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a b s t r a c t

Marchenko-type integrals typically relate so-called focusing functions and Green’s func-
tions via the reflection response measured on the open surface of a volume of interest.
Originating from one dimensional inverse scattering theory, the extension to two and
three dimensions set in motion various new developments regarding imaging in complex
materials. This extension, however, is based on wavefield decomposition inside the
volume and a truncated medium state, i.e. a version of the medium that is reflection-
free underneath the focusing location, suggesting that evanescent, refracted and diving
waves cannot be included in the representation. We elaborate on a new derivation
for Marchenko-like integrals that (i) extends the concept of wavefield focusing by
using a generalised homogeneous Green’s function, (ii) is based on partial differential
equations and thereby allows for additional insights and a new physical intuition for
Marchenko equations, (iii) unifies wavefield focusing for open and closed boundary
systems, (iv) does not require wavefield decomposition or a truncated medium state,
thus including the full wavefield Green’s function, (v) enables using forward modelling
to obtain, e.g., Marchenko-type, time-compact focusing functions. We place a particular
focus on the latter point, illustrating and investigating how to solve the underlying
partial differential equations for various types of focusing functions. This paves the way
for a deeper understanding of focusing functions as well as advanced full wavefield
Marchenko schemes. While the derivations are generally presented for the 3D case, we
show numerical examples in 1D.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Inverse scattering theory [1,2] is a field of mathematical physics that aims to retrieve the physical properties of a
edium based on its remotely observed scattering response to, e.g., acoustic, seismic or electro-magnetic waves. It is

elevant to, for instance, quantum mechanics [3], optics [4], geophysics [5–7], medical imaging [8] and non-destructive
esting [9]. The Marchenko integral is an essential equation in inverse scattering theory [10–12]. It is well defined in one
imension, where it can be used to directly infer the medium’s scattering potential.
Following investigations of the focusing properties [13,14] of the Marchenko integral and its relation to the homo-

eneous Green’s function [15,16], Wapenaar et al. [17,18] extended the concept to two and three dimensions. While

∗ Corresponding author.
E-mail address: l.d.diekmann@uu.nl (L. Diekmann).
ttps://doi.org/10.1016/j.wavemoti.2022.103071
165-2125/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
icenses/by/4.0/).

https://doi.org/10.1016/j.wavemoti.2022.103071
http://www.elsevier.com/locate/wamot
http://www.elsevier.com/locate/wamot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wavemoti.2022.103071&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:l.d.diekmann@uu.nl
https://doi.org/10.1016/j.wavemoti.2022.103071
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


L. Diekmann, I. Vasconcelos, K. Wapenaar et al. Wave Motion 116 (2023) 103071

t
t
a
v
(
i
(
m
m
i
a

v
k
r
a
r
d
i
i
w
G
d
t
o

t
s
c
w
g
n
w
c
d
t
i
s
o
d
t

2

i
C
a
a
T
t
m
t
w
f
c
i
w
F
t
a

he Marchenko scheme bears similarities with Green’s function retrieval via conventional seismic interferometry [19–21],
here are several, significant differences: (i) conventional interferometry allows to retrieve the response to a virtual source
t the location of a physical receiver inside of a medium. The Marchenko scheme can be used to obtain the response to a
irtual source anywhere in the medium without the need to have an actual, physical receiver at the target location [15].
ii) Conventional interferometric relations involve solely Green’s functions, whereas the Marchenko-type representations
nvolve Green’s and focusing functions. (iii) Conventional interferometry usually produces artefacts for open boundary
single-sided) representations because the underlying integral equation becomes approximate [22,23]. The Marchenko
ethod on the other hand remains accurate even for open boundary integrals [24]. Hence, the extension of the Marchenko
ethod to two and three dimensions paved the way for various new methodologies and applications, like Marchenko

maging [18], target-oriented imaging [25], multiple elimination [26,27] and monitoring [28,29]. While most of these
pplications are for acoustic waves, the Marchenko scheme was recently also extended to elastodynamic waves [30–33].
The extension of the Marchenko method to two and three dimensions also has some drawbacks. For complex, laterally

arying media, i.e. inducing complicated wave scattering, the method tends to become unstable and may require further
nowledge of the medium properties [34,35]. Furthermore, when using the method for Green’s function retrieval one
equires an estimate of the first arrival of the Green’s function, e.g. from a smooth estimate of the actual medium [17]. In
ddition to these intrinsic limitations, it was until recently assumed that the representation would not include evanescent,
efracted and diving waves in the Green’s function. This was a consequence of the derivation relying on up-/down-
ecomposition of the wavefields inside the medium as well as a truncated medium state [18]. A first step towards
ncluding evanescent waves was made by Wapenaar [36]. Additionally, evanescent and refracted waves were studied
n more detail [31,37]. Recently, a new derivation for a Marchenko-type equation was presented that circumvents these
avefield decomposition assumptions altogether, thus arguing that the Marchenko integral includes the full wavefield
reen’s function [38]. This derivation is different from previous approaches as it is based on a partial differential equation
efinition for focusing functions. Similar conclusions were presented by Wapenaar et al. [39], using a different derivation
hat is overall closer to previous strategies. Studies for closed boundary Marchenko-like schemes [40] also made the
bservation that up-/down-decomposition inside the medium is not a necessity [41].
In this paper we further extend, discuss and illustrate the novel approach to focusing functions [38,42]. We follow

he original derivation in defining focusing functions by means of a partial differential equation and study the respective
ource terms in more detail. These source terms were only poorly understood before but play an essential role as they
onnect the focusing wavefields with the physical medium parameters. Being able to make this connection paves the
ay for, e.g., modelling reference focusing functions or setting up inversion methods to retrieve medium properties from
iven focusing functions. Above all, their investigation leads to a deeper understanding of focusing functions within this
ew framework, going beyond classical, Marchenko-type focusing functions. Based on this definition of focusing functions,
e generalise the homogeneous Green’s function [43], which represents a fundamental relation between anti-causal and
ausal field solutions, by presenting the so-called homogeneous Green’s function of the second kind [38]. We illustrate and
iscuss these homogeneous Green’s functions of the second kind, in particular their focusing properties and their relation
o the conventional homogeneous Green’s function. In this context we compare different classes of focusing functions,
llustrated by numerical 1D examples. In particular, we investigate time-compact focusing functions for both double- and
ingle-sided configurations. We use reciprocity theorems to derive Marchenko-like representations for both closed and
pen boundary integrals based on the underlying homogeneous Green’s function of the second kind. These representations
o not require any wavefield decomposition inside the medium, i.e. they deliver the full wavefield Green’s function. While
he numerical examples are in 1D, most of the theory is given for the general three dimensional case.

. Focusing terminology

In this section we briefly discuss common terminology in the field of wave focusing. We consider this clarification
mportant as we aim to connect different fields of research (that do not typically use the same terminology) in this paper.
onventionally, the term focus is used to describe a wavefield, e.g. pressure or particle velocity, that is concentrated
round a certain point in space at a certain point in time [44]. In other words, if you take a snapshot of such a wavefield
t the specific focusing time it will show a field that is collapsed to the area around the specific focusing point in space.
he size of this focal area depends on the bandwidth of the wavefield — in the ideal case of infinite bandwidth it reduces
o a point. We will refer to this as a focus in space. In time reversal acoustics, the process of injecting a wavefield into a
edium in order to obtain such a focus in space is often referred to as time reversal focusing [45]. The incident wavefield

hat yields the focus is sometimes referred to as a focusing field, i.e. a field that focuses. When the Marchenko scheme
as extended to 2D and 3D, the higher dimensional equivalents to solutions in classical 1D derivations [46] were named

ocusing functions [17]. By definition, these focusing functions are wavefields that collapse to a certain point in time at a
ertain point in space when injected into a truncated version of the actual medium from an open boundary [24]. Hence,
f you pick the particular focusing point in space and look at the entire wavefield at this location over time it will exhibit
hat we will call a focus in time. We will illustrate the differences between focusing in space and time in Section 4.
urthermore, we want to stress that our definition of focusing functions in this paper as well as our reasoning for calling
hem such differs from previous work in the context of 2D and 3D Marchenko [17] but is consistent with time reversal
coustics. We will come back to these differences and explain their implications in Sections 3 and 4.
2



L. Diekmann, I. Vasconcelos, K. Wapenaar et al. Wave Motion 116 (2023) 103071

3

t
i

p

w

A

. The homogeneous Green’s function of the second kind

In this paper, we investigate acoustic waves in a lossless medium. Most of the concepts, however, in principle generalise
o other partial differential equations, e.g. to the case of non-dissipative elastic media [47,48]. The acoustic wave equation
s given by

L(xxx)u(xxx, t) = −ρ(xxx)
∂

∂t
s(xxx, t) , (1)

with the acoustic wave operator

L(xxx) = ρ(xxx)∇ ·

(
1

ρ(xxx)
∇

)
−

1
c2(xxx)

∂2

∂t2
, (2)

where u(xxx, t) is the pressure wavefield (in N/m2) at location xxx = (x, y, z) and time t , ρ(xxx) denotes mass density (in kg/m3),
s(xxx, t) is a source term of volume injection rate density (in 1/s) and c(xxx) is wave speed (in m/s). We define the Green’s
function g(xxx, t; xf ) as the causal medium response in terms of acoustic pressure to an impulsive point source at location
xf and time zero [49], i.e.

L(xxx)g(xxx, t; xf ) = −ρ(xxx)δ(xxx − xf )
∂

∂t
δ(t) . (3)

Thus, the time-reversed Green’s function g(xxx, −t; xf ) obeys

L(xxx)g(xxx, −t; xf ) = ρ(xxx)δ(xxx − xf )
∂

∂t
δ(t) . (4)

Since we defined g(xxx, t; xf ) as a causal field response, g(xxx, −t; xf ) has to be anti-causal, i.e. it propagates prior to the
associated source pulse at t = 0. The homogeneous Green’s function [43] is the superposition of the Green’s function and
the time-reversed Green’s function, thus obeying

L(xxx)
(
g(xxx, t; xf ) + g(xxx, −t; xf )

)
= 0 . (5)

The homogeneous Green’s function is thus a source-free wavefield. Let us consider a bounded volume that contains xf
in a medium that is scattering-free outside the volume. The time-reversed, anti-causal Green’s function is then purely
in-coming with respect to that volume. It injects energy into the volume. The wavefield focuses at xf and t = 0 before
ropagating onwards as the out-going, causal Green’s function.
We now establish the auxiliary focal solution f

(
xxx, t; xf , q(xxx, t)

)
as the causal wavefield that obeys

L(xxx)f
(
xxx, t; xf , q(xxx, t)

)
=

ρ(xxx)δ(xxx − xf )
2

∂

∂t
δ(t) + q(xxx, t) , (6)

here the source function q(xxx, t) is in principle arbitrary but is constrained to be symmetric in time, such that q(xxx, t) =

q(xxx, −t) [38,42]. In that sense, we can write any choice of a discrete source distribution q(xxx, t) as a superposition of
individual sources qi(xxx, t) according to

q(xxx, t) =

n∑
i=1

qi(xxx, t) =

n∑
i=1

wiρ(xxx)
(
δ(t − ti) ⋆ si(t) + δ(t + ti) ⋆ si(−t)

)
δ(xxx − xxxi) , (7)

where n is the total number of terms that make up q(xxx, t), wi is a weighting factor, xxxi and ti are particular locations and
times, respectively, si(t) is an arbitrary wavelet and the ⋆ denotes convolution. The auxiliary focal solutions being causal
means that for each source the energy emittance precedes the energy propagation through the volume — analogously to
the definition of the Green’s function. Hence, there might be propagating energy before t = 0 due to sources in q(xxx, t) at
negative times. Note that the auxiliary focal solution can be expressed as

f
(
xxx, t; xf , q(xxx, t)

)
= −

1
2
g(xxx, t; xf ) + fq

(
xxx, t; q(xxx, t)

)
, (8)

where fq
(
xxx, t; q(xxx, t)

)
is the causal medium response to the source distribution q(xxx, t). The time-reversed auxiliary focal

solution satisfies

L(xxx)f
(
xxx, −t; xf , q(xxx, t)

)
= −

ρ(xxx)δ(xxx − xf )
2

∂

∂t
δ(t) + q(xxx, t) . (9)

s f
(
xxx, t; xf , q(xxx, t)

)
is purely causal, f

(
xxx, −t; xf , q(xxx, t)

)
is an anti-causal field. By subtracting Eq. (9) from Eq. (6) we get

L(xxx)
(
f
(
xxx, t; xf , q(xxx, t)

)
− f

(
xxx, −t; xf , q(xxx, t)

))
= ρ(xxx)δ(xxx − xf )

∂

∂t
δ(t) . (10)

Using Eq. (8) this can be written as

L(xxx)
(
−

1
g(xxx, t; xf ) +

1
g(xxx, −t; xf ) + fq

(
xxx, t; q(xxx, t)

)
− fq

(
xxx, −t; q(xxx, t)

))
= ρ(xxx)δ(xxx − xf )

∂
δ(t) . (11)
2 2 ∂t
3
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ote that Eqs. (10) and (11) involve the same wavefield — only the representation of the wavefield is different. The
olution of this wave equation obeys the same source term as the time-reversed Green’s function, Eq. (4). However,
t is a fundamentally different wavefield. Firstly, it has both causal and anti-causal contributions. Secondly, it is non-
nique, i.e. different choices of q(xxx, t) lead to different wavefields. Take for instance the trivial case q(xxx, t) = 0, such

that only the Green’s functions remain. Eq. (11) can then be interpreted as describing a source that emits its energy
in both time directions, backwards and forwards in time, governing both an anti-causal and a causal Green’s function.
As the wavefield propagates both forwards and backwards in time, each Green’s function comes with a factor of 1/2.
Alternatively, we can interpret the wavefields in the sense of purely increasing time as follows: consider a bounded
volume that contains xf in a medium that is scattering-free outside the volume. The time-reversed, half-amplitude Green’s
function is then purely in-coming with respect to that volume. The source acts as a sink and absorbs all of the in-coming
energy. Furthermore, it emits additional energy into the medium, which then propagates forwards as the out-going,
negative, half-amplitude Green’s function. In the general case of q(xxx, t) ̸= 0 we additionally get the field contribution
fq
(
xxx, t; q(xxx, t)

)
−fq

(
xxx, −t; q(xxx, t)

)
, which is source-free since the source distributions q(xxx, t) cancel each other — analogously

to the homogeneous Green’s function.
Because Eq. (10) has the same source term as the time-reversed Green’s function, we can obtain a source-free field by

adding the Green’s function, i.e. we add Eq. (3) to get

L(xxx)
(
f
(
xxx, t; xf , q(xxx, t)

)
− f

(
xxx, −t; xf , q(xxx, t)

)
+ g(xxx, t; xf )

)
= 0 . (12)

We call the wavefield obeying Eq. (12) the homogeneous Green’s function of the second kind. Just like the homogeneous
Green’s function in Eq. (5), the homogeneous Green’s function of the second kind is a source-free wavefield that contains
the causal Green’s function. Note that adding the time-reversed of Eq. (12) to Eq. (12) gives the equation for the
conventional homogeneous Green’s function, Eq. (5). Consider a bounded volume that contains xf in a medium that is
scattering-free outside the volume. Furthermore, let q(xxx, t) = 0 for all xxx outside the volume. The negative, time-reversed
auxiliary focal solution −f

(
xxx, −t; xf , q(xxx, t)

)
in Eq. (12) is then purely in-coming and injects energy into the volume.

The resulting wavefield, after focusing or scattering, keeps on propagating as the out-going, causal auxiliary focal solution
f
(
xxx, t; xf , q(xxx, t)

)
and the out-going, causal Green’s function. The homogeneous Green’s function of the second kind always

has a focus in space at xf and t = 0 – because the only non-zero contribution to the wavefield at zero time stems from the
Green’s function. In that sense the negative, time-reversed auxiliary focal solution −f

(
xxx, −t; xf , q(xxx, t)

)
is a focusing field.

Just like the time-reversed Green’s function in time reversal acoustics it can be injected into a source-free volume to create
a focus in space, compare Section 2. The name auxiliary focal solution refers to the relation of these wavefields to focusing
in space. From now on we will call φ

(
xxx, t; xf , q(xxx, t)

)
= −f

(
xxx, −t; xf , q(xxx, t)

)
a focusing function and f

(
xxx, t; xf , q(xxx, t)

)
a negative, time-reversed focusing function. Note that the focusing function is an anti-causal field that focuses, whereas
the negative, time-reversed focusing function is a causal field that expands.

As we already stated, our nomenclature – referring to the general fact that focusing functions are related to focusing
in space – differs from the conventional reasoning, where the name was used for a specific type of function that is related
to focusing in time [17]. We will later on find these previously introduced functions that focus in time to form a specific
subset of our focusing functions.

We can use Eq. (8) to rewrite the homogeneous Green’s function of the second kind as

L(xxx)
(1
2
g(xxx, t; xf ) +

1
2
g(xxx, −t; xf ) + fq

(
xxx, t; q(xxx, t)

)
− fq

(
xxx, −t; q(xxx, t)

))
= 0 , (13)

highlighting the similarity with the conventional homogeneous Green’s function. This representation shows that the
homogeneous Green’s function of the second kind can in fact be written as a superposition of symmetric and anti-
symmetric wavefields in time. The representation in Eq. (12) on the other hand underlines the potentially asymmetric
appearance in time of the homogeneous Green’s function of the second kind.

Of course one can also construct other homogeneous wavefields in a similar fashion, e.g.

L(xxx)
(
f
(
xxx, t; xf , q(xxx, t)

)
− f

(
xxx, −t; xf , q(xxx, t)

)
− g(xxx, −t; xf )

)
= 0 , (14)

i.e. by combining focusing and Green’s functions. We will, however, focus our discussion in this paper on the homogeneous
Green’s function of the second kind in Eq. (12).

In this section we introduced focusing functions. Such focusing functions allow for the construction of the homoge-
neous Green’s function of the second kind, Eq. (12). All important wavefields are also sketched in Fig. 1. In the next section
we discuss and illustrate different focusing functions.

4. Examples of focusing functions

In this section we discuss different focusing functions — with the objective of illustrating how our partial differential
equation scheme represents physical focusing wave-states including (but not limited to) those obtainable by previous
approaches. In that sense, some of the upcoming examples represent entirely new focusing wave states that can only
now be investigated by studying source terms q(xxx, t) in our new framework. All focusing functions have a fundamental,
unifying property: when superimposing the corresponding homogeneous Green’s functions of the second kind and their
time-reversed counterparts one always obtains the conventional homogeneous Green’s functions. This implies that the
4
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Fig. 1. Illustration of different wavefield causalities. Cones that open to the right are causal, cones that open to the left are anti-causal. The ∗ denotes
ime-reversed wavefields. Axis are labelled only in the top left sketch for the sake of a cleaner figure. Wavefields with sources are shown to the left
f the dotted vertical line, source-free wavefields are shown to the right of the line. The red and blue explosions denote the source terms related
o the Green’s function and the time-reversed – opposite sign – Green’s function, respectively, where the size of the symbol correlates with the
ource magnitude. The pink explosions mark the source distribution q(xxx, t). Dark grey cones are related to Green’s functions, light grey cones to
uxiliary focal solutions. The medium grey colour indicates interference of either forward and time-reversed auxiliary focal solutions or auxiliary
ocal solutions and Green’s functions. Note that the vertical shift of the pink sources compared to the sources of the Green’s functions is arbitrary,
olely indicating a potentially different location in space. (For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)

Fig. 2. (a) Velocity and density model in blue and red, respectively. The black dotted line marks the focusing location xf = 1.15 km. (b) Green’s
unction. The black dot denotes the focusing location, i.e. source location, at xf = 1.15 km and t = 0 s. (c) Homogeneous Green’s function. The
olour bars in (b) and (c) are clipped at about 14 % of the maximum absolute value of the Green’s function. (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)

omogeneous Green’s functions of the second kind always have a single delta pulse at the focusing location xf and are
ero elsewhere at zero time, i.e. the wavefields focus in space. This will also become evident in the examples below.
Despite this property, focusing functions vary significantly in appearance. We discuss four groups in the following:

ocusing functions for the trivial choice q(xxx, t) = 0, functions with a simple monopole source, with a simple dipole source,
nd time-compact focusing functions. The initial, simple examples are used to illustrate fundamental properties of focusing
unctions and explain how we can enforce interesting interference patterns within the fields. Based on these concepts
e can then construct more complex, time-compact focusing functions. The numerical examples are in 1D to allow for
ptimum illustrations. The concepts that we discuss, however, are not necessarily limited to 1D, although more elaborate
chemes might be necessary for higher dimensional investigations, incorporating, e.g., angle-dependent reflectivity and
eometrical spreading. In 1D the spatial coordinate xxx becomes the scalar x, e.g. the focusing location reads xf .
The numerical examples are based on the velocity and density model in Fig. 2(a) and consider the point xf = 1.15 km.

As a reference for later results, Fig. 2(b) shows the Green’s function for x = 1.15 km, obtained via finite difference
f

5
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odelling according to Eq. (3). Note that all wavefields that we show in this paper are convolved with a 20 Hz Ricker
avelet [50] for improved visualisation. Furthermore, all wavefields are clipped at the same amplitudes as Fig. 2(b) to
llow for a good comparison. Owing to the orientation of the spatial axis in this plot we will refer to leftwards and
ightwards travelling events in space. Note, however, that in multiple dimensions it is also common to differentiate
etween up- and down-going waves in space, corresponding to left- and right-going waves, respectively, in our 1D figures.
ig. 2(c) gives the respective homogeneous Green’s function, obtained by superimposing the field in Fig. 2(b) and its
ime-reversed version. Alternatively, the homogeneous Green’s function could be obtained by injecting the time-reversed
reen’s function from the boundary ∂V , i.e. from x = 0 km and x = 2 km, into the source-free medium. This process
s referred to as time reversal acoustics [45,51]. Using reciprocity and a radiation condition [19] to get the respective
quivalent sources, the homogeneous Green’s function then follows for xxx in V by modelling according to

L(xxx)
(
g(xxx, t; xf ) + g(xxx, −t; xf )

)
= −

∫
xr∈∂V

2
c(xr )

δ(xxx − xxxrrr )
∂

∂t
g(xr , −t; xf )dSSS , (15)

here we assume that V contains xf and that the medium is reflection-free outside V [52,53]. However, this modelled
omogeneous Green’s function might be numerically less accurate than the one we obtain from superimposing the Green’s
unction and its time-reversed version. This is due to the fact that the Green’s function generally is a time-infinite field
esponse, i.e. even at very large recording times one might still record multiple scattered events. Consequently, we would
ave to record the Green’s function until the amplitudes of these late arrivals become negligible — otherwise the Green’s
unction is missing energy and injecting its time-reversed version into the medium will not accurately reproduce the
omogeneous Green’s function. In our numerical example we still have considerable events at 1.5 s, i.e. at the end of

the recorded data. Therefore, we choose not to use modelling with Eq. (15) in order to obtain the best quality reference
homogeneous Green’s function. Fig. 2(c) shows the focus in space of the homogeneous Green’s function at t = 0. Note
that owing to the symmetry of the wavefield, the time derivative of the displayed pressure field is zero.

For the homogeneous Green’s functions of the second kind on the other hand, we do use time reversal modelling with
the goal of actually illustrating the wave propagation through the source-free medium. Similar to Eq. (15) we then obtain
for xxx in V

L(xxx)
(
f
(
xxx, t; xf , q(xxx, t)

)
− f

(
xxx, −t; xf , q(xxx, t)

)
+ g(xxx, t; xf )

)
=

∫
xr∈∂V

2
c(xr )

δ(xxx − xxxrrr )
∂

∂t
f
(
xr , −t; xf , q(xxx, t)

)
dSSS , (16)

where we assume that the medium is reflection-free outside the bounded volume as well as that V contains xf . While
the source distribution is arbitrary within V , we assume q(xxx, t) = 0 for all xxx outside V , such that −f

(
xr , −t; xf , q(xxx, t)

)
is

the only in-coming wavefield.

4.1. Trivial focusing functions

First, we consider the trivial, negative, time-reversed focusing function f (x, t; xf ) = −1/2 g(x, t; xf ) for q(x, t) = 0, as
shown in Fig. 3(a). Compared to the Green’s function in Fig. 2(b) the polarity is reversed and the amplitudes are divided by
two. According to Eq. (13) the homogeneous Green’s function of the second kind equals the conventional homogeneous
Green’s function divided by two in this case. In a way, the conventional homogeneous Green’s function can therefore be
considered a special case of the homogeneous Green’s function of the second kind. For q(x, t) = 0 Eq. (16) gives Eq. (15).
Modelling the homogeneous Green’s function of the second kind accordingly, i.e. emitting the focusing function from the
boundaries x = 0 km and x = 2 km into the medium, delivers the wavefield in Fig. 3(b). It is similar to the homogeneous
Green’s function in Fig. 2(c), but the amplitudes differ by a factor of two. The grey polygon in Fig. 3(b) on the top, i.e. above
−1 s, denotes the area of the data that is unaffected by the injected wavefield — this is a consequence of causality, as it
takes time for the injected wavefield to travel from the injection boundaries to the interior of the volume. The lower grey
polygon is its time-reversed version. As we know that the wavefield in Fig. 3(b) should be symmetric in time (being the
half amplitude homogeneous Green’s function), we should have the same solution in both polygons, suggesting that the
wavefield should be zero within the lower grey polygon — which is not quite the case in this example. This is why, as
mentioned before, time reversal modelling tends to be inaccurate for short recording times. Finally, Fig. 3(c) shows the
homogeneous Green’s function, obtained by superimposing the wavefield in Fig. 3(b) and its time-reversed version. This
wavefield is indeed a reasonable estimate of the homogeneous Green’s function in Fig. 2(c).

4.2. Focusing functions with a monopole source

Let us consider q(x, t) with a single term, i.e. n = 1 in Eq. (7). We discuss two different choices for s1(t) in the following.
First, we consider the simple case s1(t) = −δ(t). Furthermore, we use x1 = 1 km and t1 = 0.17 s for this example.

The weighting term w1 is chosen such that the amplitude of the resulting signal is a quarter of that of the Green’s
function. Fig. 3(d) shows the negative, time-reversed focusing function, obtained by forward modelling via Eq. (6). Since
the additional source term q(x, t) does not contain a time derivative, the resulting signal appears to be convolved with a
20 Hz Ricker wavelet that was integrated over time, i.e. its wavelet does not match the wavelet of the Green’s function.
When injecting the focusing function into the medium via Eq. (16) we get the homogeneous Green’s function of the second
6
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E

Fig. 3. Left column: negative, time-reversed focusing functions (abbreviated with −f ∗ in the title) obtained from finite difference modelling with
q. (6). Black dots mark the locations of the Green’s function source at xf , grey dots the locations of the source distributions q(x, t) and q(x, t; xf ),

respectively. Central column: homogeneous Green’s functions of the second kind (HGF2 in the title), obtained via modelling according to Eq. (16).
Right column: homogeneous Green’s functions (HGF in the title) obtained by superimposing the homogeneous Green’s functions of the second kind
and their time-reversed versions. The coloured squares in the bottom right corners refer to Fig. 7. (a), (b) and (c) are for q(x, t) = 0. (d), (e) and (f)
are for a monopole q(x, t) without time derivative. (g), (h) and (i) are for a monopole q(x, t; xf ) with a time derivative. Zoomed regions are denoted
by cyan windows. The trace in the green window shows the wavefield in (e) at time zero. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

kind in Fig. 3(e). This wavefield differs from the conventional homogeneous Green’s function. At t = 0, the wavefield is
only non-zero at the focusing location xf – there are, however, various other events in space right before and after t = 0.
These events are related to the portion of the wavefield that is anti-symmetric in time. In the zoomed area (cyan box),
one can see that these events change polarity when comparing negative and positive times and are zero at zero time.
The only actual event at zero time is the focus at xf = 1.15 km, i.e. the field exhibits a focus in space. This focus can
also be seen in the green box, showing the wavefield at time zero. Note, however, that the derivative of the wavefield in
7
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ig. 3(e) is different from zero, leading to a significantly different appearance of the focusing compared to Fig. 2(c). When
dding the homogeneous Green’s function of the second kind and its time-reversed version we obtain the conventional
omogeneous Green’s function, see Fig. 3(f). The Green’s function that was previously polluted by the signal of the source
istribution q(x, t), see Fig. 3(d), is now isolated. This is a result of the fact that the Green’s functions in Eq. (13) are
ymmetric in time, while the fields fq

(
x, t; q(x, t)

)
are anti-symmetric in time.

The second option we present is s1 = −∂δ(t)/∂t , leading to

q(x, t; xf ) = w1ρ(x)
(

−
∂

∂t
δ(t − t1) +

∂

∂t
δ(t + t1)

)
δ(x − x1) . (17)

his produces a wavelet similar to that of the Green’s function, enabling a potentially interesting interference of the two
erms −1/2 g(x, t; xf ) and fq

(
x, t; q(x, t)

)
within the negative, time-reversed focusing function, see Eq. (8). Note that this

interference is only possible for t1 ̸= 0, because for t1 = 0 we get q(x, t) = 0, leading to the trivial focusing function.
Since this source distribution is supposed to interfere with the source at xf , we write q(x, t; xf ) here rather than q(x, t).
Note that the source distribution then generally also depends on the physical properties of the medium. We choose
x1 = 1 km, such that x1 is in the same layer as xf . Then we use t1 = (xf − x1)/c3, where c3 is the velocity in this, i.e. the
third, layer. On choosing w1 = −1/2 we get a source at t = −t1 that leads to destructive interference with the rightwards
ravelling portion of the negative, half-amplitude Green’s function, see Fig. 3(g). As a consequence, it seems as if the source
t xf was only radiating energy to the left. The respective homogeneous Green’s function of the second kind is shown
n Fig. 3(h). While the previous homogeneous Green’s functions of the second kind clearly revealed a superposition of
erfectly symmetric and anti-symmetric fields in time, Fig. 3(h) is asymmetric in time. The grey arrows point to an event
n the left part of the model that is present at negative but missing at positive times. This asymmetry is a consequence
f the interference of −1/2 g(x, t; xf ) and fq

(
x, t; q(x, t; xf )

)
within the negative, time-reversed focusing function. Such

an interference would also be possible if x1 was not in the same layer as the source of the Green’s function, however,
it would require an adjusted scaling value w1. The respective conventional homogeneous Green’s function, obtained by
summing the wavefield in Fig. 3(h) and its time-reversed, can be seen in Fig. 3(i).

While the first example illustrated the effect of a simple, random source term, the second example nicely showed that
we can produce interesting, destructive interference by applying particularly designed sources.

4.3. Focusing functions with a dipole source

In the previous subsection, we argued that a monopole source q(x, t; xf ) with a time derivative at x1 and t1 = 0 cannot
interfere with the signal of the negative half-amplitude Green’s function, but only delivers the trivial focusing function.
Dipole sources on the other hand do not have such a limitation. Regarding the 1D version of Eq. (7) we use n = 1 and
s1(t) = −c(x1)δ(t)∂/∂x — note that s1(t) is a function of only the variable t but includes a spatial derivative. The source
term therefore becomes

q(x, t; xf ) = −w1ρ(x)c(x1)
(
δ(t − t1) + δ(t + t1)

) ∂

∂x
δ(x − x1) . (18)

We stress that the velocity c(x1) represents scaling with a particular velocity, i.e. at x1, whereas the density ρ(x) is a
function under the action of the spatial Dirac delta. This becomes important later on when considering dipole sources
at interfaces. This source produces a wavelet similar to that of the Green’s function, but without delivering a trivial
homogeneous Green’s function of the second kind for t1 = 0. In our finite difference code, we mimic the dipole source by
two monopole sources with opposite polarity. We illustrate two different choices for the source time t1 in the following,
i.e. t1 ̸= 0 and t1 = 0.

For the first numerical example we use the values from the preceding experiment, that is x1 = 1 km, t1 = (xf − x1)/c3
and w1 = −1/2, see Fig. 4(a). The resulting negative, time-reversed focusing function is similar to that in Fig. 3(g), only
the polarities of some events appear reversed. Note that the two monopole sources in Fig. 3(g) that are associated with
q(x, t; xf ) have different polarities, while the two dipole sources in Fig. 4(a) exhibit the same polarity. The character of the
homogeneous Green’s function of the second kind follows our previous observations, i.e. Fig. 4(b) is slightly asymmetric,
see grey arrows. Summing this wavefield and its time-reversed version gives the conventional homogeneous Green’s
function in Fig. 4(c).

Next, let us consider the case t1 = 0. In order for −1/2 g(x, t; xf ) and fq
(
x, t; q(x, t; xf )

)
to interfere destructively, we

choose x1 = xf and w1 = 1/4 (note that the source is fired twice in Eq. (18)). The negative, time-reversed focusing function
is shown in Fig. 4(d). It appears the source at xf now only emits energy to the right. There are no additional, polluting
signals from the q(x, t; xf ) source — instead, its wavefield masks the left-going Green’s function. Thus, the remaining
wavefield represents the negative, right-going part of the Green’s function, i.e. all its contributions that travel into greater
depth first. The homogeneous Green’s function of the second kind, Fig. 4(e), thus shows the time-reversed, positive, right-
going part of the Green’s function first, i.e. at negative times, followed by the positive, left-going part. Note that the scaling
matches that of the actual Green’s function. By adding left- and right-going parts, i.e. adding the homogeneous Green’s
function of the second kind and its time-reversed version, we obtain the conventional homogeneous Green’s function,
Fig. 4(f).

The first dipole experiment demonstrated how to achieve destructive interference similar to that in the previous
subsection, however, the source signatures are now obviously different. The second example illustrated destructive
interference generated by a source at zero time, an effect that can only be produced with dipole sources.
8
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Fig. 4. Left column: negative, time-reversed focusing functions. Black dots mark the locations of the Green’s function source at xf , grey dots the
ocations of the q(x, t; xf ) sources. Central column: homogeneous Green’s functions of the second kind. Right column: homogeneous Green’s functions
btained from the homogeneous Green’s functions of the second kind. (a), (b) and (c) are for the dipole q(x, t; xf ) related to t1 ̸= 0. (d), (e) and (f)
re for the dipole q(x, t; xf ) related to t1 = 0. Zoomed regions are denoted by cyan windows. (For interpretation of the references to colour in this
igure legend, the reader is referred to the web version of this article.)

.4. Time-compact focusing functions

In the preceding subsections we introduced source distributions q(x, t; xf ) that excite wavefields that interfere with
he Green’s function. Since dipole sources appear to be slightly more flexible than monopole sources, i.e. choosing ti = 0
oes not deliver a trivial focusing function, we use solely si(t) = −c(xi)δ(t)∂/∂x in this subsection. Building on the findings
escribed above, we illustrate and discuss particularly interesting wavefields in the following, i.e. so-called time-compact
ocusing functions. As the name suggests, these focusing functions occupy only a limited window in time, meaning that
he wavefields are zero outside a certain time range. In contrast, Green’s functions are generally time-infinite wavefields
hat keep on propagating for arbitrarily long time and it is only owing to their decreasing amplitude with each scattering
nteraction that we can usually neglect late arrivals. The time-compact focusing functions in this section relate to auxiliary
ocal solutions in classical 1D inverse scattering theory [11] and to the previously introduced subset of focusing functions
n 2D and 3D Marchenko [18].

We propose a simple scheme for designing these time-compact focusing functions, consisting of two main steps: (i)
et all space and time coordinates xi and ti, (ii) set up a linear system of equations to describe the scattering and obtain
he weights wi. Then, we can model the negative, time-reversed focusing functions via Eqs. (6) and (7). We present three
ifferent time-compact focusing functions below.

.4.1. Double-sided sources at zero time
In order to design a time-compact focusing function, we first have to specify either the time or the space coordinates

f the sources. The easiest approach is to assume that all sources in the distribution q(x, t; xf ) are at ti = 0 (implying a
ecessity for dipole sources). Furthermore, we assume that the sources may be anywhere in space, i.e. above and below
f , thus we refer to this example as double-sided. For the negative, time-reversed focusing function (and consequently
he focusing function) to be time-compact, each reflection of −1/2 g(x, t; x ) in Eq. (8) has to be cancelled by a source in
f

9



L. Diekmann, I. Vasconcelos, K. Wapenaar et al. Wave Motion 116 (2023) 103071

h

w

Fig. 5. Sketch of the time-compact, time-reversed focusing function using double-sided sources at zero time in a five layer medium. The reflection
coefficient r1 marks the first, r2 the second, r3 the third and r4 the fourth interface. The blue explosion refers to the source of the negative,
alf-amplitude Green’s function at xf . The pink explosions denote the source distribution q(x, t; xf ). Note that each qi(x, t; xf ) in this sketch actually

represents two overlapping sources, compare Eq. (7). The black arrows represent propagating events, the grey lines imply reflections which are
suppressed in the time-compact focusing function. The red square marks a region of interest which is studied in detail in the text. Note that the
arrows in this sketch are straight for the sake of simplicity, but the wave speed in the different layers might actually vary. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

q(x, t; xf ), compare Fig. 5. Thus, when choosing ti = 0 for all n = 6 sources in q(x, t; xf ), we can compute the coordinates
xi that allow for a possible interference via ray tracing or, in the example on hand, simple travel time considerations. The
source q1(x, t; xf ) for instance has to cancel the first reflection of the negative, half-amplitude Green’s function at the first
interface. Hence, the wave emitted from q1(x, t; xf ) should reach the first interface at the same time as the first arrival
of the Green’s function. The source q3(x, t; xf ) is supposed to cancel the first reflection of the negative, half-amplitude
Green’s function at the second interface. The wave emitted from q3(x, t; xf ) should therefore reach the second interface
at the same time as the first arrival of the Green’s function. The source q2(x, t; xf ) on the other hand has to eliminate the
reflection at the first interface that is induced by the wavefield from q3(x, t; xf ). The wave emitted from q2(x, t; xf ) should
consequently reach the first interface at the same time as the first arrival of the wave coming from q3(x, t; xf ). Similar
considerations hold for the remaining sources. Overall, this gives the following space coordinates:

x1 = ξ1 −

(xf − ξ2

c3
+

ξ2 − ξ1

c2

)
c1 (19)

x2 = ξ1 −
x3 − ξ1

c2
c1 (20)

x3 = ξ2 −
xf − ξ2

c3
c2 (21)

x4 = ξ3 +
ξ3 − xf

c3
c4 (22)

x5 = ξ4 +
ξ4 − x4

c4
c5 (23)

x6 = ξ4 +

(ξ3 − xf
c3

+
ξ4 − ξ3

c4

)
c5 , (24)

here ξj with j = 1, 2, 3, 4 is the location of the jth interface of our five layer model and ck with k = 1, 2, 3, 4, 5 is the
velocity in the kth layer. Note that we assume that x3 > ξ1 and x4 < ξ4 in our considerations. In other words we assume
that q3(x, t; xf ) is located in the second layer and q4(x, t; xf ) in the fourth layer. Depending on the medium velocities,
q3(x, t; xf ) could also fall within the first layer and q4(x, t; xf ) within the last, meaning that the sources q2(x, t; xf ) and
q5(x, t; xf ) would become unnecessary and the coordinate calculations for x3 and x4 would change. The overall concept,
however, remains the same. In addition, we assume that the sources lie within the layers, not at interfaces.

Now we know the space and time coordinates of the sources, but we still need to find out the six weights wi. Note
that we also have six equations, i.e. one for each grey line in Fig. 5 where a reflected wave is supposed to be cancelled.
Let us consider the point marked by the red square in Fig. 5. There are three different events that reach this point: the
negative, half-amplitude Green’s function is transmitted at the second and reflected at the first interface, its amplitude
is proportional to ρ(xf )c(xf )r1(1 − r2)/2, where rj = (ρj+1cj+1 − ρjcj)/(ρj+1cj+1 + ρjcj) is the reflection coefficient of the
jth interface. Note that its actual amplitude corresponds to ρ(x )c(x )r (1− r )/4 – the additional factor of 1/2, however,
f f 1 2

10
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urns up for all sources and is thus contained in the proportionality factor here. The wave from q3(x, t; xf ) is reflected
t both the second and the first interface, its amplitude is therefore proportional to r1r22ρ(x3)c(x3)w3. Note that we use
ipole sources qi(x, t; xf ) that emit leftwards with positive and rightwards with negative amplitude for positive weights
i. Furthermore, it is important to remember that there are two sources in each qi(x, t; xf ) in Eq. (7), one at positive and
ne at negative time — hence, we get the factor of two. The wave from q1(x, t; xf ) is transmitted at the first interface and
as an amplitude proportional to −(1 + r1)2ρ(x1)c(x1)w1. Thus we get the equation

−(1 + r1)ρ(x1)c(x1)w1 + r1r2ρ(x3)c(x3)w3 = −
ρ(xf )c(xf )

2
r1(1 − r2)

2
, (25)

hich states that the events should cancel each other out. Repeating this procedure for the areas denoted by the five
ther grey lines in Fig. 5 we get the following linear system⎡⎢⎢⎢⎢⎢⎣

−(1 + r1) 0 r1r2 0 0 0
0 −(1 + r1) −r1 0 0 0
0 0 −(1 + r2) 0 0 0
0 0 0 1 − r3 0 0
0 0 0 −r4 1 − r4 0
0 0 0 −r3r4 0 1 − r4

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
ρ(x1)c(x1)
ρ(x2)c(x2)
ρ(x3)c(x3)
ρ(x4)c(x4)
ρ(x5)c(x5)
ρ(x6)c(x6)

⎤⎥⎥⎥⎥⎥⎦ ◦

⎡⎢⎢⎢⎢⎢⎣
w1
w2
w3
w4
w5
w6

⎤⎥⎥⎥⎥⎥⎦ =
ρ(xf )c(xf )

2

⎡⎢⎢⎢⎢⎢⎣
−r1(1 − r2)/2

0
−r2/2
r3/2
0

(1 + r3)r4/2

⎤⎥⎥⎥⎥⎥⎦ ,

(26)

where ◦ is the Hadamard product. The determinant of the matrix is (r1+1)2(r2+1)(r3−1)(r4−1)2 which is different from
ero for all reflection coefficients |rj| < 1 with j = 1, 2, 3, 4, thus its inverse exists for all physically reasonable scenarios.
e can solve the above system of equations to obtain the weights wi and then model the negative, time-reversed focusing

unction via Eq. (6), where each of the n = 6 sources in Eq. (7) is given by

qi(x, t; xf ) = −2wiρ(x)c(xi)δ(t)
∂

∂x
δ(x − xi) . (27)

The accordingly modelled negative, time-reversed focusing function is shown in Fig. 6(a). This wavefield is indeed only
propagating between t = 0 s and about t = 0.4 s. Afterwards, there is no more energy travelling within the bounded
volume between x = 0 km and x = 2 km. Note that this negative, time-reversed focusing function (and consequently the
focusing function) is focused in time, i.e. at x = xf the field is only non-zero at t = 0. This is the eponymous focusing
property of focusing functions in previous Marchenko literature [17]. In the context of our theory, however, only particular
focusing functions, i.e. those which are compact in time, have such a focus in time — all focusing functions, however, can
be related to a focus in space via the homogeneous Green’s function of the second kind. Thus, these previously introduced
functions form a subgroup of focusing functions in our framework.

The homogeneous Green’s function of the second kind is given in Fig. 6(b). The asymmetry of the field is much more
pronounced than before, as the wavefield is in fact zero before about −0.4 s but it keeps on propagating for infinitely
long at positive times. This suggests that time reversal modelling is more accurate when using such a time-compact
focusing function instead of, e.g., a time-reversed Green’s function, because we do not need long recording times of the
injected wavefield to achieve high accuracy. In contrast, we only need about 0.4 s of data. Let us define the data misfit
as

∫∫ (
d(x, t; xf ) − dest (x, t; xf )

)2 dt dx, where d(x, t; xf ) = g(x, t; xf ) + g(x, −t; xf ) is the ground truth in Fig. 2(c) and
dest (x, t; xf ) its estimate from the respective focusing function. Indeed, we find this data misfit to be significantly smaller
for the new homogeneous Green’s function, Fig. 6(c), than that for Fig. 3(c). This can also be seen in Fig. 7. While there
is a significant misfit for all of the five preceding experiments, it is nearly zero for the time-compact focusing function.
Note that if we had used larger recording times (greater than 1.5 s) for the previous experiments, the misfits would have
appeared smaller in Fig. 7 – however, it would have been a subjective task to decide where to stop the recording in these
scenarios whereas it is immediately clear with the time-compact focusing function that only requires a finite recording
time of about 0.4 s in this example.

While this source setup works fairly well and is relatively straightforward, there is only one issue: in order for
q(x /∈ V , t; xf ) = 0 to hold, the respective volume V has to be relatively large. This can be seen in Fig. 5, where q1(x, t; xf ),
q2(x, t; xf ), q5(x, t; xf ) and q6(x, t; xf ) are beyond the actual scattering region, i.e. the area bounded by the first interface
r1 on the left and the last interface r4 on the right. For many experimental setups, however, it is desirable to consider
only a smaller volume, limited to the actual scattering region, such that the volume does not have to be homogeneously
extended beyond the first and last interface. Thus, it might make sense to think about other configurations.

4.4.2. Double-sided sources at the interfaces
Rather than picking times ti for the source coordinates first, we can also pick locations xi instead. In this context it

might make sense to refer to the model features, i.e. we can put the sources at the interfaces between the five layers.
We still keep the setup such that sources can be both above and below xf . Hence, we now discuss double-sided sources
at the interfaces. As before, each reflection of −1/2 g(x, t; xf ) in Eq. (8) has to be cancelled by a source in q(x, t; xf ), see
Fig. 8(a). Thus, we have x1 = ξ1, x2 = ξ1, x3 = ξ2, x4 = ξ3, x5 = ξ4 and x6 = ξ4. The time coordinates ti that enable
the desired interference can be computed by similar travel time considerations as before, compare Eq. (19) to (24). The
11
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Fig. 6. Left column: negative, time-reversed time-compact focusing functions. Black dots mark the locations of the Green’s function source at xf ,
rey dots the locations of the source distributions q(x, t; xf ). Central column: homogeneous Green’s functions of the second kind. Right column:
omogeneous Green’s functions obtained from the homogeneous Green’s functions of the second kind. (a), (b) and (c) are for double-sided q(x, t; xf )

sources at zero time. (d), (e) and (f) are for double-sided q(x, t; xf ) sources at the interfaces. (g), (h) and (i) are for single-sided q(x, t; xf ) sources at
the interfaces. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

source q1(x, t; xf ) for instance has to emit energy when the negative, half-amplitude Green’s function first arrives at the
first interface. Since this is happening at a time different from zero, the two sources of q1(x, t; xf ) in Eq. (7) now appear
distinctly separated in the sketch, one at −t1 and one at t1. Overall, we get the following time coordinates:

t1 = t3 +
ξ2 − ξ1

c2
(28)

t2 = t3 −
ξ2 − ξ1 (29)
c2
12
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Fig. 7. Misfit between the actual homogeneous Green’s function in Fig. 2(c) and the estimated homogeneous Green’s functions obtained via the
focusing functions. The colour encoding matches the rectangles in the bottom right corners of each of the estimated homogeneous Green’s functions,
i.e. experiment number 1 is for Fig. 3(c), 2 for Fig. 3(f), 3 for Fig. 3(i), 4 for Fig. 4(c), 5 for Fig. 4(f), 6 for Fig. 6(c), 7 for Fig. 6(f) and 8 for Fig. 6(i).

t3 =
xf − ξ2

c3
(30)

t4 =
ξ3 − xf

c3
(31)

t5 = t4 −
ξ4 − ξ3

c4
(32)

t6 = t4 +
ξ4 − ξ3

c4
, (33)

here in contrast to the preceding source setup, all six sources always exist.
Similar to before, we can set up a linear system of equations for the weights. However, the amplitude considerations

re more complex in this case because the dipole sources are located at interfaces, implying slightly modified radiation
haracteristics. In the preceding example, the dipoles were within the layers such that each source would emit a wave
ith same amplitude but reversed polarity into the two directions (leftwards and rightwards). For a dipole source at an

nterface, the leftwards propagating wave has an initial, unweighted amplitude (before any further transmission/reflection
osses occur and without applying the individual weight wi) proportional to

µj =
(ρj + ρj+1)c(ξj)

1 − γj
, (34)

here c(ξj) is the velocity at the jth interface. While this velocity might be ill-defined, it is purely a constant scaling
factor, making the assigned value irrelevant — we use c(ξj) = (cj + cj+1)/2 for instance. Note that we only define four
ifferent amplitudes µj for the six sources since the initial, unweighted source amplitude only depends on the interface at
hich the source is located. Furthermore, we use γj = −(1+ rj)/(1− rj). The rightwards propagating wave has an initial,
nweighted amplitude proportional to γjµj. See Appendix A for details on the derivation of these amplitudes. Including
he adjusted amplitudes we can follow the same recipe as before, i.e. for each area marked by a grey line in Fig. 8(a) we
an sum up all the contributions from the different sources and set the result to zero. The linear system for the weights
hen reads⎡⎢⎢⎢⎢⎢⎣

γ1 −r1r2γ1 −r1 −r1(1 − r2) 0 −r1(1 − r2)(1 − r3)
−r1r2γ1 γ1 −r1 0 0 0

0 (1 + r2)γ1 γ2 −r2 0 −r2(1 − r3)
(1 + r2)r3γ1 0 r3γ2 1 1 − r3 0

0 0 0 r4γ3 1 −r3r4
(1 + r2)(1 + r3)r4γ1 0 (1 + r3)r4γ2 r4γ3 −r3r4 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
µ1
µ1
µ2
µ3
µ4
µ4

⎤⎥⎥⎥⎥⎥⎦

◦

⎡⎢⎢⎢⎢⎢⎣
w1
w2
w3
w4
w5
w6

⎤⎥⎥⎥⎥⎥⎦ = ρ(xf )c(xf )

⎡⎢⎢⎢⎢⎢⎣
−r1(1 − r2)/2

0
−r2/2
r3/2
0

(1 + r3)r4/2

⎤⎥⎥⎥⎥⎥⎦ , (35)
13
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r

A

Fig. 8. Sketch of the time-reversed, time-compact focusing functions using (a) double-sided and (b) single-sided sources at the interfaces. The
eflection coefficients r1 mark the first interface, r2 the second and so on. The blue explosions refer to the sources of the negative, half-amplitude
Green’s functions at xf . The pink explosions denote the source distribution q(x, t; xf ). Note that each qi appears twice in this sketch, once at positive
and once at negative time, and both together make up the actual source qi(x, t; xf ). The only exception is q4 in (b), which is at zero time and thus
denotes two overlapping sources. Furthermore, it overlaps with the source of the negative, half-amplitude Green’s function — its blue explosion
symbol is therefore increased in size to allow for a proper visualisation. The black arrows represent propagating events, the grey lines imply
reflections which are suppressed in the time-compact focusing functions. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

where we have nearly the same right hand side as before, but the matrix on the left hand side appears to be more complex
due to the fact that the two sources in each qi(x, t; xf ) do not overlap in time any more. The inverse of this matrix exists
for all physically reasonable cases, see Appendix B. After solving the above system for wi we can model the negative,
time-reversed focusing function using Eq. (6) where for the sources in Eq. (7) we have

qi(x, t; xf ) = −wiρ(x)c(xi)
(
δ(t − ti) + δ(t + ti)

) ∂

∂x
δ(x − xi) . (36)

gain, note that the velocity c(xi) is only a constant scaling factor and not a function of x, whereas the density ρ(x),
which is different in the limits from above and below the interface, is under the action of the Dirac delta. The resulting
negative, time-reversed focusing function for double-sided sources at the interfaces is shown in Fig. 6(d). Since there are
sources at positive and negative times now, i.e. at −ti and ti, this focusing function lives in a larger time window than
the previous one. Note that the focusing functions on the boundaries of the volume, that is at x = 0 km and at x = 2 km,
are exactly the same in both Figs. 6(a) and 6(d). In that sense the combined focusing functions f

(
x, t; xf , q(x, t; xf )

)
−

f
(
x, −t; xf , q(x, t; xf )

)
, i.e. the wavefields in Eq. (10), are exactly the same. This illustrates the ambiguity of the source

distribution q(x, t; xf ). The source distribution of the new focusing function, see Fig. 6(d) for its negative, time-reversed
version, however, is spatially more compact, i.e. there are no sources outside the scattering region of the volume. In other
words, all sources are within the region between the first and the last interface, such that q(x /∈ V , t; xf ) = 0 holds true for
any volume that contains the scattering interfaces. When injecting the focusing function from the boundary, we get – as
expected – the same homogeneous Green’s function of the second kind as before, see Fig. 6(e). Fig. 6(f) gives the resulting
homogeneous Green’s function. As observed before, the accuracy of this homogeneous Green’s function is higher than
that of those retrieved via non-time-compact focusing functions, see Fig. 7.

Thus far, we illustrated how different sources q(x, t; xf ) may deliver the same homogeneous Green’s function of the
second kind. For a focusing point in the third layer of a five layer medium, we have proven that one can always obtain a
time-compact focusing function from double-side sources at the interfaces, such that q(x, t; xf ) = 0 everywhere beyond
the scattering portion of the volume.

4.4.3. Single-sided sources at the interfaces
This final example is similar to the preceding one, but for the case of having sources only at locations xi ≤ xf — thus,

we refer to this setup as single-sided (analogously, one could of course use sources only at locations xi ≥ xf ). Since we
want to obtain the most time-compact focusing function, it follows that the focusing function should not penetrate any
deeper than xf . If there was energy propagating beyond this point it would induce scattering at the third and fourth
interface and suppressing this scattering with sources at xi ≤ xf (if at all possible) would require a significantly larger
time window for the focusing function. Hence, the most time-compact focusing functions for single-sided sources only
propagate in a half-space, bounded by xf . The source configuration is sketched in Fig. 8(b). While the time and space
coordinates of q (x, t; x ), q (x, t; x ) and q (x, t; x ) remain unchanged compared to the preceding example sketched in
1 f 2 f 3 f
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ig. 8(a), q4(x, t; xf ) is now at x4 = xf and t4 = 0. Note that this is the only source which is not at an interface. Sources
q5(x, t; xf ) and q6(x, t; xf ) become unnecessary in this setup, i.e. n = 4 in Eq. (7).

As depicted by the grey lines in Fig. 8(b) we have four equations that describe the annihilating wavefields of the four
sources related to q(x, t; xf ). The linear system reads⎡⎢⎣ γ1 −r1r2γ1 −r1 −r1(1 − r2)

−r1r2γ1 γ1 −r1 0
0 (1 + r2)γ1 γ2 −r2

(1 + r2)γ1 0 γ2 −1

⎤⎥⎦
⎡⎢⎣ µ1

µ1
µ2

2ρ(xf )c(xf )

⎤⎥⎦ ◦

⎡⎢⎣w1
w2
w3
w4

⎤⎥⎦ = ρ(xf )c(xf )

⎡⎢⎣−r1(1 − r2)/2
0

−r2/2
1/2

⎤⎥⎦ . (37)

The determinant of this matrix is (r1 +1)2(r2 +1) which is different from zero for all |r1| < 1 and |r2| < 1, i.e. the inverse
matrix exists for all physically reasonable scenarios. Using the time and space coordinates ti and xi as well as the weights
we obtain from solving above system of equations for wi, we can model the negative, time-reversed focusing function via
Eq. (6), where for each of the n = 4 sources in Eq. (7) we use the relation given in Eq. (36).

The retrieved negative, time-reversed focusing function is shown in Fig. 6(g). It is similar to the previous result in
Fig. 6(d), however, the wavefield now only propagates between x = 0 and x = xf . Furthermore, the amplitudes are
lightly different. The energy that is necessary to cancel the negative, half-amplitude Green’s function in Eq. (8) comes
olely from the left in this single-sided example — implying generally higher amplitudes for this focusing function. Note
hat this wavefield has quite an unusual appearance, being not only time-compact but also spatially bounded to the region
o the left of xf . This shows that we can inject energy into a medium such that it only propagates to one side. Measuring the
avefield at the other side will not show any arriving energy. But this is not due to attenuation, it is merely a consequence
f choosing the correct sources for the medium under investigation, such that all rightwards travelling wavefields interfere
estructively. As a consequence of the vanishing focusing function at the right boundary, we may choose to inject the
ocusing function from only the left boundary in Eq. (16). The homogeneous Green’s function of the second kind is shown
n Fig. 6(h). As before this wavefield is asymmetric in time. Furthermore, the spatial asymmetry is significantly more
ronounced due to the single-sided source configuration, i.e. the entire top right corner (to the right of x = xf and above
= 0) is zero. The conventional homogeneous Green’s function obtained from this result is given in Fig. 6(i). Note that
his homogeneous Green’s function is obtained from drastically reduced boundary data, i.e. we use a focusing function
hat is only different from zero on the left boundary and within a limited time window. Again, this homogeneous Green’s
unction is a significantly better estimate than those obtained from non-time-compact focusing functions. However, due to
n increased impact of numerical inaccuracies, the misfit is marginally higher than that of the previous two, double-sided
xperiments, see Fig. 7.
In summary, we presented and discussed different focusing functions in this section — going beyond those achievable

y previous descriptions. In particular, we showed how to obtain time-compact focusing functions. While we did neither
trictly prove that these time-compact focusing functions always exist for arbitrary 1D media nor describe how to obtain
hem in 2D and 3D, these examples clearly illustrate the concept of the source distribution q(x, t; xf ) and how it can lead
o perfect destructive interference and thereby time-compact wavefields. In that sense, our chosen benchmark examples
emonstrate the applicability of the general equations in Section 3. Our main intention was to show how our new
ramework can be used to forward model focusing functions, i.e. how to obtain different types of focusing functions
hen given the physical properties of the medium. This is an important step in understanding focusing functions and
ight potentially lead to further progress, e.g., in inversion schemes based on focusing functions [54]. Furthermore this
ight be helpful in understanding the extent to which, e.g., single-sided focusing works in complex 2D and 3D media.
he next section will discuss an approach to obtaining focusing functions without knowledge of the medium parameters.

. Interferometry and Marchenko-like integrals

In the preceding sections we introduced and illustrated focusing functions and homogeneous Green’s functions of the
econd kind. In this section we want to establish the connection of our work with the Marchenko integral by means of
eismic interferometry [19,21,55,56]. In addition, we discuss the role of time-compact focusing functions.
Similar to time reversal modelling we can use reciprocity to obtain the interferometric relation

∂

∂t
u(xs, t) = −

∫
xr∈∂V

∫
∞

−∞

2
ρ(xr )

∇g(xr , t − τ ; xs)uin(xr , τ )dτ · dSSS , (38)

here ∂V is the closed boundary of a volume V that contains xs and the wavefield u(xxx, t) has no sources in V [52,57].
urthermore, the medium is supposed to be scattering-free outside the volume V such that the Green’s function is a
urely out-going wavefield. The wavefield uin(xxx, t) is the part of the total field u(xxx, t) that is in-coming with respect to
he bounded volume V . The gradient operator ∇ acts on the coordinate xr . Note that the equation involves a convolution
f the Green’s function and the in-coming wavefield uin(xxx, t). This general relation allows for retrieving the full wavefield

u(xs, t) at xs within the volume when knowing the in-coming field uin(xr , t) at xr along the boundary as well as the
reen’s function g(xr , t; xs). Thus, it is necessary to have a source for the Green’s function at xs within the volume. For
ome applications this might be unrealistic because the interior of the volume V is inaccessible. In this case, we might
ave x to be just within the volume but very close to the boundary (in practice meaning that sources x and receivers
s s
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r of the Green’s function are distributed along the surface of the volume of interest). This is the setup we will assume
or the remaining part of this paper. Then, we can write Eq. (38) as

∂

∂t
uout (xs, t) = −

∫
xr∈∂V

∫
∞

−∞

2
ρ(xr )

∇g(xr , t − τ ; xs)uin(xr , τ )dτ · dSSS , (39)

here using the spatial derivative of the Green’s function only reconstructs the out-going part of the wavefield u(xs, t).
Let us take the homogeneous Green’s function, Eq. (5), as a first example for a wavefield u(xxx, t). This is indeed a

ource-free wavefield. Assuming that V contains xf , the in-coming part at ∂V is given by g(xxx, −t; xf ) and the out-going
art by g(xxx, t; xf ). Thus, we obtain

∂

∂t
g(xs, t; xf ) = −

∫
xr∈∂V

∫
∞

−∞

2
ρ(xr )

∇g(xr , t + τ ; xs)g(xr , τ ; xf )dτ · dSSS , (40)

here we now have a correlation between the two Green’s functions. Note that this representation excludes evanescent
aves on the boundary, but contains the full wavefield inside the volume. This equation, however, is – for the same
easoning as before – not very useful since we are not necessarily able to have a source at xf inside the volume.

For the homogeneous Green’s function of the second kind on the other hand, we obtain the following equation:

∂

∂t

(
g(xs, t; xf ) + f

(
xs, t; xf , q(xxx, t)

))
=

∫
xr∈∂V

∫
∞

−∞

2
ρ(xr )

∇g(xr , t + τ ; xs)f
(
xr , τ ; xf , q(xxx, t)

)
dτ · dSSS , (41)

where we assume that V contains xf and q(xxx /∈ V , t; xf ) = 0 such that −f
(
xr , −t; xf , q(xxx, t)

)
is the only in-coming

wavefield. This is the closed boundary representation that relates Green’s and focusing functions for xs near the boundary.
As in the previous case, evanescent waves are only neglected on the boundary but accounted for inside the volume.
Kiraz et al. [41] present another approach to obtain a similar closed boundary representation. Let us consider a special
configuration where the volume is bounded by a horizontal plane ∂V0 at z = 0 and the surface of a half-sphere ∂V1
below. Since we know that there are many different focusing functions, we are free to consider only the subset of
focusing functions −f

(
xs, −t; xf , q(xxx, t; xf )

)
that vanish at ∂V1 – note that we use the source distribution q(xxx, t; xf ) to

emphasise that this is a subset of focusing functions only. Furthermore, this source distribution generally depends on the
focal location xf . We have already introduced an example of such a focusing function in Fig. 6(g). We do not actually prove
the general existence of these focusing functions here — for complex media in two and three dimensions they might in
fact not exist and investigating this remains a topic of ongoing research. Assuming that there are such focusing functions,
Eq. (41) becomes

g(xs, t; xf ) + f
(
xs, t; xf , q(xxx, t; xf )

)
= −

∫
xr∈∂V0

∫
∞

−∞

r(xr , t + τ ; xs)f
(
xr , τ ; xf , q(xxx, t; xf )

)
dτ dSSS , (42)

with
∂

∂t
r(xr , t; xs) =

2
ρ(xr )

∂

∂zr
g(xr , t; xs) . (43)

his is the single-sided or open boundary representation. Note that this equation only holds for focusing functions that
anish on ∂V1. It would not be sufficient to consider a focusing function that was purely out-going on ∂V1: this would
mply that the time-reversed focusing function was in-coming on ∂V1 such that the integral over ∂V1 would not vanish.
he very same equation was derived in previous publications [18,58], however, involving several limitations regarding the
reen’s function. In particular, these derivations required up-/down-decomposition of the wavefields inside the volume
s well as a truncated medium state, leading to a neglect of evanescent, refracted and diving waves. Our derivation
oes not involve any such assumptions, i.e. Eq. (42) contains the full wavefield Green’s function inside the volume.
imilar conclusions were recently presented by Wapenaar et al. [39], however, using a derivation built on a different
efinition of the focusing function. In particular, their focusing functions are source-free and focus on the surface ∂V0
ather than inside the volume. Our scheme follows the concept introduced in [42], where focusing functions are related
o a source term q(xxx, t) and focus in space at xf when injected into a source-free volume. This approach explains both
losed and open boundary integral representations. Note that our Eq. (42) is slightly different from the conventional
epresentation [18] because we define the negative, time-reversed auxiliary focal solution as the in-coming focusing
unction. Substituting φ

(
xs, t; xf , q(xxx, t; xf )

)
= −f

(
xs, −t; xf , q(xxx, t; xf )

)
yields the traditional form. This single-sided

representation is interesting for several reasons, mainly: (i) it allows us to retrieve a Green’s function by injecting a
wavefield from only one side. This is rather unusual since interferometry (just like time reversal acoustics) for open
boundaries is conventionally prone to artefacts, compare Eq. (40) where the time-reversed Green’s function needs to be
injected from the entire, closed boundary for accurate Green’s function retrieval. (ii) Eq. (42) can (under circumstances)
be solved for the focusing and Green’s function when an estimate of the first arrival of the Green’s function is available.
The underlying assumption is that there is a focusing function −f

(
xs, −t; xf , q̂(xxx, t; xf )

)
that is separated in time from the

Green’s function. We denote this additional constraint by the source q̂(xxx, t; xf ). This is where the previously introduced
time-compact focusing functions come into play again, see Figs. 6(a), 6(d) and 6(g). Such a time-compact focusing function
16



L. Diekmann, I. Vasconcelos, K. Wapenaar et al. Wave Motion 116 (2023) 103071

o
a
t
θ

nly overlaps with the Green’s function in the vicinity of the first arrival of the Green’s function. Hence, we can define
window function θ (xs, t; xf ) that removes all arrivals before −tfirst (xs; xf ) and after tfirst (xs; xf ), where tfirst (xs; xf ) is

he time of the first arrival of the wavefield for a source at xf and a receiver at xs [18,59–61]. In other words, we have
(xs, t; xf ) = 0 for all |t| > tfirst (xs; xf ) and θ (xs, t; xf ) = 1 otherwise. Applying the window operator to Eq. (42) we get:

gfirst (xs, t; xf ) + f
(
xs, t; xf , q̂(xxx, t; xf )

)
= −θ (xs, t; xf )

∫
xr∈∂V0

∫
∞

−∞

r(xr , t + τ ; xs)f
(
xr , τ ; xf , q̂(xxx, t; xf )

)
dτ dSSS . (44)

This expression is a Marchenko-like integral [11–15,62]. Assuming that the first arrival of the Green’s function
gfirst (xs, t; xf ) is known (e.g. from modelling in a smooth estimate of the medium), the equation contains only one
unknown quantity, i.e. the focusing function. Thus, we can solve for the focusing function and, subsequently, via Eq. (42)
for the Green’s function. Since the focus of this paper is on the derivation of the representations and not on their solutions,
we refer the interested reader to other papers for the traditional approach [18,60] or for a solution without up-/down-
decomposed fields [38]. This equation forms the basis for many applications in geophysics, e.g. Green’s function retrieval,
multiple elimination and Marchenko imaging.

In this section we connected the insights from the previous sections with the concept of single-sided Green’s function
retrieval, i.e. we derived a Marchenko-like equation without up-/down-decomposition of the wavefields based on a partial
differential equation framework for focusing functions. Note that we did not imply that solutions f

(
xs, t; xf , q̂(xxx, t; xf )

)
always exist for arbitrary media and conditions. However, we may say that if we find a focusing function using such an
approach it obviously exists and obeys our constraints, i.e. it vanishes at ∂V1 and is separated from the Green’s function
in time. So far, our experience with numerical examples confirms solutions do often exist and can be retrieved from
boundary data, but to what extent that is the case in general is the subject of ongoing research. Our derivation does not
include any approximations regarding the Green’s function, i.e. if the focusing function exists under our constraints the
reconstructed Green’s function will contain the full-spectrum.

6. Discussion

In this paper, we discuss and illustrate a new, generalised framework for wavefield focusing. Building on the concept
introduced in [38] we add explanations to the definition of the focusing function as well as its relation to the Green’s
function. The underlying partial differential equation allows us to obtain the homogeneous Green’s function of the second
kind, a source-free, potentially asymmetric wavefield that contains the causal Green’s function. This potential asymmetry
stems from the fact that the homogeneous Green’s function of the second kind comprises one in-coming field, i.e. the
focusing function, and two out-going fields, i.e. the negative, time-reversed focusing function and the Green’s function.
When adding the homogeneous Green’s function of the second kind and its time-reversed version, one always obtains
the conventional homogeneous Green’s function. This unifying property of focusing functions, or more precisely of their
respective homogeneous Green’s functions of the second kind, also implies a focus in space of the homogeneous Green’s
functions of the second kind at xf and zero time. It is due to this focus that we call the underlying fields focusing functions.
Focusing functions have already been studied in the context of Marchenko-based schemes in geophysics [18,60], however,
our new definition generalises the concept of focusing and establishes a source term that enables modelling of focusing
functions.

The numerical examples illustrate the concept of focusing and show how focusing functions can be built to destruc-
tively interfere with the local Green’s function. Ultimately, we can construct focusing functions which are compact in
time and, if desired, vanish on particular parts of the boundary. Using such time-compact focusing functions rather than
Green’s functions for time reversal modelling actually enables a superior accuracy of the retrieved homogeneous Green’s
functions. We find that the source distribution q(xxx, t) that governs the focusing function might be ambiguous, i.e. different
sources deliver the same combined focusing functions f

(
xs, t; xf , q(xxx, t)

)
− f

(
xs, −t; xf , q(xxx, t)

)
. Although the numerical

examples are in 1D, we think that similar approaches exist for 2D and 3D. These approaches will have to be more elaborate
though, including, e.g. geometrical spreading and angle-dependent reflection coefficients. The results presented in this
paper illustrate how we can use the full (two-way) wave equation to model time-compact focusing wavefields. Using a
different approach, Elison et al. [63] recently presented modelled focusing functions in 2D. The way that we constructed
the time-compact focusing fields is very example-specific and a generalisation to arbitrary media (as well as to 2D and
3D) is a topic for future research. The main goal of the numerical examples in this paper is simply the illustration of
focusing functions in the light of our new definition.

The implications of our approach go beyond the ability to model focusing functions and increase the accuracy of time
reversal acoustics. We also derived representations for Green’s and focusing functions without up-/down-decomposed
wavefields or a truncated medium assumption, suggesting that our derivation includes the full wavefield Green’s function,
involving diving, refracted and evanescent waves. Since we present a unified approach to wavefield focusing, we can
derive such integrals for both closed and open boundary systems as both follow in a straightforward fashion from our
underlying theory. The closed boundary representation is entirely general, i.e. valid for any focusing function. The open
boundary representation on the other hand requires that the associated focusing function vanishes on the remaining
boundary, i.e. this integral is only valid for a subset of focusing functions. In fact, it might even be that the open boundary

representation is only valid for one unique focusing function (or none at all in complex media) since Eq. (42) can often
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e directly inverted for −f
(
xs, −t; xf , q(xxx, t; xf )

)
when the Green’s function is given [35]. If we want to solve the integral

or the focusing and Green’s functions based on an estimate of the first arrival Green’s function we additionally need
o assume that focusing and Green’s functions can be separated in time. Using this separability assumption we obtain
Marchenko-like equation. It remains to be investigated, when exactly Eqs. (42) and (44) break, i.e. when and to what
xtent single-sided focusing in 2D and 3D becomes implausible. The separability assumption used in Eq. (44) to solve the
epresentation for focusing and Green’s functions is known to fail for complex velocity and density models in 2D and 3D
ue to the related scattering patterns, including, e.g., diffractions [35,64,65]. Hence, even if there is a unique, single-sided
ocusing function −f

(
xs, −t; xf , q(xxx, t; xf )

)
for Eq. (42) it might not necessarily obey the time-separability constraint [35].

We suspect that our new partial differential equation approach might help to investigate these questions further. The
underlying partial differential equations might also prove useful when it comes to combining Marchenko-like approaches
with full waveform inversion [54,66–69]. In 1D it is known how to extract the scattering potential from the focusing
functions directly [46,70–72]. For higher dimensions we might gain further understanding of the relation between the
focusing function and the scattering potential by studying our scheme more explicitly in 2D and 3D. Last but not least,
our derivation shows that the representations, e.g., Eq. (42) include the full wave Green’s function. This might allow for
more advanced data applications and experiments in the future, including evanescent, refracted and diving waves.

7. Conclusions

We present a partial differential equation framework for generalised wavefield focusing. In particular we define
focusing functions that govern the homogeneous Green’s function of the second kind. These homogeneous Green’s
functions of the second kind can be quite asymmetric both in time and space, but they always have a focus in space at
xf and zero time. Furthermore, they deliver the conventional homogeneous Green’s function when adding their time-
reversed version. While our definition generalises the idea of focusing functions that were previously introduced in
the context of Marchenko-like schemes, it also represents an entirely new way to describe these functions, paving the
way for new insights and improved understanding. We discuss and illustrate different families of focusing functions
with numerical examples, where our partial differential equation framework allows us to go beyond focusing functions
described in previous approaches. In particular, we demonstrate how our equations allow for constructing time-compact
focusing functions for closed and open boundary systems. Last but not least, we use reciprocity to obtain Marchenko-like
integrals that relate focusing and Green’s functions based on the homogeneous Green’s function of the second kind. Owing
to the unifying character of our wavefield focusing approach, we obtain these Marchenko-like integral representations for
both closed and open boundaries. This derivation does not require up-/down-decomposed wavefields inside the medium
and thus circumvents the limitations of most previous approaches.
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Fig. 9. Sketch of a dipole source at an interface. Left: apparent source. Right: actual source used for modelling, consisting of two monopole sources.
The reflectivity is denoted by rj , µj and λj are proportional to the amplitudes of the apparent dipole source.

Appendix A. Dipole source amplitudes at interfaces

In order to compute the amplitudes for a dipole source at an interface we have to exploit two relations: (i) the direct
wavefield at the interface itself should have zero amplitude and (ii) the total emitted energy should be proportional to
the physical properties of the medium around the interface. As stated in the text, we mimic the dipole by two monopoles
with opposite polarity. Thus, one monopole is above the interface and the other below, see also Fig. 9. Considering the
point denoted by the triangle in this sketch, which is supposed to be infinitesimally far away from the interface, the first
relation (i) means that the three direct field contributions indicated by the blue, magenta and red arrows cancel each
other. This gives

µj(1 + rj) + λj(1 − rj) = 0 , (45)

where µj and λj are proportional to the amplitudes of the dipole source as sketched in Fig. 9, µj is positive and λj is
negative. The second relation (ii) can be described by

|µj| + |λj| = µj − λj = (ρj + ρj+1)c(ξj) , (46)

i.e. the amplitudes are proportional to the densities of the layers above and below the interface, scaled by an arbitrary
velocity. From Eq. (45) we obtain λj/µj = −(1 + rj)/(1 − rj) which equals the previously defined γj. Thus, the rightwards
propagating wave has an initial, unweighted amplitude proportional to λj = γjµj. Dividing Eq. (46) by µj and using
λj/µj = γj we obtain Eq. (34).

Appendix B. Existence of inverse matrix in Eq. (35)

The determinant of the matrix in Eq. (35) is

−(r1 + 1)2(r4 + 1)(r2 + 1)(r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 + r1r2r3r4 + 1)(r1 − 1)−1(r2 − 1)−1 , (47)

here for all terms except for the fourth one it is straightforward to see that they are always different from zero for
rj| < 1 with j = 1, 2, 3, 4. The fourth term is zero for

r1 = −
r2r3 + r2r4 + r3r4 + 1
r2 + r3 + r4 + r2r3r4

, (48)

r regarding the absolute value

|r1| =

⏐⏐⏐⏐ r2r3 + r2r4 + r3r4 + 1
r2 + r3 + r4 + r2r3r4

⏐⏐⏐⏐ =

⏐⏐⏐⏐ p + r4
1 + pr4

⏐⏐⏐⏐ ≥ 1 , (49)

ith p = (1+ r2r3)/(r2 + r3). By showing that the right-most inequality above holds true, we prove that the determinant
an never be zero for the ranges of physically reasonable reflection coefficients that we consider. The inequality can be
ewritten according to

(p + r4)2 ≥ (1 + pr4)2 ⇔ p2 − 1 ≥ r24 (p
2
− 1) ⇔ 1 ≥ |r4| , (50)

here the last inequality follows if |p| > 1 and then is true because we have |r4| < 1. Thus, we have to show that

|p| > 1 ⇔ (1 + r2r3)2 > (r2 + r3)2 ⇔ r22 (r
2
3 − 1) > r23 − 1 ⇔ |r2| < 1 , (51)

here we use r23 − 1 < 0 for |r3| < 1 to obtain the last inequality. This last inequality is true such that the determinant
s always different from zero for |r | < 1 with j = 1, 2, 3, 4.
j
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