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Abstract

Guided by similarities between electronic and classical waves, a numerical code based on a formalism proven to be very effective

in condensed matter physics has been developed, aiming to describe the propagation of elastic waves in stratified media (e.g. seismic

signals). This so-called recursive Green function technique is frequently used to describe electronic conductance in mesoscopic

systems. It follows a space-discretization of the elastic wave equation in frequency domain, leading to a direct correspondence with

electronic waves travelling across atomic lattice sites. An inverse Fourier transform simulates the measured acoustic response in time

domain. The method is numerically stable and computationally efficient. Moreover, the main advantage of this technique is the

possibility of accounting for lateral inhomogeneities in the acoustic potentials, thereby allowing the treatment of interface roughness

between layers. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Wave propagation in stratified media is a broad
topic, the applications of which are found in different
fields of research. Quantum electronic waves in layered
systems, seismic elastic waves propagating across the
stratified subsurface, and ultrasonic waves across par-
allel plates, are only a few examples. In addition to the
common geometry, all those examples share a number
of properties, the most important being that they are all
governed by wave equations, although the equations are
slightly different in each case. Methods and techniques
used in one field of study can in principle be applied to
others, and an interdisciplinary approach has proved to
be very successful in some cases.
Based on the similarities mentioned above, a tech-

nique used in Condensed Matter Physics to describe the
propagation of electrons across layered structures [1] is
here proposed to treat classical waves, e.g. elastic or
acoustic waves. The so-called recursive Green function

(RGF) technique consists of evaluating the Green
function of a layered system in terms of surface Green
functions which are recursively updated. To calculate
the response of a layered system with an arbitrary
stacking sequence, one only needs to evaluate a product
of updated surface Green functions. Perfectly layered
structures have in-plane translational symmetry which
makes the systems equivalent to 1-dimensional struc-
tures, thereby less computationally demanding. How-
ever, when the in-plane symmetry is broken by interface
roughness or lateral variations, we need to consider the
full 3-dimensional structure of the system. Although we
present the results for a 1-dimensional case, which cor-
responds to perfectly layered structures, one advantage
of using the RGF technique is that it is also valid for an
arbitrary number of dimensions, the only difference
being that the surface Green functions updated by the
recursive relations become matrices rather than scalar
quantities. Finally, both time-domain and frequency-
domain solutions are important when studying wave
propagation. Although the RGF is formulated in the
frequency domain, it can also be used for time-domain
calculations when combined with an inverse Fourier
transform.
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2. Method

Consider the following 1-dimensional wave equation
in the frequency domain
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where w is the wave-field component, x is the angular
frequency, cðxÞ is the position-dependent wave velocity,
and c0 is a reference velocity.
By turning the continuous variable x into a discrete

quantity, the original differential wave equation be-
comes a set of finite difference equations for wj, namely
the wave field w evaluated at the position xj. In matrix
form this set of equations can be written as

½H�½w� ¼ E½w�; ð2Þ
where [H] is a square matrix given by
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E is a scalar, and [w] is defined as
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In the equations above, �j ¼ 1þ ðV ðxjÞD2=2Þ, h ¼ �1=2,
E ¼ x2D2=2c20, V ðxÞ ¼ ðx2=c20Þ½1� ðc20=c2ðxÞÞ�, and D ¼
xjþ1 � xj. The square matrix above is a tridiagonal
matrix whose diagonal elements are associated with the
position-dependent wave velocity of the medium. The
similarities between Eq. (2) and the Schroedinger equa-
tion are clear. Both are eigenvalue equations whose so-
lutions describe how waves, either classical or quantum,
propagate across the medium.
The propagation of waves can be described by the

associated Green functions G ¼ ðEI�HÞ�1, where I is
the identity matrix. More precisely, by the matrix ele-
ment Gj;l where xj and xl correspond to the source and
detector positions, respectively. In other words, we need
to calculate the ðj; lÞ element of the matrix ðEI�HÞ�1.
For the sake of simplicity, we consider the wave velocity
to be homogeneous throughout the 1-dimensional space,
except for a finite region where it depends on the posi-
tion. The matrix to be inverted, ðEI�HÞ, corresponds
to an infinite matrix in which the diagonal elements are
the same (� ¼ 1), except for the finite central region
where the elements are determined from the velocity
cðxÞ.

In the absence of scatterers, the wave velocity is ho-
mogeneous and the infinite tridiagonal matrix to be in-
verted consists of constant values along its diagonals. In
that case, analytical solutions exist, i.e., Gðxj; xi;xÞ ¼
c0eixjxj�xlj=c0=2ix. Analytical solutions may also be
found for the case of a very narrow velocity insertion,
where cðxÞ ¼ c0 for all but one discrete value of x [2]. In
that case the use of Dyson equation enables one to write
the solution of the inhomogeneous system in terms of
that for the homogeneous one. In both cases, the solu-
tions could be found without the actual inversion of the
matrix ðEI�HÞ.
For the general case of a disordered region the matrix

inversion cannot be avoided, although it can be simpli-
fied and optimized by the so-called RGF technique,
a numerical procedure already used to describe the
propagation of electronic waves in mesoscopic systems.
In what follows, the technique will be described and a
few simple cases will be addressed.

2.1. Recursive Green function technique

We need to calculate a given off-diagonal element of
the matrix

½G� ¼
E � �N�1 �h 0

�h E � �N �h
0 �h E � �Nþ1

2
4

3
5

�1

; ð5Þ

where the matrix [G] is infinite but here represented as a
(3	 3) matrix for the sake of simplicity. We start by
assuming that the disordered part of the matrix is con-
tained within the range ½1;N �. In other words, the ranges
½�1; 0� and ½N þ 1;þ1� of the matrix ½G��1 correspond
to the semi-infinite homogeneous parts surrounding the
disordered region. Without any loss of generality, we
focus on ½G�ð1;NÞ that is, we assume that source and de-
tector are at the boundaries of the disordered region.
We start by decoupling the disordered part of the

matrix from the semi-infinite region ½N þ 1;þ1� and
write ½G��1 as
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E � �N�1 �h 0
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:

ð6Þ
Notice that the first matrix on the right consists of two
infinite tridiagonal blocks without any coupling between
them, whereas the second contains the coupling ele-
ments. Assuming that ½G0� corresponds to a system with
two semi-infinite parts which do not interact with each
other and that [V] acts as a perturbation, we can rewrite
the equation above as

½G� ¼ ½G0� þ ½G0�½V �½G�; ð7Þ
which is the so-called Dyson equation.
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Since the matrix [V] has only two non-zero elements,
the matrix equation above has a simple solution, which
allows the Green function ½G�ð1;NÞ to be written in terms
of matrix elements of the Green function ½G0�.

½G�ð1;NÞ ¼ ½G0�ð1;NÞ þ ½G0�ð1;NÞh ½G0�ðNþ1;Nþ1Þ

� ��1
�

� h½G0�ðN ;NÞh
��1

h½G0�ðN ;NÞ: ð8Þ

At this stage, we have written the unknown quantity
½G�ð1;NÞ in terms of other unknown elements of the
matrix ½G0�, namely ½G0�ð1;NÞ, ½G0�ðN ;NÞ and ½G0�ðNþ1;Nþ1Þ.
The latter corresponds to the surface Green function of
a semi-infinite homogeneous system which, as we shall
see, is analytically known. The former two matrix ele-
ments correspond to the other semi-infinite half of the
system which contains the disordered region. It is im-
portant to highlight that on this half of the system, only
the diagonal element ½G0�ðN ;NÞ which is the surface Green
function of this part, and its off-diagonal counterpart
½G0�ð1;NÞ are necessary to obtain the solution. If we in-
troduce an additional decoupling between the elements
N � 1 and N, we can once again use the Dyson equation
and show that we just need to update the surface Green
function and the off-diagonal matrix element of a semi-
infinite half space with one less element. The updating
recursive relations are given by

½G�ð1;NÞ ¼ ½G0�ð1;N�1Þh½G�ðN ;NÞ ð9Þ

and

½G�ðN ;NÞ ¼ ½G0��1ðN ;NÞ

n
� h½G0�ðN�1;N�1Þh

o�1
; ð10Þ

where ½G� and ½G0� refer to the coupled and uncoupled
systems, respectively.
By continuing this procedure up to the point where

the disordered region has been totally disconnected, we
end up with two semi-infinite homogeneous spaces to
deal with. In that case, as previously mentioned, we can
find an analytical expression for the surface Green func-
tion.
Rather than starting from the infinite system as we

have done above, one can also think of this numerical
procedure in reverse. Starting from two semi-infinite
homogeneous half spaces, one can add lines and col-
umns to the matrix [G], in which the elements are as-
sociated with the position-dependent velocity cðxÞ. We
then start from the surface Green function of the ho-
mogeneous half space and update the Green functions
with the recursive relations above.

2.2. Surface Green function

It is clear that the starting point in our procedure is
the surface Green function of the homogeneous system,
which we now show how to be obtained. Eq. (10) tells us

what happens with a surface Green function associated
with a given matrix ðEI�HÞ when one additional line
and column have been added to (or removed from) the
matrix. We see that the only information required to
obtain ½G�ðN ;NÞ is the knowledge of the previous sur-
face Green function ½G0�ðN�1;N�1Þ and the matrix ele-
ment ½G0��1ðN ;NÞ which is given by E � �N . By writing that

the updated element is the same as the previous one,

we impose convergence in the recursive relations. In
other words, we obtain the surface Green function S
of a semi-infinite homogeneous system by substituting
½G0��1ðN ;NÞ ¼ E � �N , and ½G�ðN ;NÞ ¼ ½G0�ðN�1;N�1Þ ¼ S into
Eq. (10). In that case, one ends up with a simple qua-
dratic equation for SðxÞ.

3. Results

For the sake of comparison, we start by showing
results for which analytical solutions are also available.
In the case of a homogeneous space ðcðxÞ ¼ c0Þ the ana-
lytical expression for the frequency-domain response is
given by [3]

Gðxj; xl;xÞ ¼ c0eixjxj�xlj=c0=2ix ð11Þ

and the time-domain solution after Fourier transform is

Gðxj; xl; tÞ ¼
�c0
2

H t
�

� jxj � xlj
c0

�
; ð12Þ

where t is time and HðzÞ is the step function. Fig. 1
shows the numerical results obtained for the free

Fig. 1. Calculated response function for free propagation in 1-dimen-

sion. The top graphs show the frequency domain for the real (left) and

imaginary (right) parts of the Green functions. The lower left graph

shows the velocity profile and the lower right is the time-domain re-

sponse function. Notice the agreeement with the analytical results (see

text). The variables x and x0 represent the detector and source position,
respectively.
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propagation case, where the top graphs show the fre-
quency-domain response, the real part being on the left
and the imaginary part on the right. The left lower graph
shows the position-dependent velocity, which in this
case is a constant function, and finally the lower graph
on the right displays the time-domain response. As ex-
pected, both time- and frequency-domain responses
agree with the expected analytical results.
Another possible comparison to be made is the simple

case of a finite region of size d with a constant velocity c1
ðc1 6¼ c0Þ embedded in the otherwise homogeneous en-
vironment. Although the full analytical solution of the
response function contains an infinite number of poles in
the complex frequency-plane, a good approximation [2]
is to include only the lowest-order of those poles, which
gives the most important contribution to the signal.
Although this single-pole approximation is incapable of
reproducing the multiple scattered part of the signal, it is
excellent to determine the exponential decaying rate
which arises in 1-dimensional structures. Fig. 2 shows
three different cases. The top graphs show the velocity
profile cðxÞ and the bottom ones are the corresponding
time-domain signals in logarithmic scale. The straight
lines are the analytical results for the single-pole ap-
proximation. Notice that the slopes of those lines are in
excellent agreement with those of the full numerical
calculations (curves).
Finally, we show one set of results for which there are

no analytical expressions. In Fig. 3 we consider a ran-
domly layered system in which the velocity profile is
represented by the top graph. The corresponding scat-
tered part of the response in the time domain is shown
on the bottom in a linear-log scale. The complexity of
this procedure grows linearly with the size of the dis-

ordered region N, and therefore is more efficient than
inverting the entire original matrix to obtain one ele-

Fig. 3. Time-domain response function of a randomly layered system.

The top graph shows the position-dependent velocity cðxÞ and the

lower one the corresponding response functions in a linear-log scale.

The variables x and x0 represent the detector and source position, re-
spectively.

Fig. 2. Time-domain response function of a homogeneous ðc0Þ system separated by a finite insertion ðc1 6¼ c0Þ of different sizes. The top graphs show
the position-dependent velocity cðxÞ and the lower ones the corresponding response functions in a linear-log scale. The straight lines are analytical
expressions based on the lowest-order pole approximation (see text). The variables x and x0 represent the detector and source position, respectively.
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ment of the propagator. It is also important to note that
by considering lateral variations of the disordered re-
gion, one can use the same technique, the only difference
being a matrix description for the Green functions in the
recursive relations.

4. Summary and conclusions

In summary, we have applied the RGF technique to
calculate the propagation of waves across a 1-dimen-
sional system, which corresponds to perfectly layered

structures. A comparison with analytical results for a
few simple cases has been made. Arbitrary layering se-
quences have also been considered. The technique will
be extended to treat lateral inhomogeneities of the
scatterers.
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