle

The approximate inverse of the forward wavefield extrapolator D
(see Eq. (29)), which is given by ™, compensates for all travel times and
amplitudes involved in a homogeneous space, including radiation character-
istics of the (point) source and (point) receiver. Next, the imaging principle
is applied, which states that the data at zero traveltime of the inverse
extrapolated recordings, relate to a bandlimited version of the physical
property contrasts of the medium of investigation [2,24]. As a consequence,
we can simply sum the result for all (positive and negative) frequencies to
obtain the imaged contrast in the space domain, such that we can write for
the imaged contrast at a specific depth level x = (x;, x,, X3),

D = - J Ao J A™(x — X", 0)E(x™, ) dd,  (38)
21 ) S(@) Jotr, vy e s

where I is the unity matrix. Note that the diagonal components (y"(x)I)
and (x"(x)I),, both return the estimated value of the obtained contrast.
According to Eq. (38), each diagonal component ((x"(x)I);; and (" (x)I)»,)
consists of the summation of two different measurements (£,, and E,.,
respectively), which are imaged separately by using appropriate inverse
wavefield extrapolators (Hin and Hbiy, respectively) for that specific
measurement.

The foregoing analysis can also be applied for the scalar (single-
component) imaging algorithm. Instead of Eq. (29), which was the starting

point for the imaging principle for the multi-component imaging algorithm,
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the starting point for the imaging principle is given by Eq. (16). Using a
similar analysis as carried out to derive the imaging principle for the multi-
component imaging, we can now write for the scalar imaging algorithms

2 ()= - f o f H(x - x™, 0)Eop (x™, 0) dA,  (39)
21 ) S(@) ot oy emor

where H is an inverse wavefield extrapolator. There are a lot of possible

inverse wavefield extrapolators. For example, the inverse wavefield extrapo-

lators for the SAR and the Gazdag algorithms in the space-frequency

domain are given by Egs. (25) and (28), respectively.

5.6. Inverse of Multi-component Wavefield Extrapolator in Two
Homogeneous Half-Spaces

Due to the fact that the expressions of the forward wavefield extra-
polator were quite elementary in a homogeneous space, an analytical dis-
cussion was possible. However, for a homogeneous half-space an analytical
approach is not feasible. Nevertheless, a numerical implementation to deter-
mine the approximate inverse is still possible. An important benefit is that
numerical methods allow the offset between the source and receiver to be
taken into account. Similar to Eq. (31), we introduce the forward wavefield
operator

D (x", x" x‘, 0) Dp(x™, x", x°, o)

DY, x x, w)=| ., .
T Do (x", X7, x, @) Dy (x™ x", x°, w)

], (40)
where D px™, x"”, x°, ®) is given by Eq. (15). To determine the forward
wavefield operator, the different components of the Green’s tensor functions
can be calculated using the total-field expressions or the far-field expressions
(Fig. 2).

The inner product of two vectors of the Green’s tensor function (see
Eq. (40)) must be determined for each midpoint position x* (note that x”
is fixed). Then, a two-dimensional spatial Fourier transformation must be
carried out. For each k;, k, combination, an inverse matrix can be numeri-
cally determined, which results in a representation of the inverse wavefield
extrapolator in the wavenumber-frequency domain (Table 2). This calcu-
lation using total-field expressions is not yet feasible for imaging of experi-
mental data, because of the large computing time that is needed. The effect
of using the far-field expressions instead of the total-field expressions to
obtain an inverse wavefield extrapolator are investigated by imaging a point
scatterer. Note that for H™(x, x| x°) to be bounded, the inverse wavefield
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extrapolator is only determined in the propagating wave region and the
evanescent wave region is neglected (see also Eq. (21)).

6. Spatial Resolution Functions

The performance of the scalar and multi-component 3-D inverse
wavefield extrapolators was investigated in [18]. The imaging result of a
point scatterer was analyzed for one single frequency component, which was
denoted as the spatial resolution function. For the special situation of one
diffraction point only at position x?, that has a real-valued contrast with
unit amplitude yields

2" (x) = 8(x — x%. (1)

A representative resolution function will return also a real-valued resolution
function. In [18] it was shown that the resolution function in a homogeneous
space using the SAR operator returns a real-valued resolution function with
a negative peak, whereas the Gazdag operator returns an imaginary resolu-
tion function. The multi-component operator returns a real-valued resolu-
tion function with a positive peak giving a representative image of the point
scatterer. Closed-form expressions were derived for the spatial resolution
functions for the Gazdag and the multi-component inverse wavefield extra-
polators using far-field expressions of the electric field. In Table 3, the speci-
fications of the obtained spatial resolution functions are given. For the
multi-component inverse extrapolator, an equal spatial resolution for the x,;
and the x,-axis is obtained, while for the Gazdag inverse extrapolator better
resolution is obtained along the x,-axis than along the x;-axis. Since a
closed-form expression for the SAR spatial resolution function cannot be
derived, the widths of its main lobes cannot be analytically determined.

6.1. Modified Scalar Inverse Wavefield Extrapolators

An important requirement of an inverse wavefield extrapolator is to
compensate for the propagation effects. Table 3 shows that the Gazdag

Table 3. Width of the Main Lobe (Measured at the First Zero) for
the Resolution Function at the Depth Level of the Diffractor
Using the Closed-Form Expressions

Width of the main lobe

Inverse Proportional
extrapolator X;-plane X,-plane to

SAR C/2k

Gazdag 0.841 0.601 —iC/|x4

Multi-component 0.644 0.644 k/2m
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Table 4. Overview of the Different Modified Inverse Wavefield
Extrapolators in Space-Frequency and Wavenumber-Frequency

Domain
Inverse x —f domain k —f domain
extrapolator H H
—Arjk
SAR —exp(j2kR) L'j“' exp(jkt|xs))
(k%)
—k|xs|2 . . -
Gazdag o expU2KR) e exp(iktl)

inverse wavefield extrapolator does not satisfy this requirement, because the
obtained image is still depending on the depth |x§|. Therefore, it is suggested
to introduce a modified operator which does compensate for the propa-
gation effects. This is simply achieved by a scaling with |x3|. Another
requirement was that the obtained image represents the scatterer adequately.
The peaks of the results obtained with both scalar inverse extrapolators do
not represent the nature of the physical property contrast of the point scat-
terer. Therefore, modified extrapolators are introduced, which render a
more representative reconstruction of the point scatterer. The modified SAR
operator consists of the original SAR extrapolator multiplied by -1 to
obtain a real-valued resolution function with positive peak. The modified
Gazdag operator consists of the original Gazdag extrapolator multiplied
with |x4. Also, multiplication with —j is required to obtain a real-valued
resolution function with a positive peak. The adjusted extrapolators are
given in Table 4 (compare with Table 1). Note, that the amplitudes of the
resolution functions are proportional to —C/(2k) and —C for the modified
SAR and Gazdag operators, respectively.

6.2. Spatial Resolution Functions for point Scatterer in a Homogeneous
Space

The results from Table 3 were obtained by carrying out an analytical
analysis using far-field expressions for a scatterer in a homogeneous space.
A numerical analysis is now carried out by calculating the response for a
point scatterer using the total-field expressions. Next, this data is imaged
using the modified SAR, modified Gazdag and the multi-component inverse
wavefield extrapolators. The multi-component imaging algorithm is imple-
mented by using the far-field expressions as given in Egs. (31) and (32).

Figure 7(a) shows the normalized real part of the spatial resolution
functions using the modified SAR, modified Gazdag, and the Multi-compo-
nent inverse wavefield extrapolators for f= 500 MHz for a point scatterer
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Figure 7. (a) Comparison of normalized real part of spatial resolution function using modified
SAR, modified Gazdag and multi-component inverse extrapolators in a homogeneous space

(b) comparison of normalized real and imaginary part along x;-axis, and (c) along x,-axis.
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present in a homogeneous space at a depth of 1 m. Due to the introduction
of the modified scalar inverse wavefield extrapolators, all resolution func-
tions have a positive peak amplitude. Furthermore, it can be observed that
the modified SAR and the modified Gazdag image are not circularly sym-
metric, whereas the multi-component image is circularly symmetric. In Fig-
ure 7(b,c) the results using the three inverse extrapolators are compared
along the x;- and the x,-axis, respectively.

As already indicated in Table 3, the width of the main lobe along
the x;-axis is larger for the modified Gazdag operator and similar for the
modified SAR compared to the multi-component image. Both scalar images
have a relatively large imaginary value. They have a smaller width of the
main lobe along the x,-axis, and thus a higher resolution, compared with
the multi-component image. The amplitude of the oscillations along the x,-
axis obtained with the modified SAR image is quite significant.

The multi-component image shows a circularly and mainly real-
valued resolution function. The multi-component inverse wavefield extra-
polator eliminates the propagation effects in an accurate way, because the
far-field expressions are a good approximation of the total-field expressions

(Fig. 1(b,c)).

6.3. Modified Scalar Inverse Wavefield Extrapolators for Non-zero
Offset between Source-Receiver

From the expressions for the modified operators given in Table 4,
it can be observed that it is not feasible to take into account the offset
2x" between the source and receiver antennas when the operators are
implemented in the wavenumber-frequency domain. However, in the space-
frequency domain the offset between the source and receiver antennas can
be incorporated in an approximate sense as follows:

H(x™, x", x°, o) = jexp(jkR®) x j exp(jkR"), (42a)

| d|

. i k
(M, x5, )= \/ 7’;} exp(jkRS) xj\/ il > exp(jkR"), (42b)
T

where
=M= x" = x9, (43a)
RE=|x"+x" - x. (43b)

In this way, the propagation from source to scatter position and the propa-
gation from scatter position towards the receiver is accounted for by two
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separate phase shifts. Note that for the modified SAR-operator, each separ-
ate phase shift is supplemented by a factor j, while for the modified Gazdag-
operator each separate phase shift is supplemented by a factor which con-
sists of a spatial taper |x4/R and a frequency-dependent factor k and is
given by jvk/m |x4/R. It is obvious that the two modified operators consist
of the appropriate phase shift, whereas it is recommended to check the vali-
dity of the amplitude factor of the modified Gazdag phase shift by numeri-
cal analysis. There is no physical meaning of the two split one-way
amplitude terms in Eq. (42), because the SAR and Gazdag operators were
originally developed for scalar imaging purposes.

6.4. Spatial Resolution Functions for a Point Scatterer in Two
Homogeneous Half-Spaces

Numerical analysis is carried out for a point scatterer present in a
homogeneous half-space. The point scatterer is present at a depth of 1 m.
The scattered electric field is calculated using total-field expression obtained
by evaluating the integral expressions for a real-valued contrast with unit
amplitude (see Eq. (41)).

In Figure 8(a), the normalized real and imaginary parts of the modi-
fied SAR image are shown. A non-circularly symmetric resolution function
is obtained. Note that also a non-zero imaginary part is obtained. In Figure
8(b) the real and imaginary parts of the modified Gazdag image are shown.
Again, a non-circularly symmetric resolution function is obtained and a
non-zero imaginary part is obtained. Note that the modified SAR image
has more oscillations in the tails of the resolution function compared to the
Gazdag image (see Fig.7(b,c) and Fig. 9). These oscillations can be
explained by the amplitude of the modified SAR operator being not
bounded for horizontal wavenumbers when approaching the boundary
between the propagating and evanescent wave region (see Eq. (26)).

In Figure 8(c) the normalized real and imaginary parts of the multi-
component image using the far-field expressions are shown. The obtained
resolution function is more circularly symmetric than the scalar images. The
imaginary part for the multi-component image has smaller amplitudes than
the scalar images. Note that the use of the far-field expressions, which are
used to perform the inverse wavefield extrapolation, do not completely cor-
rect for the propagation of the total electric field for a scatterer present at
1 m depth, due to the fact that an error exists between the total field and
the far field, as is shown in Figure 2(b—d) and Figure 6(a,b). This results in
the real part not being completely circularly symmetric and the imaginary
part of the obtained image being unequal to zero.
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Figure 8. Normalized real part and imaginary part of spatial resolution function in two homo-
geneous half-spaces using the (a) modified SAR and (b) modified Gazdag imaging algorithm
and using the multi-component imaging algorithm using the (c) far-field, and the (d) total-field
expressions to calculate the inverse wavefield extrapolator.
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In Figure 8(d) the normalized real and imaginary parts of the multi-
component image using the total-field expressions are shown. The resolution
function shows a realistic positive real-valued circular symmetric image and
represents the properties of the point scatterer, which has a positive real-
valued contrast.

The scalar images and multi-component image obtained using far-
field expressions are compared along the x;- and the x,- plane in Figure 9.
It can be observed that the peaks in the tail for the real part of the multi-
component image are located at the same position relative to the maximum,
while for the modified SAR and the modified Gazdag images the peaks are
located at different positions on the x; and the x, axes. This again indicates
that the multi-component image is more circularly symmetric than the
single-component images. The difference in the width of the main lobe for
the three imaging algorithms is not as large as in the homogeneous case (see
Fig. 7(b,c)). However, significant imaginary values are obtained for the sca-
lar imaging algorithms. Due to the fact that not only a maximum real part
is obtained for a real-valued contrast, a phase difference is obtained com-
pared with the expected result, which should be only real valued. The maxi-
mum obtained for the modified SAR image has a phase difference of 17°
with the angle of the actual real-valued contrast (0°). The maximum for the
modified Gazdag image has a phase difference of 9° and the multi-compo-
nent image has a phase difference of —8°. Note that the phase errors are
larger over the whole range for the modified SAR and modified Gazdag
images than for the multi-component image.

Using the scalar imaging algorithms, different resolution functions
are obtained for the homogeneous space and homogeneous half-space,
because they are not using the appropriate Greens functions. The multi-
component imaging algorithm is based on an approximate inverse in the
spatial Fourier domain of the forward wavefield extrapolator. Because this
extrapolator consists of the appropriate Greens functions, similar resolution
functions are obtained in both a homogeneous medium and homogeneous
half-space.

It is not feasible to use the total-field expressions for real applications
because that needs an enormous amount of computing time. The far-field
expressions are used for the multi-component imaging algorithm to image
the experimental data.

7. Experimental Results

7.1. Description of the Measurements

For controlled experiments, a testing site has been constructed in
Scheveningen located near the coast in the Netherlands. Several steel pipes
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Figure 9. (a) Perspective view of the multi-component image (x"(x)I);; using pulseEKKO
900 MHz antennas in the perpendicular—broadside configuration and the perpendicular—paral-
lel inline-configuration. Analysis of normalized real, imaginary part and absolute value of the
image (b) for the metal pipe (A) along the dashed line parallel to the x;-axis and (c) for the
plastic sphere (F) along a dash-dotted line parallel to the x,-axis, respectively.

were buried with a different orientation with respect to the survey lines. One
plastic and several metallic spheres were also buried in the sand. The multi-
component measurements were carried out on a survey grid consisting
of 60 lines with an inline and crossline spatial sampling of Ax{’=
AxY =5 cm. The survey lines are oriented in the x,-direction. The offset
between the source and receiver antennas was 2Ax% = 35cm, which was
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(a) Perpendicular-broadside (co-pole)

Figure 10. Two inline orientations in a rigid frame used for the multi-component experiments
with an offset of 35 cm.

chosen in such a way that for all orientations no clipping of the measured
electric field occurs. Measurements were made with the pulsesEKKO 1000
system using the 900 MHz antennas. A stacking fold of 16 was used to
increase the signal-to-noise ratio. The temporal sampling interval was 50 ps,
which was used to obtain 1000 samples, which resulted in a time window of
50 ns. The actual multi-component measurements were carried out using the
two inline source-receiver combinations as depicted in Figure 10. The scat-
tered electric field measured in the perpendicular-broadside configuration
and the perpendicular—parallel inline-configuration are represented by Ej;
and FE,,, respectively.

7.2. Three-Dimensional Imaging Results

First of all, the measured data of the different survey lines are aligned
by using the maximum and minimum values of the direct air wave. Our
imaging algorithm assumes that only scattered data are measured. In reality,
direct waves are also measured, the air- and ground-wave. To remove these
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direct waves, which are equal for each measurement in the case of a homo-
geneous top layer, a simple average subtraction is carried out. The data
were imaged using an effective relative permittivity for the lower homo-
geneous half-space of €, =3.1. The offset between the source and receiver
was taken into account. The radiation patterns in a homogeneous half-space
was only taken into account by the multicomponent imaging algorithm.

The multi-component imaging algorithm combines the two measure-
ments of E;; and FE,;, which results in the contrast quantity (xﬁ(x)l)n
derived from Eq. (38). The modified SAR and modified Gazdag images are
calculated using Eq. (39) The imaging given in Egs. (38) and (39) is per-
formed using a summation of 45 frequencies in the range of 100-960 MHz,
which has been carried out for positive frequencies only. This facilitates the
analysis of real and imaginary parts of the obtained contrast, separately. In
our analysis, the source wavelet is not taken into account. As a consequence,
the properties of the scattered objects cannot be extracted using the multi-
component imaging algorithm. However, the separate analysis of real and
imaginary parts, is the most appropriate way to investigate differences
between the different imaging algorithms.

7.3. Equi-Amplitude Surfaces for the Multi-Component Imaging Results
in a Three-Dimensional Volume

To obtain an overall picture of the obtained results, surfaces of con-
stant absolute value in the image domain were used to depict the different
objects in a representative way. The threshold for this surface of constant
amplitude must be chosen relative to the maximum amplitude of the object.
Because the imaged contrast of the different objects had different maximum
amplitudes, different thresholds were used. In Figure 11, the results are
depicted. The metal pipes A and B have the largest amplitude and the plastic
sphere F has the smallest amplitude. Some other anomalies are present,
which have amplitudes comparable with the amplitude of the imaged plastic
sphere (F). Note that the equi-amplitude results are only shown to give an
overall view of the different objects present at the testing site.

7.4. Comparison between the Imaging Algorithms along a Line

The original SAR algorithm would return an image which would
have an opposite sign compared with the results obtained with the multi-
component imaging algorithm, whereas the Gazdag algorithm returned an
imaged contrast with a maximum value which is approximately 90° out of
phase with the multi-component imaging result [18]. The use of the modified
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Figure 11. (a) Perspective view of the multi-component image ()" (x)I);, using pulseEKKO
900 MHz antennas in the perpendicular—broadside configuration and the perpendicular—paral-
lel inline-configuration. Analysis of normalized real, imaginary part, and absolute value of the
image (b) for the metal pipe (A) along the dashed line parallel to the x,-axis and (c) for the
plastic sphere (F) along a dash-dotted line parallel to the x,-axis, respectively.
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Figure 11. Continued.

SAR and Gazdag algorithms enable a thorough comparison with the multi-
component algorithm, because the two modified scalar algorithms return
for a certain scatterer an image which approximates better the nature of
the physical property contrast of the scatterer than the original scalar
algorithms do. Due to the different constants used by the different imaging
algorithms, the obtained amplitudes differ. This was already indicated by
the results of the resolution functions for a homogeneous space given in
Table 1, which are proportional to k/(2x), —C/(2k), and —C for the multi-
component, the modified SAR and the modified Gazdag operators, respec-
tively. Unlike the scalar images, the multi-component image for a scatterer
in a homogeneous half-space can be related with the physical property con-
trast because the appropriate Greens functions are used to compensate for
the propagation effects.

To enable a comparison, the results of the different imaging algo-
rithms are normalized with respect to the maximum absolute value obtained
for the multi-component imaging result. The maximum absolute values for
the multi-component, modified SAR and modified Gazdag imaging results
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were 149, 4.9 - 10° and 2.6 - 10°, respectively and were obtained for the image
result of steel pipe B. A comparison of the different results is carried out by
plotting the obtained amplitudes along a line which intersects an object.
Such an analysis is carried out for the metal pipe A and plastic sphere F.
In Figure 11(b,c) the real, imaginary and absolute values of the images are
plotted for the three imaging procedures, along a line which intersect at the
location of object A and F and are parallel to the x,- and x,-axis, respec-
tively. These lines are also indicated by the dashed and dash-dotted lines in
Figure 11(a). In Figure 11(b), the largest amplitude for object A is obtained
for the real part of the imaged contrast for all images. Furthermore it is
noted that the imaginary part is small between the endpoints of the pipe for
the multi-component image compared with the modified Gazdag and modi-
fied SAR image. At position x =(1.95,0.95,0.55), the phase of the SAR,
Gazdag and multi-component images are —163°, —159°, and —171°, respec-
tively. Thus, the phase of the SAR and the Gazdag images differ with the
phase of the multi-component image. In Figure 11(c), a relative large ampli-
tude for object F is obtained for the imaginary part of the imaged contrast
compared with the real part for the multi-component image. At position
x =(1.45,2.7,0.55) the phase of the SAR, Gazdag and multi-component
images are 52°, 58°, and 67°, respectively. Again, the phase differences of
the SAR and the Gazdag images differ from the phase of the multi-compo-
nent image. These phase differences indicate the possible error when the
properties are determined with the scalar imaging algorithms compared to
the multi-component imaging algorithm. Because the multi-component
image is calculated using appropriate Greens functions that eliminate the
propagation effects, a more reliable image is obtained than with the modi-
fied scalar imaging algorithms.

In Figure 11(b), the scalar images have a slightly lower horizontal
resolution along the x;-axis than the multi-component image, whereas in
Figure 11(c) the scalar images have a higher horizontal resolution along the
x,-axis. These results are similar to those obtained from our analysis of the
spatial resolution functions in a homogeneous space (Table 3 and Fig. 7)
and to some extent to the results for a homogeneous half-space (Fig. 9).

Due to the fact that the wavelet is not known, the analysis to obtain
the properties of the object is not feasible. However, the phase differences
which occur in the experimental data, are similar to the phase differences
obtained with the synthetic results.

8. Conclusions

A comparison was made between far-field expressions and the
total-field, which was calculated by numerical evaluation of the integral
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expressions. For a homogeneous space the far-field is similar to the total
field at 3.34 and &, = 4 (Error for E, and E=0.1%). The far- and total-field
expressions for a dipole present on a homogeneous half-space differ at the
critical angle for =20-25%.

Recently, a multi-component electromagnetic image reconstruction
technique was derived, which is based on the vectorial wave equation and
takes into account the radiation characteristics of a dipole present in a
homogeneous space or half-space. The multi-component image of a point
scatterer in a homogeneous space for one single frequency component is a
circularly symmetric resolution function. A comparison of the multi-compo-
nent image of a point scatterer with scalar imaging algorithms, the SAR
and the Gazdag imaging algorithms show that the scalar inverse wavefield
extrapolators do not result in a representative image of the scatterer. Phase
shifts of about 180° and 90° were present between the maxima of the SAR
and Gazdag image compared with the multi-component image. In this
paper, modified scalar inverse wavefield extrapolators are introduced that
minimize these differences. Still the scalar images show no longer a circular
and symmetric resolution function, which is an indication that the radiation
characteristics of the source and receiver still influence the obtained image
for conventional scalar imaging schemes. These differences indicate the
possible error in the nature of the physical property contrast when they are
determined with the modified scalar imaging algorithms compared to the
multi-component imaging algorithm.

For practical imaging strategies, only far-field radiation character-
istics can be used in the multi-component imaging algorithm to eliminate
the propagation effects due to the large computing time needed to evaluate
the total-field expressions for a homogeneous half-space. Synthetic analysis
of the imaging of a point scatterer shows that using the far-field expressions
in the multi-component imaging algorithm yields a higher quality image
than using the modified scalar imaging algorithms. The most circularly sym-
metric resolution function is obtained for the multi-component image. The
multi-component image shows mainly a real-valued reconstruction of the
contrast, whereas the SAR and Gazdag images show also imaginary values
for the reconstructed contrast. The phase differences were in the order of
10-20°. These phase differences indicate the possible error when the proper-
ties are determined with the modified scalar imaging algorithms compared
to the multi-component imaging algorithm.

Experimental results of the imaging of several buried objects with
different medium properties and different orientations are presented. For
the multi-component imaging algorithm, a relatively larger amplitude is
obtained for spherical scatterers, compared with the modified scalar images.
The phase differences, which occur in the experimental data, are similar to
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the phase differences obtained with synthetic results. This indicates that
using the multi-component imaging algorithm, a more representative image
is obtained than with the modified scalar imaging algorithms.

The next step to determine the medium properties of the scatterers
is to take into account the source wavelet and the radiation characteristics
of a finite length antenna, including the influence of the intermediate field.
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