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A B S T R A C T

Waves in space-dependent and in time-dependent materials obey similar wave equations, with
interchanged time- and space-coordinates. However, since the causality conditions are the same
in both types of material (i.e., without interchangement of time- and space-coordinates), the
solutions are dissimilar.

We present a systematic treatment of wave propagation and scattering in 1D space-
dependent and in 1D time-dependent materials. After formulating unified equations, we discuss
Green’s functions and simple wave field representations for both types of material. Next we
discuss propagation invariants, i.e., quantities that are independent of the space coordinate
in a space-dependent material (such as the net power-flux density) or of the time coordinate
in a time-dependent material (such as the net field-momentum density). A discussion of
general reciprocity theorems leads to the well-known source–receiver reciprocity relation for
the Green’s function of a space-dependent material and a new source–receiver reciprocity
relation for the Green’s function of a time-dependent material. A discussion of general wave
field representations leads to the well-known expression for Green’s function retrieval from the
correlation of passive measurements in a space-dependent material and a new expression for
Green’s function retrieval in a time-dependent material.

After an introduction of a matrix–vector wave equation, we discuss propagator matrices for
both types of material. Since the initial condition for a propagator matrix in a time-dependent
material follows from the boundary condition for a propagator matrix in a space-dependent
material by interchanging the time- and space-coordinates, the propagator matrices for both
types of material are interrelated in the same way. This also applies to representations and
reciprocity theorems involving propagator matrices, and to Marchenko-type focusing functions.

. Introduction

A wave that encounters a temporal change of material parameters (a so-called time boundary) undergoes reflection and
ransmission [1], similar to a wave that is incident on a spatial change of material parameters (a space boundary). Although research
n wave propagation and scattering in time-dependent materials has been around for several decades [2,3], recent advances in the
onstruction of dynamic metamaterials have given this field of research a significant boost [4]. Whereas most applications concern
lectromagnetic waves [5–7], mechanical waves show a similar scattering behaviour when confronted with a temporal change of
arameters [8–11]. In particular, Fink and coworkers [8,9] show that water waves propagate back to their point of origin when the
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Table 1
Quantities in unified equations (1)–(4).

𝑈 𝑉 𝑃 𝑄 𝛼 𝛽 𝑎 𝑏

1. TE waves 𝐷𝑦 𝐵𝑧 𝐸𝑦 𝐻𝑧 𝜀 𝜇 −𝐽 e
𝑦 −𝐽m

𝑧
2. TM waves 𝐵𝑦 −𝐷𝑧 𝐻𝑦 −𝐸𝑧 𝜇 𝜀 −𝐽m

𝑦 𝐽 e
𝑧

3. Acoustic waves −𝛩 𝑚𝑥 𝑝 𝑣𝑥 𝜅 𝜌 𝑞 𝑓𝑥
4. SH waves 𝑚𝑦 −2𝑒𝑦𝑥 𝑣𝑦 −𝜏𝑦𝑥 𝜌 𝜇−1 𝑓𝑦 2ℎ𝑦𝑥

restoring force responsible for wave propagation (gravity), and hence the propagation velocity, is temporarily changed by a vertical
acceleration.

Several authors have discussed the analogy between the underlying equations for space-dependent and for time-dependent
aterials [1,12–15]. For example, the roles of the time- and space-coordinates in the 1D wave equation for a space-dependent
aterial are interchanged in the 1D wave equation for a time-dependent material. Despite the simple relations between the wave

quations, the relation between the solutions of these equations (i.e., the wave fields in space-dependent and in time-dependent
aterials) is less straightforward. The reason for this is that the causality conditions are the same in both types of material.
nly when the initial conditions and boundary conditions would be interchanged (along with the interchangement of time- and

pace-coordinates in the wave equations), the solutions would obey a simple relation as well.
The aim of this paper is to discuss a number of fundamental aspects of wave propagation and scattering in space-dependent and

n time-dependent materials and compare these in a systematic way. Our discussion partly overlaps with earlier reviews, such as
he excellent paper by Caloz and Deck-Léger [15], but we also discuss new results. We use a unified notation for different wave
henomena (electromagnetic, acoustic, elastodynamic), so that all relations discussed in this paper hold simultaneously for these
henomena. For simplicity, we restrict ourselves to 1D waves only. We discuss Green’s functions, propagation invariants, reciprocity
heorems, wave field representations and expressions for Green’s function retrieval. In most of these cases, the derived solutions for
pace-dependent and time-dependent materials are not exchangeable as a result of non-exchangeable causality conditions. We also
iscuss propagator matrices for space-dependent and time-dependent materials and show that they are completely exchangeable as
result of interchangeable boundary and initial conditions. Finally, we discuss Marchenko-type focusing functions for both types

f material and show that they are also exchangeable.

. Unified basic equations and constitutive relations for 1D wave fields

Throughout this paper, we consider 1D wave fields as a function of space (denoted by 𝑥) and time (denoted by 𝑡). We take
𝑥 increasing towards the right. Using analogies between electromagnetic, acoustic and elastodynamic waves [16–21], the basic
equations in a unified notation are

𝜕𝑡𝑈 + 𝜕𝑥𝑄 = 𝑎, (1)
𝜕𝑡𝑉 + 𝜕𝑥𝑃 = 𝑏, (2)

where 𝜕𝑥 and 𝜕𝑡 denote partial derivatives with respect to space and time, respectively, 𝑈 (𝑥, 𝑡), 𝑉 (𝑥, 𝑡), 𝑃 (𝑥, 𝑡) and 𝑄(𝑥, 𝑡) are space-
and time-dependent wave-field quantities and 𝑎(𝑥, 𝑡) and 𝑏(𝑥, 𝑡) are space- and time-dependent source quantities, see Table 1. The
wave-field quantities are mutually related via the following constitutive equations

𝑈 = 𝛼𝑃 , (3)
𝑉 = 𝛽𝑄, (4)

where 𝛼(𝑥, 𝑡) and 𝛽(𝑥, 𝑡) are the parameters of space- and time-dependent materials, see Table 1. Rows 1 and 2 contain the quantities
for electromagnetic wave propagation, with TE standing for transverse electric and TM for transverse magnetic. The quantities are
electric flux densities 𝐷𝑦(𝑥, 𝑡) and 𝐷𝑧(𝑥, 𝑡), magnetic flux densities 𝐵𝑦(𝑥, 𝑡) and 𝐵𝑧(𝑥, 𝑡), electric field strengths 𝐸𝑦(𝑥, 𝑡) and 𝐸𝑧(𝑥, 𝑡),
magnetic field strengths 𝐻𝑦(𝑥, 𝑡) and 𝐻𝑧(𝑥, 𝑡), permittivity 𝜀(𝑥, 𝑡), permeability 𝜇(𝑥, 𝑡), external electric current densities 𝐽 e

𝑦 (𝑥, 𝑡) and
𝐽 e
𝑧 (𝑥, 𝑡) and external magnetic current densities 𝐽m

𝑦 (𝑥, 𝑡) and 𝐽m
𝑧 (𝑥, 𝑡). The quantities in row 3, associated to acoustic wave propagation

in a fluid material, are dilatation 𝛩(𝑥, 𝑡), longitudinal mechanical momentum density 𝑚𝑥(𝑥, 𝑡), acoustic pressure 𝑝(𝑥, 𝑡), longitudinal
particle velocity 𝑣𝑥(𝑥, 𝑡), compressibility 𝜅(𝑥, 𝑡), mass density 𝜌(𝑥, 𝑡), volume-injection rate density 𝑞(𝑥, 𝑡) and external longitudinal
force density 𝑓𝑥(𝑥, 𝑡). For horizontally polarised shear (SH) waves in a solid material, we have in row 4 transverse mechanical
momentum density 𝑚𝑦(𝑥, 𝑡), shear strain 𝑒𝑦𝑥(𝑥, 𝑡), transverse particle velocity 𝑣𝑦(𝑥, 𝑡), shear stress 𝜏𝑦𝑥(𝑥, 𝑡), mass density 𝜌(𝑥, 𝑡), shear
modulus 𝜇(𝑥, 𝑡), external transverse force density 𝑓𝑦(𝑥, 𝑡) and external shear deformation rate density ℎ𝑦𝑥(𝑥, 𝑡).

In the following we consider either space-dependent parameters (𝛼(𝑥) and 𝛽(𝑥)) or time-dependent parameters (𝛼(𝑡) and 𝛽(𝑡)).
For discussions on wave propagation and scattering in materials that are both space- and time-dependent, we refer to [6,15,22]; for
non-reciprocal wave propagation due to ‘‘travelling wave modulation’’, see Refs. [23–30].

3. Wave equations and Green’s functions

In this and subsequent sections, the first subsection reviews a specific subject for a space-dependent material. This serves as an
introduction to the second subsection, which discusses the same subject for a time-dependent material, including the analogies and
differences.
2
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3.1. Space-dependent material

We consider a space-dependent material that is constant over time, with parameters 𝛼(𝑥) and 𝛽(𝑥). Substituting the constitutive
qs. (3) and (4) into the basic Eqs. (1) and (2), using the fact that 𝛼(𝑥) and 𝛽(𝑥) are independent of time, gives

𝛼𝜕𝑡𝑃 + 𝜕𝑥𝑄 = 𝑎, (5)
𝛽𝜕𝑡𝑄 + 𝜕𝑥𝑃 = 𝑏. (6)

For a space-dependent material with piecewise continuous parameters, these equations are supplemented with boundary conditions
at all points where 𝛼(𝑥) and 𝛽(𝑥) undergo a finite jump. The boundary conditions are that 𝑃 (𝑥, 𝑡) and 𝑄(𝑥, 𝑡) are continuous at those
points (see Appendix A.1 for a review of reflection and transmission coefficients at a space boundary).

We obtain a second order wave equation for the field 𝑃 (𝑥, 𝑡) by eliminating 𝑄(𝑥, 𝑡) from Eqs. (5) and (6), according to
1
𝛽𝑐2

𝜕2𝑡 𝑃 − 𝜕𝑥
( 1
𝛽
𝜕𝑥𝑃

)

= 𝜕𝑡𝑎 − 𝜕𝑥
( 𝑏
𝛽

)

, (7)

with propagation velocity 𝑐(𝑥) given by

𝑐 = 1
√

𝛼𝛽
, (8)

with space-dependent parameters 𝛼(𝑥) and 𝛽(𝑥). We also define

𝜂 =
√

𝛽
𝛼
= 𝛽𝑐 = 1

𝛼𝑐
, (9)

here 𝜂 stands for impedance in the case of TE and acoustic waves (rows 1 and 3 of Table 1) or admittance in the case of TM and
H waves (rows 2 and 4 of Table 1).

We define the Green’s function 𝑥(𝑥, 𝑥0, 𝑡) as the response to an impulsive point source 𝛿(𝑥 − 𝑥0)𝛿(𝑡), hence
1
𝛽𝑐2

𝜕2𝑡 𝑥 − 𝜕𝑥
( 1
𝛽
𝜕𝑥𝑥

)

= 𝛿(𝑥 − 𝑥0)𝛿(𝑡), (10)

with causality condition

𝑥(𝑥, 𝑥0, 𝑡) = 0 for 𝑡 < 0. (11)

This condition implies that 𝑥(𝑥, 𝑥0, 𝑡) is outward propagating for |𝑥| → ∞. The subscript 𝑥 in 𝑥 denotes that this is the Green’s
function of a space-dependent material.

A simple representation for 𝑃 (𝑥, 𝑡) is obtained when 𝑃 and 𝑥 are defined in the same material and both are outward propagating
for |𝑥| → ∞. Whereas 𝑃 (𝑥, 𝑡) is the response to an arbitrary source distribution 𝜕𝑡𝑎(𝑥, 𝑡) (Eq. (7), assuming 𝑏 = 0), 𝑥(𝑥, 𝑥0, 𝑡) is
the response to an impulsive point source at an arbitrary location 𝑥0 at 𝑡 = 0 (Eq. (10)). Because Eqs. (7) and (10) are linear, a
representation for 𝑃 (𝑥, 𝑡) follows by applying Huygens’ superposition principle. Assuming 𝜕𝑡𝑎(𝑥, 𝑡) is causal, i.e., 𝜕𝑡𝑎(𝑥, 𝑡) = 0 for 𝑡 < 0,
his gives [31,32]

𝑃 (𝑥, 𝑡) = ∫

∞

−∞
d𝑥′ ∫

𝑡

0
𝑥(𝑥, 𝑥′, 𝑡 − 𝑡′)𝜕𝑡′𝑎(𝑥′, 𝑡′)d𝑡′. (12)

This representation is a special case of the more general representation for a space-dependent material, derived in Section 6.1.
We discuss a numerical example of an acoustic Green’s function for a piecewise homogeneous material, consisting of five

homogeneous slabs, each with a thickness of 40 mm. The propagation velocities are 1.0, 1.0, 2.0, 1.0 and 2.2 km/s, respectively.
The half-spaces to the left and the right of the space-dependent material are homogeneous, with the same velocities as the first
and last slab, respectively. The parameter 𝛽 is constant throughout. The source is located between the first and the second slab, at
𝑥0 = 40 mm. We use a recursive ‘‘layer-code’’ method [33] to model the response to this source. Fig. 1 shows an 𝑥, 𝑡-diagram of
𝑥(𝑥, 𝑥0, 𝑡), convolved in time with a temporal wavelet with a central frequency 𝜔0∕2𝜋 = 300 kHz. The causality condition of Eq. (11)
implies that the Green’s function is zero above the green line at 𝑡 = 0. The red arrows indicate the rightward propagating primary

ave and the blue arrows the leftward propagating primary reflections. Multiply scattered waves are also clearly visible. Note
hat the field is outward propagating for 𝑥 = 0 and 𝑥 = 200 mm (and hence for |𝑥| → ∞, since the left and right half-spaces are
omogeneous).

.2. Time-dependent material

We consider a time-dependent homogeneous material with parameters 𝛼(𝑡) and 𝛽(𝑡). Substituting the constitutive Eqs. (3) and
4) into the basic Eqs. (1) and (2), using the fact that 𝛼(𝑡) and 𝛽(𝑡) are independent of space, gives

𝜕𝑡𝑈 + 1
𝛽
𝜕𝑥𝑉 = 𝑎, (13)

𝜕 𝑉 + 1 𝜕 𝑈 = 𝑏. (14)
3

𝑡 𝛼 𝑥
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Fig. 1. Green’s function 𝑥(𝑥, 𝑥0 , 𝑡) (convolved with a temporal wavelet) for a piecewise homogeneous space-dependent material.

For a time-dependent material with piecewise continuous parameters, these equations are supplemented with boundary conditions
at all time instants where 𝛼(𝑡) and 𝛽(𝑡) undergo a finite jump. The boundary conditions are that 𝑈 (𝑥, 𝑡) and 𝑉 (𝑥, 𝑡) are continuous
at those time instants (see Appendix A.2 for a review of reflection and transmission coefficients at a time boundary).

We obtain a second order wave equation for the field 𝑈 (𝑥, 𝑡) by eliminating 𝑉 (𝑥, 𝑡) from Eqs. (13) and (14), according to

𝜕𝑡(𝛽𝜕𝑡𝑈 ) − 𝛽𝑐2𝜕2𝑥𝑈 = 𝜕𝑡(𝛽𝑎) − 𝜕𝑥𝑏, (15)

with propagation velocity 𝑐(𝑡) again given by Eq. (8), this time with time-dependent parameters 𝛼(𝑡) and 𝛽(𝑡).
Note that Eqs. (5), (6) and (7) can be transformed into Eqs. (14), (13) and (15) and vice-versa, by the following mapping

{𝑃 ,𝑄, 𝑥, 𝑡, 𝛼, 𝛽, 𝑎, 𝑏, 𝑐} ↔ {𝑈, 𝑉 , 𝑡, 𝑥, 𝛼−1, 𝛽−1, 𝑏, 𝑎, 𝑐−1}. (16)

We define the Green’s function 𝑡(𝑥, 𝑡, 𝑡0) as the response to an impulsive point source 𝛿(𝑥)𝛿(𝑡 − 𝑡0), hence

𝜕𝑡(𝛽𝜕𝑡𝑡) − 𝛽𝑐2𝜕2𝑥𝑡 = 𝛿(𝑥)𝛿(𝑡 − 𝑡0), (17)

with causality condition

𝑡(𝑥, 𝑡, 𝑡0) = 0 for 𝑡 < 𝑡0. (18)

This condition implies that 𝑡(𝑥, 𝑡, 𝑡0) is outward propagating for |𝑥| → ∞. The subscript 𝑡 in 𝑡 denotes that this is the Green’s
function of a time-dependent material.

A simple representation for 𝑈 (𝑥, 𝑡) is obtained when 𝑈 and 𝑡 are defined in the same material and both are outward propagating
for |𝑥| → ∞. Whereas 𝑈 (𝑥, 𝑡) is the response to a source distribution −𝜕𝑥𝑏(𝑥, 𝑡) (Eq. (15), assuming 𝑎 = 0), 𝑡(𝑥, 𝑡, 𝑡0) is the response
to an impulsive point source at 𝑥 = 0 at an arbitrary time 𝑡0 (Eq. (17)). Because Eqs. (15) and (17) are linear, a representation for
𝑈 (𝑥, 𝑡) follows by applying Huygens’ superposition principle. Assuming 𝜕𝑥𝑏(𝑥, 𝑡) is causal, i.e., 𝜕𝑥𝑏(𝑥, 𝑡) = 0 for 𝑡 < 0, this gives

𝑈 (𝑥, 𝑡) = −∫

∞

−∞
d𝑥′ ∫

𝑡

0
𝑡(𝑥 − 𝑥′, 𝑡, 𝑡′)𝜕𝑥′𝑏(𝑥′, 𝑡′)d𝑡′. (19)

Using Eq. (3), a representation for 𝑃 (𝑥, 𝑡) follows from 𝑃 (𝑥, 𝑡) = 1
𝛼(𝑡)𝑈 (𝑥, 𝑡), with 𝑈 (𝑥, 𝑡) given by Eq. (19). The representation

of Eq. (19) is a special case of the more general representation for a time-dependent material, derived in Section 6.2.
We discuss a numerical example of an acoustic Green’s function for a piecewise constant material, consisting of five time-

independent slabs. Following the mapping of Eq. (16), we ‘‘construct’’ this material from the material used for the numerical example
in Section 3.1, with time and space interchanged and with the reciprocal propagation velocities. For convenience, we define 1 km
as the unit of distance and 1 km/s as the unit of velocity. With this definition, the reciprocal propagation velocities are 1.0, 1.0, 0.5,
1.0 and 0.455 km/s, respectively. The half-times before and after the time-dependent material are constant, with the same velocities
as the first and last slab, respectively. The parameter 𝛽 is again constant throughout. Note that 1 mm, which is actually 1 μkm, maps
to 1 μs and vice-versa. Hence, the slab thickness of 40 mm is mapped to a slab duration of 40 μs. The source is located between
the first and second slab, at 𝑡0 = 40 μs. Fig. 2a shows an 𝑥, 𝑡-diagram of 𝑡(𝑥, 𝑡, 𝑡0), convolved in space with a spatial wavelet with
a central wavenumber 𝑘0∕2𝜋 = 300 ∗ 103 km−1. The causality condition of Eq. (18) implies that the Green’s function is zero left of
the green line at 𝑡 = 𝑡0. The red arrows indicate the rightward propagating primary wave (i.e., in the +𝑥 direction) and the blue
arrows the leftward propagating primary reflections (in the −𝑥 direction). Multiply scattered waves are also clearly visible.

Since the causality conditions (Eqs. (11) and (18)) do not follow the mapping of Eq. (16), the 𝑥, 𝑡-diagrams of the Green’s
functions for space-dependent and time-dependent materials (Figs. 1 and 2a) are very different. For the specially designed case
4
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Fig. 2. Green’s function 𝑡(𝑥, 𝑡, 𝑡0) (convolved with a spatial wavelet) for (a) a piecewise constant and (b) a sinusoidally modulated time-dependent material.

considered here (with reciprocal velocities), only the rightward propagating primary waves (indicated by the red arrows) exhibit
interchangeable kinematical behaviour between the two cases (but they have different amplitudes). All other events are different
in these figures. Whereas the multiply scattered waves in 𝑥(𝑥, 𝑥0, 𝑡) in Fig. 1 consist of ongoing reverberations between space
boundaries, the multiply scattered waves in 𝑡(𝑥, 𝑡, 𝑡0) in Fig. 2a are the result of ‘‘forward-in-time’’ reflections and transmissions
at time boundaries (see also Fig. A.5 in the Appendix); their total number is finite. In Section 9 we discuss propagator matrices
for space-dependent and time-dependent materials and show that these follow the mapping of Eq. (16) for all events. Moreover, in
Section 9.2 we show how 𝑡(𝑥, 𝑡, 𝑡0) is related to one of the elements of the propagator matrix for a time-dependent material.

Finally, Fig. 2b is an example of an acoustic Green’s function 𝑡(𝑥, 𝑡, 𝑡0) (convolved with the same spatial wavelet as in Fig. 2a)
of a sinusoidally modulated time-dependent material, with propagation velocity 𝑐(𝑡) = 1 + 1

10 sin(𝜋𝑡∕2) km/s (with 𝑡 in μs, ranging
from 𝑡0 = 0μs to 𝑡𝑁 = 100 μs) and constant 𝛽. For the modelling we divided the velocity profile into 4000 constant velocity slabs
with a duration of 0.025 μs each. Note the complex scattering behaviour and the increasing amplitudes of the scattered events with
time. To compensate for the increasing amplitudes, Ref. [12] introduces a dissipative time-dependent material.

4. Propagation invariants

4.1. Space-dependent material

We review propagation invariants for a space-dependent material with parameters 𝛼(𝑥) and 𝛽(𝑥). Given a space- and time-
dependent function 𝑃 (𝑥, 𝑡), we define its temporal Fourier transform as

𝑃 (𝑥, 𝜔) =
∞
𝑃 (𝑥, 𝑡) exp{𝑖𝜔𝑡}d𝑡, (20)
5

∫−∞
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with 𝜔 denoting the angular frequency and 𝑖 the imaginary unit. With this definition, derivatives with respect to time transform to
ultiplications with −𝑖𝜔. Hence, Eqs. (5) and (6) transform to

−𝑖𝜔𝛼𝑃 + 𝜕𝑥�̂� = �̂�, (21)
−𝑖𝜔𝛽�̂� + 𝜕𝑥𝑃 = �̂�. (22)

In the following we consider two independent states, indicated by subscripts 𝐴 and 𝐵, obeying Eqs. (21) and (22). In the most
general case, sources, material parameters and wave fields may be different in the two states. We derive relations between these
states. First we consider the quantity 𝜕𝑥{𝑃𝐴�̂�𝐵 − �̂�𝐴𝑃𝐵}. Applying the product rule for differentiation, using Eqs. (21) and (22) for
states 𝐴 and 𝐵 to get rid of the derivatives, we obtain

𝜕𝑥{𝑃𝐴�̂�𝐵 − �̂�𝐴𝑃𝐵} = 𝑖𝜔(𝛼𝐵 − 𝛼𝐴)𝑃𝐴𝑃𝐵 − 𝑖𝜔(𝛽𝐵 − 𝛽𝐴)�̂�𝐴�̂�𝐵

− �̂�𝐴𝑃𝐵 + �̂�𝐴�̂�𝐵 + 𝑃𝐴�̂�𝐵 − �̂�𝐴�̂�𝐵 . (23)

This is the local reciprocity theorem of the time-convolution type [17,34], in which products like 𝑃𝐴�̂�𝐵 correspond to convolutions
along the time coordinate in the 𝑥, 𝑡-domain. Next, we consider the quantity 𝜕𝑥{𝑃 ∗

𝐴�̂�𝐵 + �̂�∗
𝐴𝑃𝐵} (where the asterisk denotes complex

conjugation) and apply the same operations, yielding

𝜕𝑥{𝑃 ∗
𝐴�̂�𝐵 + �̂�∗

𝐴𝑃𝐵} = 𝑖𝜔(𝛼𝐵 − 𝛼𝐴)𝑃 ∗
𝐴𝑃𝐵 + 𝑖𝜔(𝛽𝐵 − 𝛽𝐴)�̂�∗

𝐴�̂�𝐵

+ �̂�∗𝐴𝑃𝐵 + �̂�∗𝐴�̂�𝐵 + 𝑃 ∗
𝐴�̂�𝐵 + �̂�∗

𝐴�̂�𝐵 . (24)

This is the local reciprocity theorem of the time-correlation type [17,35], in which products like 𝑃 ∗
𝐴�̂�𝐵 correspond to correlations

along the time coordinate in the 𝑥, 𝑡-domain. In Section 5.1 we will use Eqs. (23) and (24) as the basis for deriving global reciprocity
theorems of the time-convolution and time-correlation type. Here we use these equations to derive propagation invariants for a
space-dependent material. To this end we take identical material parameters in states 𝐴 and 𝐵 and we assume that there are no
sources. With this, Eqs. (23) and (24) simplify to

𝜕𝑥{𝑃𝐴�̂�𝐵 − �̂�𝐴𝑃𝐵} = 0, (25)
𝜕𝑥{𝑃 ∗

𝐴�̂�𝐵 + �̂�∗
𝐴𝑃𝐵} = 0, (26)

hence, 𝑃𝐴�̂�𝐵 − �̂�𝐴𝑃𝐵 and 𝑃 ∗
𝐴�̂�𝐵 + �̂�∗

𝐴𝑃𝐵 are space-propagation invariants, i.e., they are independent of the space coordinate 𝑥.
This holds for continuously varying material parameters 𝛼(𝑥) and 𝛽(𝑥). For a material with piecewise continuous parameters, the
boundary conditions state that 𝑃 and �̂� are continuous at all points where 𝛼(𝑥) and 𝛽(𝑥) are discontinuous. This implies that the
space-propagation invariants also hold for a space-dependent material with piecewise continuous parameters. Propagation invariants
find applications in the analysis of symmetry properties of reflection and transmission responses and have been used for the design
of efficient numerical modelling schemes [36–39].

For the special case that the wave fields in states 𝐴 and 𝐵 are identical, we may drop the subscripts 𝐴 and 𝐵. The first space-
propagation invariant then vanishes and is no longer useful. The second space-propagation invariant simplifies to 2ℜ{𝑃 ∗�̂�}, where
ℜ denotes the real part. We define ȷ̂(𝑥, 𝜔) = 1

2ℜ{𝑃 ∗�̂�} as the net power-flux density in the 𝑥-direction in the 𝑥, 𝜔-domain. Hence, the
net power-flux density is conserved (i.e., it is independent of 𝑥) in a space-dependent material with piecewise continuous parameters.

4.2. Time-dependent material

We derive propagation invariants for a time-dependent material with parameters 𝛼(𝑡) and 𝛽(𝑡). Given a space- and time-dependent
unction 𝑈 (𝑥, 𝑡), we define its spatial Fourier transform as

�̌� (𝑘, 𝑡) = ∫

∞

−∞
𝑈 (𝑥, 𝑡) exp{−𝑖𝑘𝑥}d𝑥, (27)

ith 𝑘 denoting the wavenumber. Following common conventions, we use opposite signs in the exponentials in the temporal and
patial Fourier transforms (Eqs. (20) and (27)). With this definition, derivatives with respect to space transform to multiplications
ith 𝑖𝑘. Hence, Eqs. (13) and (14) transform to

𝜕𝑡�̌� + 𝑖𝑘
𝛽
𝑉 = �̌�, (28)

𝜕𝑡𝑉 + 𝑖𝑘
𝛼
�̌� = �̌�. (29)

Note that Eqs. (21) and (22) can be transformed into Eqs. (29) and (28) and vice-versa, by the following modified mapping

{𝑃 , �̂�, 𝑥, 𝜔, 𝛼, 𝛽, �̂�, �̂�, 𝑐} ↔ {�̌� , 𝑉 , 𝑡,−𝑘, 𝛼−1, 𝛽−1, �̌�, �̌�, 𝑐−1}. (30)

In the following we consider two independent states, indicated by subscripts 𝐴 and 𝐵, obeying Eqs. (28) and (29). In the most
general case, sources, material parameters and wave fields may be different in the two states. Applying the mapping of Eq. (30)
to Eqs. (23) and (24) yields the local reciprocity theorems of the space-convolution and space-correlation type, in which products
like �̌�𝐴𝑉𝐵 and �̌�∗

𝐴𝑉𝐵 correspond to convolutions and correlations, respectively, along the space coordinate in the 𝑥, 𝑡-domain. In
6

Section 5.2 we derive global reciprocity theorems of the space-convolution and space-correlation type. Here we derive propagation
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invariants for a time-dependent material. To this end we take identical material parameters in states 𝐴 and 𝐵 and we assume that
there are no sources. Applying the mapping of Eq. (30) to Eqs. (25) and (26) yields

𝜕𝑡{�̌�𝐴𝑉𝐵 − 𝑉𝐴�̌�𝐵} = 0, (31)
𝜕𝑡{�̌�∗

𝐴𝑉𝐵 + 𝑉 ∗
𝐴 �̌�𝐵} = 0, (32)

hence, �̌�𝐴𝑉𝐵 − 𝑉𝐴�̌�𝐵 and �̌�∗
𝐴𝑉𝐵 + 𝑉 ∗

𝐴 �̌�𝐵 are time-propagation invariants, i.e., they are independent of the time coordinate 𝑡. This
holds for continuously varying material parameters 𝛼(𝑡) and 𝛽(𝑡). For a material with piecewise continuous parameters, the boundary
conditions state that �̌� and 𝑉 are continuous at all time instants where 𝛼(𝑡) and 𝛽(𝑡) are discontinuous. This implies that the
time-propagation invariants also hold for a time-dependent material with piecewise continuous parameters.

For the special case that the wave fields in states 𝐴 and 𝐵 are identical, we may drop the subscripts 𝐴 and 𝐵. The first time-
propagation invariant then vanishes and is no longer useful. The second time-propagation invariant simplifies to 2ℜ{�̌�∗𝑉 }. We
define �̌�(𝑘, 𝑡) = 1

2ℜ{�̌�∗𝑉 } as the net field-momentum density [21,40] in the 𝑥-direction in the 𝑘, 𝑡-domain (to be distinguished
from the mechanical momentum densities 𝑚𝑥 and 𝑚𝑦 in Table 1). Hence, the net field-momentum density is conserved (i.e., it is
independent of 𝑡) in a time-dependent material with piecewise continuous parameters.

Using Eqs. (3), (4) and (8), we obtain for the net power-flux density ȷ̌(𝑘, 𝑡) in the 𝑥-direction in the 𝑘, 𝑡-domain, defined as
1
2ℜ{𝑃 ∗�̌�},

ȷ̌(𝑘, 𝑡) = 𝑐2(𝑡)�̌�(𝑘, 𝑡). (33)

ence, whereas the net field-momentum density �̌�(𝑘, 𝑡) is conserved, the net power-flux density ȷ̌(𝑘, 𝑡) is not conserved (i.e., it is
ependent on 𝑡) in a time-dependent material. This is explained as the result of energy being added to or extracted from the wave
ield by the external source that modulates the material parameters [2,13,15].

. Reciprocity theorems

.1. Space-dependent material

We review general reciprocity theorems for a space-dependent material with piecewise continuous parameters 𝛼(𝑥) and 𝛽(𝑥).
ntegrating both sides of Eqs. (23) and (24) from 𝑥𝑏 to 𝑥𝑒 (with subscripts 𝑏 and 𝑒 standing for ‘‘begin’’ and ‘‘end’’), taking into
ccount that 𝑃 and �̂� are continuous at points where 𝛼(𝑥) and 𝛽(𝑥) are discontinuous, yields

{𝑃𝐴�̂�𝐵 − �̂�𝐴𝑃𝐵}
|

|

|

𝑥𝑒

𝑥𝑏
= ∫

𝑥𝑒

𝑥𝑏

(

𝑖𝜔(𝛼𝐵 − 𝛼𝐴)𝑃𝐴𝑃𝐵 − 𝑖𝜔(𝛽𝐵 − 𝛽𝐴)�̂�𝐴�̂�𝐵

−�̂�𝐴𝑃𝐵 + �̂�𝐴�̂�𝐵 + 𝑃𝐴�̂�𝐵 − �̂�𝐴�̂�𝐵
)

d𝑥, (34)

{𝑃 ∗
𝐴�̂�𝐵 + �̂�∗

𝐴𝑃𝐵}
|

|

|

𝑥𝑒

𝑥𝑏
= ∫

𝑥𝑒

𝑥𝑏

(

𝑖𝜔(𝛼𝐵 − 𝛼𝐴)𝑃 ∗
𝐴𝑃𝐵 + 𝑖𝜔(𝛽𝐵 − 𝛽𝐴)�̂�∗

𝐴�̂�𝐵

+�̂�∗𝐴𝑃𝐵 + �̂�∗𝐴�̂�𝐵 + 𝑃 ∗
𝐴�̂�𝐵 + �̂�∗

𝐴�̂�𝐵
)

d𝑥. (35)

These are the global reciprocity theorems of the time-convolution and time-correlation type, respectively, for a space-dependent
material [17,34,35,41,42]. We use Eq. (34) in Section 6.1 to derive a general wave field representation and in Section 7.1 we use
Eq. (35) to derive an expression for Green’s function retrieval, both for space-dependent materials. Here we discuss two special cases
of Eqs. (34) and (35).

First we derive an expression for source–receiver reciprocity of the Green’s function of a space-dependent material from Eq. (34).
To this end we take identical material parameters in both states, i.e., 𝛼𝐴 = 𝛼𝐵 = 𝛼 and 𝛽𝐴 = 𝛽𝐵 = 𝛽 and we assume that the material
s homogeneous for 𝑥 ≤ 𝑥𝑏 and for 𝑥 ≥ 𝑥𝑒. For state 𝐴 we take a Green’s state with a unit source at 𝑥𝐴 between 𝑥𝑏 and 𝑥𝑒, hence,

we substitute −𝑖𝜔�̂�𝐴(𝑥, 𝜔) = 𝛿(𝑥 − 𝑥𝐴), �̂�𝐴(𝑥, 𝜔) = 0, 𝑃𝐴(𝑥, 𝜔) = ̂𝑥(𝑥, 𝑥𝐴, 𝜔) and, using Eq. (22), �̂�𝐴(𝑥, 𝜔) =
1

𝑖𝜔𝛽(𝑥) 𝜕𝑥̂𝑥(𝑥, 𝑥𝐴, 𝜔). For
tate 𝐵 we take a Green’s state with a unit source at 𝑥𝐵 between 𝑥𝑏 and 𝑥𝑒, and we substitute similar expressions. At 𝑥𝑏 and 𝑥𝑒 the
ield is leftward and rightward propagating, respectively (see for example Fig. 1, with 𝑥𝑏 = 0 and 𝑥𝑒 = 200 mm), i.e., proportional
o exp(−𝑖𝜔𝑥∕𝑐(𝑥𝑏)) and exp(𝑖𝜔𝑥∕𝑐(𝑥𝑒)), respectively. Hence

�̂�𝐴(𝑥𝑏, 𝜔) = 1
𝑖𝜔𝛽(𝑥𝑏)

𝜕𝑥̂𝑥(𝑥, 𝑥𝐴, 𝜔)|𝑥=𝑥𝑏 = − 1
𝜂(𝑥𝑏)

̂𝑥(𝑥𝑏, 𝑥𝐴, 𝜔), (36)

�̂�𝐴(𝑥𝑒, 𝜔) = 1
𝑖𝜔𝛽(𝑥𝑒)

𝜕𝑥̂𝑥(𝑥, 𝑥𝐴, 𝜔)|𝑥=𝑥𝑒 = + 1
𝜂(𝑥𝑒)

̂𝑥(𝑥𝑒, 𝑥𝐴, 𝜔), (37)

with 𝜂 defined in Eq. (9), and similar expressions for state 𝐵. With this, the left-hand side of Eq. (34) vanishes. From the remaining
terms on the right-hand side we obtain

̂𝑥(𝑥𝐵 , 𝑥𝐴, 𝜔) = ̂𝑥(𝑥𝐴, 𝑥𝐵 , 𝜔), (38)

or, in the space–time domain,

 (𝑥 , 𝑥 , 𝑡) =  (𝑥 , 𝑥 , 𝑡), (39)
7

𝑥 𝐵 𝐴 𝑥 𝐴 𝐵
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which formulates the classical source–receiver reciprocity relation for a space-dependent material [17,31,43]. These expressions
remain valid for arbitrary 𝑥𝐴 and 𝑥𝐵 when taking 𝑥𝑏 → −∞ and 𝑥𝑒 → ∞.

Second, we derive a power balance for a space-dependent material from Eq. (35). Taking identical states 𝐴 and 𝐵 (hence, identical
sources, material parameters and wave fields), we drop the subscripts 𝐴 and 𝐵. Eq. (35) thus yields [17,34]

ȷ̂(𝑥, 𝜔)||
|

𝑥𝑒

𝑥𝑏
= 1

2
ℜ∫

𝑥𝑒

𝑥𝑏

(

�̂�∗𝑃 + �̂�∗�̂�
)

d𝑥. (40)

This equation states that the power generated by sources in the region between 𝑥𝑏 and 𝑥𝑒 (the right-hand side) is equal to the power
leaving this region (the left-hand side). Hence, this equation formulates the power balance for a space-dependent material.

5.2. Time-dependent material

We derive general reciprocity theorems for a time-dependent material with piecewise continuous parameters 𝛼(𝑡) and 𝛽(𝑡).
pplying the mapping of Eq. (30) to Eqs. (34) and (35) yields

{�̌�𝐴𝑉𝐵 − 𝑉𝐴�̌�𝐵}
|

|

|

𝑡𝑒

𝑡𝑏
= ∫

𝑡𝑒

𝑡𝑏

(

−𝑖𝑘(𝛼−1𝐵 − 𝛼−1𝐴 )�̌�𝐴�̌�𝐵 + 𝑖𝑘(𝛽−1𝐵 − 𝛽−1𝐴 )𝑉𝐴𝑉𝐵

−�̌�𝐴�̌�𝐵 + �̌�𝐴𝑉𝐵 + �̌�𝐴�̌�𝐵 − 𝑉𝐴�̌�𝐵
)

d𝑡, (41)

{�̌�∗
𝐴𝑉𝐵 + 𝑉 ∗

𝐴 �̌�𝐵}
|

|

|

𝑡𝑒

𝑡𝑏
= ∫

𝑡𝑒

𝑡𝑏

(

−𝑖𝑘(𝛼−1𝐵 − 𝛼−1𝐴 )�̌�∗
𝐴�̌�𝐵 − 𝑖𝑘(𝛽−1𝐵 − 𝛽−1𝐴 )𝑉 ∗

𝐴𝑉𝐵

+�̌�∗𝐴�̌�𝐵 + �̌�∗𝐴𝑉𝐵 + �̌�∗
𝐴�̌�𝐵 + 𝑉 ∗

𝐴 �̌�𝐵
)

d𝑡. (42)

These are the global reciprocity theorems of the space-convolution and space-correlation type, respectively, for a time-dependent
material. We use Eq. (41) in Section 6.2 to derive a general wave field representation and in Section 7.2 we use Eq. (42) to derive
an expression for Green’s function retrieval, both for time-dependent materials. Here we discuss two special cases of Eqs. (41) and
(42).

First we derive an expression for source–receiver reciprocity of the Green’s function of a time-dependent material from Eq. (41).
Since the causality conditions for the Green’s functions do not obey the mapping of Eq. (16), the derivation of source–receiver
reciprocity is different from that in Section 5.1. In particular, for the Green’s function of a time-dependent material there is not an
equivalent of leftward and rightward propagating waves at 𝑡𝑏 and 𝑡𝑒, respectively (see for example Fig. 2a, with 𝑡𝑏 = 0 and 𝑡𝑒 = 200 μs).

e take again 𝛼𝐴 = 𝛼𝐵 = 𝛼 and 𝛽𝐴 = 𝛽𝐵 = 𝛽. For state 𝐴 we take a Green’s state with an impulse at 𝑡𝐴 between 𝑡𝑏 and 𝑡𝑒, according
o −𝑖𝑘�̌�𝐴(𝑘, 𝑡) = 𝛿(𝑡 − 𝑡𝐴) and �̌�𝐴(𝑘, 𝑡) = 0. However, we define �̌�𝐴(𝑘, 𝑡) = ̌𝑎𝑡 (𝑘, 𝑡, 𝑡𝐴), where ̌𝑎𝑡 (𝑘, 𝑡, 𝑡𝐴) is the acausal Green’s function,
.e., ̌𝑎𝑡 (𝑘, 𝑡, 𝑡𝐴) = 0 for 𝑡 > 𝑡𝐴 (hence, the impulse at 𝑡𝐴 is actually a sink). Using Eq. (28) we have 𝑉𝐴(𝑘, 𝑡) = − 𝛽(𝑡)

𝑖𝑘 𝜕𝑡̌𝑎𝑡 (𝑘, 𝑡, 𝑡𝐴).
or state 𝐵 we take a Green’s state with an impulsive source at 𝑡𝐵 between 𝑡𝑏 and 𝑡𝑒, according to −𝑖𝑘�̌�𝐵(𝑘, 𝑡) = 𝛿(𝑡 − 𝑡𝐵) and
̌𝐵(𝑘, 𝑡) = 0. We define �̌�𝐵(𝑘, 𝑡) = ̌𝑡(𝑘, 𝑡, 𝑡𝐵), where ̌𝑡(𝑘, 𝑡, 𝑡𝐵) is the causal Green’s function, i.e., ̌𝑡(𝑘, 𝑡, 𝑡𝐵) = 0 for 𝑡 < 𝑡𝐵 . Moreover,
̌𝐵(𝑘, 𝑡) = − 𝛽(𝑡)

𝑖𝑘 𝜕𝑡̌𝑡(𝑘, 𝑡, 𝑡𝐵). With these definitions, the acausal Green’s function is zero for 𝑡 = 𝑡𝑒 and the causal Green’s function is
zero for 𝑡 = 𝑡𝑏 (the latter is seen for example in Fig. 2a, with 𝑡𝑏 = 0). With this, the left-hand side of Eq. (41) vanishes. From the
emaining terms on the right-hand side we obtain

̌𝑎𝑡 (𝑘, 𝑡𝐵 , 𝑡𝐴) = ̌𝑡(𝑘, 𝑡𝐴, 𝑡𝐵), (43)

or, in the space–time domain,

𝑎𝑡 (𝑥, 𝑡𝐵 , 𝑡𝐴) = 𝑡(𝑥, 𝑡𝐴, 𝑡𝐵), (44)

which formulates source–receiver reciprocity for a time-dependent material. These expressions remain valid for arbitrary 𝑡𝐴 and 𝑡𝐵
when taking 𝑡𝑏 → −∞ and 𝑡𝑒 → ∞. Note that for 𝑡𝐴 < 𝑡𝐵 these expressions reduce to the trivial relation 0 = 0.

Second, we derive a field-momentum balance for a time-dependent material from Eq. (42). Taking identical states 𝐴 and 𝐵, we
rop the subscripts 𝐴 and 𝐵. Eq. (42) thus yields

�̌�(𝑘, 𝑡)||
|

𝑡𝑒

𝑡𝑏
= 1

2
ℜ∫

𝑡𝑒

𝑡𝑏

(

�̌�∗�̌� + �̌�∗𝑉
)

d𝑡. (45)

This equation states that the field momentum generated by sources in the interval between 𝑡𝑏 and 𝑡𝑒 (the right-hand side) is equal
to the field momentum leaving this interval (the left-hand side). Hence, this equation formulates the field-momentum balance for a
time-dependent material.

6. Wave field representations

6.1. Space-dependent material

We review a general wave field representation for a space-dependent material with piecewise continuous parameters 𝛼(𝑥) and
8

𝛽(𝑥). Our starting point is the global reciprocity theorem of the time-convolution type for a space-dependent material, formulated
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by Eq. (34). For state 𝐴 we take the Green’s state, hence, we substitute −𝑖𝜔�̂�𝐴(𝑥, 𝜔) = 𝛿(𝑥 − 𝑥𝐴), �̂�𝐴(𝑥, 𝜔) = 0, 𝑃𝐴(𝑥, 𝜔) = ̂𝑥(𝑥, 𝑥𝐴, 𝜔)
nd �̂�𝐴(𝑥, 𝜔) =

1
𝑖𝜔𝛽𝐴(𝑥)

𝜕𝑥̂𝑥(𝑥, 𝑥𝐴, 𝜔). For state 𝐵 we take the actual field and drop the subscripts 𝐵. Substitution into Eq. (34), using
reciprocity relation (38), this yields the following classical representation

𝜒(𝑥𝐴)𝑃 (𝑥𝐴, 𝜔) = ∫

𝑥𝑒

𝑥𝑏

(

−𝑖𝜔̂𝑥(𝑥𝐴, 𝑥, 𝜔)�̂�(𝑥, 𝜔) +
1

𝛽𝐴(𝑥)
{𝜕𝑥̂𝑥(𝑥𝐴, 𝑥, 𝜔)}�̂�(𝑥, 𝜔)

)

d𝑥

+∫

𝑥𝑒

𝑥𝑏

(

𝜔2̂𝑥(𝑥𝐴, 𝑥, 𝜔)𝛥𝛼(𝑥)𝑃 (𝑥, 𝜔) +
𝑖𝜔

𝛽𝐴(𝑥)
{𝜕𝑥̂𝑥(𝑥𝐴, 𝑥, 𝜔)}𝛥𝛽(𝑥)�̂�(𝑥, 𝜔)

)

d𝑥

+
(

𝑖𝜔̂𝑥(𝑥𝐴, 𝑥, 𝜔)�̂�(𝑥, 𝜔) − 1
𝛽𝐴(𝑥)

{𝜕𝑥̂𝑥(𝑥𝐴, 𝑥, 𝜔)}𝑃 (𝑥, 𝜔)
)

|

|

|

𝑥𝑒

𝑥𝑏
, (46)

with

𝛥𝛼(𝑥) = 𝛼(𝑥) − 𝛼𝐴(𝑥), (47)
𝛥𝛽(𝑥) = 𝛽(𝑥) − 𝛽𝐴(𝑥), (48)

and where 𝜒(𝑥𝐴) is the characteristic function, defined as

𝜒(𝑥𝐴) =

⎧

⎪

⎨

⎪

⎩

1 for 𝑥𝑏 < 𝑥𝐴 < 𝑥𝑒,
1
2 for 𝑥𝐴 = 𝑥𝑏 or 𝑥𝐴 = 𝑥𝑒,
0 for 𝑥𝐴 < 𝑥𝑏 or 𝑥𝐴 > 𝑥𝑒.

(49)

q. (46) is a generalisation of Eq. (12), transformed to the frequency domain. It expresses the wave field at any point 𝑥𝐴 between
𝑏 and 𝑥𝑒 (including these points). The first term on the right-hand side accounts for the contribution of the sources between 𝑥𝑏
nd 𝑥𝑒, the second term describes scattering due to the material contrast functions 𝛥𝛼(𝑥) and 𝛥𝛽(𝑥), and the last term describes
ontributions from the fields at 𝑥𝑏 and 𝑥𝑒. The representation of Eq. (46) finds applications in the analysis of wave scattering
roblems in space-dependent materials [17,31,32,44,45].

.2. Time-dependent material

We derive a general wave field representation for a time-dependent material with piecewise continuous parameters 𝛼(𝑡) and
(𝑡). Our starting point is the global reciprocity theorem of the space-convolution type for a time-dependent material, formulated
y Eq. (41). In anticipation of using the reciprocity relation (43), for state 𝐴 we take the acausal Green’s state, hence, we substitute
𝑖𝑘�̌�𝐴(𝑘, 𝑡) = 𝛿(𝑡− 𝑡𝐴), �̌�𝐴(𝑘, 𝑡) = 0, �̌�𝐴(𝑘, 𝑡) = ̌𝑎𝑡 (𝑘, 𝑡, 𝑡𝐴) and 𝑉𝐴(𝑘, 𝑡) = − 𝛽𝐴(𝑡)

𝑖𝑘 𝜕𝑡̌𝑎𝑡 (𝑘, 𝑡, 𝑡𝐴). For state 𝐵 we take the actual field and drop
he subscripts 𝐵. Substitution into Eq. (41), using reciprocity relation (43), this yields the following representation

𝜒(𝑡𝐴)�̌� (𝑘, 𝑡𝐴) = ∫

𝑡𝑒

𝑡𝑏

(

−𝑖𝑘̌𝑡(𝑘, 𝑡𝐴, 𝑡)�̌�(𝑘, 𝑡) − 𝛽𝐴(𝑡){𝜕𝑡̌𝑡(𝑘, 𝑡𝐴, 𝑡)}�̌�(𝑘, 𝑡)
)

d𝑡

+∫

𝑡𝑒

𝑡𝑏

(

−𝑘2̌𝑡(𝑘, 𝑡𝐴, 𝑡)𝛥𝛼−1(𝑡)�̌� (𝑘, 𝑡) + 𝑖𝑘𝛽𝐴(𝑡){𝜕𝑡̌𝑡(𝑘, 𝑡𝐴, 𝑡)}𝛥𝛽−1(𝑡)𝑉 (𝑘, 𝑡)
)

d𝑡

+
(

𝑖𝑘̌𝑡(𝑘, 𝑡𝐴, 𝑡)𝑉 (𝑘, 𝑡) + 𝛽𝐴(𝑡){𝜕𝑡̌𝑡(𝑘, 𝑡𝐴, 𝑡)}�̌� (𝑘, 𝑡)
)

|

|

|

𝑡𝑒

𝑡𝑏
, (50)

ith

𝛥𝛼−1(𝑡) = 𝛼−1(𝑡) − 𝛼−1𝐴 (𝑡), (51)

𝛥𝛽−1(𝑡) = 𝛽−1(𝑡) − 𝛽−1𝐴 (𝑡), (52)

nd where 𝜒(𝑡𝐴) is the characteristic function, defined as

𝜒(𝑡𝐴) =

⎧

⎪

⎨

⎪

⎩

1 for 𝑡𝑏 < 𝑡𝐴 < 𝑡𝑒,
1
2 for 𝑡𝐴 = 𝑡𝑏 or 𝑡𝐴 = 𝑡𝑒,
0 for 𝑡𝐴 < 𝑡𝑏 or 𝑡𝐴 > 𝑡𝑒.

(53)

q. (50) is a generalisation of Eq. (19), transformed to the wavenumber domain. It expresses the wave field at any time 𝑡𝐴 between
𝑏 and 𝑡𝑒 (including these time instants). The first term on the right-hand side accounts for the contribution of the sources between
𝑏 and 𝑡𝑒, the second term describes scattering due to the material contrast functions 𝛥𝛼−1(𝑡) and 𝛥𝛽−1(𝑡), and the last term describes
ontributions from the fields at 𝑡𝑏 and 𝑡𝑒 (with the contribution from the field at 𝑡𝑒 being zero when 𝑡𝐴 < 𝑡𝑒). The representation
f Eq. (50) finds potential applications in the analysis of wave scattering problems in time-dependent materials.

. Green’s function retrieval

.1. Space-dependent material

Under specific circumstances, the correlation of passive wave measurements at two receivers yields the response to a virtual
9

mpulsive source at the position of one of these receivers, observed by the other receiver (i.e., the Green’s function between the



Wave Motion 130 (2024) 103374K. Wapenaar et al.

e
t
i
s
t
s

w

a

𝛽
a
a
s

A

T
a
𝑡
(
o
𝑥
s
t

8

8

m

receivers). This concept has found numerous applications in ultrasonics [46–48], seismology [49–56], ocean acoustics [57,58],
infrasound [59,60], medical imaging [61,62] and engineering [63,64].

Following the approach of Ref. [65], we use the global reciprocity theorem of the time-correlation type (Eq. (35)) to derive an
xpression for Green’s function retrieval for a space-dependent material with piecewise continuous parameters 𝛼(𝑥) and 𝛽(𝑥). To
his end, we take identical material parameters in both states, i.e., 𝛼𝐴 = 𝛼𝐵 = 𝛼 and 𝛽𝐴 = 𝛽𝐵 = 𝛽 and we assume that the material
s homogeneous for 𝑥 ≤ 𝑥𝑏 and for 𝑥 ≥ 𝑥𝑒. For state 𝐴 we take a Green’s state with a unit source at 𝑥𝐴 between 𝑥𝑏 and 𝑥𝑒, and we
ubstitute −𝑖𝜔�̂�𝐴(𝑥, 𝜔) = 𝛿(𝑥 − 𝑥𝐴), �̂�𝐴(𝑥, 𝜔) = 0 and 𝑃𝐴(𝑥, 𝜔) = ̂𝑥(𝑥, 𝑥𝐴, 𝜔); for �̂�𝐴(𝑥, 𝜔) we use Eqs. (36) and (37). For state 𝐵 we
ake a Green’s state with a unit source at 𝑥𝐵 between 𝑥𝑏 and 𝑥𝑒, and we substitute similar expressions. Furthermore, we use the
ource–receiver reciprocity relation of Eq. (38). This yields

2𝑖ℑ{̂𝑥(𝑥𝐵 , 𝑥𝐴, 𝜔)} =
2𝑖𝜔
𝜂(𝑥𝑏)

̂∗𝑥(𝑥𝐴, 𝑥𝑏, 𝜔)̂𝑥(𝑥𝐵 , 𝑥𝑏, 𝜔) +
2𝑖𝜔
𝜂(𝑥𝑒)

̂∗𝑥(𝑥𝐴, 𝑥𝑒, 𝜔)̂𝑥(𝑥𝐵 , 𝑥𝑒, 𝜔), (54)

here ℑ denotes the imaginary part. Applying an inverse temporal Fourier transform yields

𝑥(𝑥𝐵 , 𝑥𝐴, 𝑡) − 𝑥(𝑥𝐵 , 𝑥𝐴,−𝑡) =

−2𝜕𝑡
∑

𝑥=𝑥𝑏 ,𝑥𝑒

1
𝜂(𝑥) ∫

∞

−∞
𝑥(𝑥𝐴, 𝑥, 𝑡′)𝑥(𝑥𝐵 , 𝑥, 𝑡 + 𝑡′)d𝑡′. (55)

The right-hand side is the time derivative of the superposition of time correlations of measurements by receivers at positions 𝑥𝐴
and 𝑥𝐵 , in response to impulsive sources at 𝑥𝑏 and 𝑥𝑒. The left-hand side is the causal Green’s function 𝑥(𝑥𝐵 , 𝑥𝐴, 𝑡) between 𝑥𝐴
and 𝑥𝐵 , minus its time-reversed version. Hence, the Green’s function 𝑥(𝑥𝐵 , 𝑥𝐴, 𝑡) is retrieved by evaluating the right-hand side of
this expression and taking the causal part. Note that this is independent of the positions 𝑥𝑏 and 𝑥𝑒 of the sources, as long as the
receivers are located between these sources and the material left of 𝑥𝑏 and right of 𝑥𝑒 is homogeneous. When the impulsive sources
t 𝑥𝑏 and 𝑥𝑒 are replaced by uncorrelated noise sources, the retrieved response is the Green’s function 𝑥(𝑥𝐵 , 𝑥𝐴, 𝑡), convolved with

the autocorrelation of the noise.

7.2. Time-dependent material

Following a similar approach as in Section 7.1, we use the global reciprocity theorem of the space-correlation type (Eq. (42))
to derive an expression for Green’s function retrieval for a time-dependent material with piecewise continuous parameters 𝛼(𝑡) and
(𝑡). We take again 𝛼𝐴 = 𝛼𝐵 = 𝛼 and 𝛽𝐴 = 𝛽𝐵 = 𝛽. For state 𝐴 we take an acausal Green’s state with a unit sink at 𝑡𝐴 between 𝑡𝑏
nd 𝑡𝑒 and we substitute −𝑖𝑘�̌�𝐴(𝑘, 𝑡) = 𝛿(𝑡 − 𝑡𝐴), �̌�𝐴(𝑘, 𝑡) = 0, �̌�𝐴(𝑘, 𝑡) = ̌𝑎𝑡 (𝑘, 𝑡, 𝑡𝐴) and 𝑉𝐴(𝑘, 𝑡) = − 𝛽(𝑡)

𝑖𝑘 𝜕𝑡̌𝑎𝑡 (𝑘, 𝑡, 𝑡𝐴). For state 𝐵 we take
n acausal Green’s state with a unit sink at 𝑡𝐵 between 𝑡𝑏 and 𝑡𝑒, and we substitute similar expressions. Furthermore, we use the
ource–receiver reciprocity relation of Eq. (43). This yields

̌𝑡(𝑘, 𝑡𝐵 , 𝑡𝐴) − {̌𝑎𝑡 (𝑘, 𝑡𝐵 , 𝑡𝐴)}
∗ =

𝛽(𝑡𝑏)
[

̌∗𝑡 (𝑘, 𝑡𝐴, 𝑡𝑏)𝜕𝑡𝑏 ̌𝑡(𝑘, 𝑡𝐵 , 𝑡𝑏) − {𝜕𝑡𝑏 ̌
∗
𝑡 (𝑘, 𝑡𝐴, 𝑡𝑏)}̌𝑡(𝑘, 𝑡𝐵 , 𝑡𝑏)

]

. (56)

pplying an inverse spatial Fourier transform yields

𝑡(𝑥, 𝑡𝐵 , 𝑡𝐴) − 𝑎𝑡 (−𝑥, 𝑡𝐵 , 𝑡𝐴) = (57)

𝛽(𝑡𝑏)∫

∞

−∞

[

𝑡(𝑥′, 𝑡𝐴, 𝑡𝑏)𝜕𝑡𝑏𝑡(𝑥 + 𝑥′, 𝑡𝐵 , 𝑡𝑏) − {𝜕𝑡𝑏𝑡(𝑥
′, 𝑡𝐴, 𝑡𝑏)}𝑡(𝑥 + 𝑥′, 𝑡𝐵 , 𝑡𝑏)

]

d𝑥′.

he right-hand side is the superposition of space correlations of measurements by receivers at time instants 𝑡𝐴 and 𝑡𝐵 , in response to
n impulsive source at 𝑡𝑏 and its time derivative and vice-versa. The left-hand side is the causal Green’s function 𝑡(𝑥, 𝑡𝐵 , 𝑡𝐴) between
𝐴 and 𝑡𝐵 , minus its space-reversed acausal counterpart. Hence, the Green’s function 𝑡(𝑥, 𝑡𝐵 , 𝑡𝐴) (when 𝑡𝐵 > 𝑡𝐴) or −𝑎𝑡 (−𝑥, 𝑡𝐵 , 𝑡𝐴)
when 𝑡𝐵 < 𝑡𝐴) is retrieved by evaluating the right-hand side of this expression. Note that this is independent of the time instant 𝑡𝑏
f the source, as long 𝑡𝐴 and 𝑡𝐵 are both larger than 𝑡𝑏. Unlike the two-sided representation of Eq. (55), which requires sources at
𝑏 and 𝑥𝑒, this is a single-sided representation, which requires sources at 𝑡𝑏 only. Note that the time-derivatives in Eq. (57) act on a
uperposition of left- and right-going waves at 𝑡𝑏 (see for example Fig. 2, with 𝑡𝑏 = 𝑡0), hence, we cannot use an expression similar
o Eq. (36) to simplify the right-hand side of Eq. (57) further.

. Matrix–vector wave equation

.1. Space-dependent material

For a space-dependent material with continuous parameters 𝛼(𝑥) and 𝛽(𝑥), Eqs. (5) and (6) can be combined into the following
atrix–vector wave equation in the 𝑥, 𝑡-domain [66–71]
10

𝜕𝑥𝐪𝑥 = 𝐀𝑥𝐪𝑥 + 𝐝𝑥, (58)
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with wave field vector 𝐪𝑥(𝑥, 𝑡), operator matrix 𝐀𝑥(𝑥, 𝑡) and source vector 𝐝𝑥(𝑥, 𝑡) defined as

𝐪𝑥 =
(

𝑃
𝑄

)

, 𝐀𝑥 =
(

0 −𝛽𝜕𝑡
−𝛼𝜕𝑡 0

)

, 𝐝𝑥 =
(

𝑏
𝑎

)

. (59)

or a space-dependent material with piecewise continuous parameters, this equation is supplemented with boundary conditions at
ll points where 𝛼(𝑥) and 𝛽(𝑥) are discontinuous. The boundary condition is that 𝐪𝑥(𝑥, 𝑡) is continuous at those points.

Using the temporal Fourier transform defined in Eq. (20), we obtain the following matrix–vector wave equation in the 𝑥, 𝜔-domain

𝜕𝑥�̂�𝑥 = �̂�𝑥�̂�𝑥 + �̂�𝑥, (60)

ith wave field vector �̂�𝑥(𝑥, 𝜔), matrix �̂�𝑥(𝑥, 𝜔) and source vector �̂�𝑥(𝑥, 𝜔) defined as

�̂�𝑥 =
(

𝑃
�̂�

)

, �̂�𝑥 =
(

0 𝑖𝜔𝛽
𝑖𝜔𝛼 0

)

, �̂�𝑥 =
(

�̂�
�̂�

)

. (61)

Note that matrix �̂�𝑥(𝑥, 𝜔) obeys the following symmetry properties

�̂�𝑡
𝑥𝐍 = −𝐍�̂�𝑥, (62)

�̂�†
𝑥𝐊 = −𝐊�̂�𝑥, (63)

�̂�∗
𝑥𝐉 = 𝐉�̂�𝑥, (64)

where superscript 𝑡 denotes transposition, superscript † denotes transposition and complex conjugation, and where

𝐍 =
(

0 1
−1 0

)

, 𝐊 =
(

0 1
1 0

)

, 𝐉 =
(

1 0
0 −1

)

. (65)

8.2. Time-dependent material

Applying the mapping of Eq. (16) to Eqs. (58) and (59) yields the following matrix–vector wave equation in the 𝑥, 𝑡-domain for
a time-dependent material with continuous parameters 𝛼(𝑡) and 𝛽(𝑡)

𝜕𝑡𝐪𝑡 = 𝐀𝑡𝐪𝑡 + 𝐝𝑡, (66)

ith wave field vector 𝐪𝑡(𝑥, 𝑡), operator matrix 𝐀𝑡(𝑥, 𝑡) and source vector 𝐝𝑡(𝑥, 𝑡) defined as

𝐪𝑡 =
(

𝑈
𝑉

)

, 𝐀𝑡 =

(

0 − 1
𝛽 𝜕𝑥

− 1
𝛼 𝜕𝑥 0

)

, 𝐝𝑡 =
(

𝑎
𝑏

)

. (67)

For a time-dependent material with piecewise continuous parameters, this equation is supplemented with boundary conditions at
all time instants where 𝛼(𝑡) and 𝛽(𝑡) are discontinuous. The boundary condition is that 𝐪𝑡(𝑥, 𝑡) is continuous at those time instants.

Applying the mapping of Eq. (30) to Eqs. (60) and (61), we obtain the following matrix–vector wave equation in the 𝑘, 𝑡-domain

𝜕𝑡�̌�𝑡 = �̌�𝑡�̌�𝑡 + �̌�𝑡, (68)

with

�̌�𝑡 =
(

�̌�
𝑉

)

, �̌�𝑡 =

(

0 − 𝑖𝑘
𝛽

− 𝑖𝑘
𝛼 0

)

, �̌�𝑡 =
(

�̌�
�̌�

)

. (69)

Matrix �̌�𝑡 obeys the same symmetries as �̂�𝑥, as formulated by Eqs. (62)–(64).

9. Propagator matrices and representations

9.1. Space-dependent material

For a space-dependent material, a propagator matrix ‘‘propagates’’ a wave field (represented as a vectorial quantity) from one
plane in space to another [72–74]. It has found many applications, particularly in elastodynamic wave problems [33,75,76].

We define the propagator matrix 𝐖𝑥(𝑥, 𝑥0, 𝑡) for a space-dependent material with continuous parameters 𝛼(𝑥) and 𝛽(𝑥) as the
solution of matrix–vector Eq. (58) without the source term, hence

𝜕𝑥𝐖𝑥 = 𝐀𝑥𝐖𝑥, (70)

with operator matrix 𝐀𝑥(𝑥, 𝑡) defined in Eq. (59) and with boundary condition

𝐖𝑥(𝑥0, 𝑥0, 𝑡) = 𝐈𝛿(𝑡), (71)

where 𝐈 is the identity matrix.
11
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A simple representation for the wave field vector 𝐪𝑥(𝑥, 𝑡) obeying Eq. (58) is obtained when 𝐪𝑥 and 𝐖𝑥 are defined in the
same source-free material between 𝑥0 and 𝑥 (where 𝑥 can be either larger or smaller than 𝑥0). Whereas 𝐪𝑥(𝑥, 𝑡) can have any time-
dependency at 𝑥 = 𝑥0, 𝐖𝑥(𝑥, 𝑥0, 𝑡) collapses to 𝐈𝛿(𝑡) at 𝑥 = 𝑥0. Because Eqs. (58) and (70) are linear, a representation for 𝐪𝑥(𝑥, 𝑡)
follows by applying Huygens’ superposition principle, according to

𝐪𝑥(𝑥, 𝑡) = ∫

∞

−∞
𝐖𝑥(𝑥, 𝑥0, 𝑡 − 𝑡′)𝐪𝑥(𝑥0, 𝑡′)d𝑡′. (72)

Note that 𝐖𝑥(𝑥, 𝑥0, 𝑡) propagates the wave field vector 𝐪𝑥 from 𝑥0 to 𝑥, hence the name ‘‘propagator matrix’’. We partition 𝐖𝑥(𝑥, 𝑥0, 𝑡)
as follows

𝐖𝑥(𝑥, 𝑥0, 𝑡) =

(

𝑊 𝑃 ,𝑃
𝑥 𝑊 𝑃 ,𝑄

𝑥

𝑊 𝑄,𝑃
𝑥 𝑊 𝑄,𝑄

𝑥

)

(𝑥, 𝑥0, 𝑡). (73)

The first and second superscripts refer to the wave field quantities in vector 𝐪𝑥, defined in Eq. (59), at 𝑥 and 𝑥0, respectively. For
more general representations with propagator matrices, including source terms and differences in material parameters (analogous
to the representation with Green’s functions discussed in Section 6.1), see Ref. [77].

Using the temporal Fourier transform defined in Eq. (20), we obtain the following space-frequency domain equation for
�̂�𝑥(𝑥, 𝑥0, 𝜔)

𝜕𝑥�̂�𝑥 = �̂�𝑥�̂�𝑥, (74)

with matrix �̂�𝑥(𝑥, 𝜔) defined in Eq. (61) and with boundary condition

�̂�𝑥(𝑥0, 𝑥0, 𝜔) = 𝐈. (75)

The representation of Eq. (72) transforms to

�̂�𝑥(𝑥, 𝜔) = �̂�𝑥(𝑥, 𝑥0, 𝜔)�̂�𝑥(𝑥0, 𝜔). (76)

By applying this equation recursively, it follows that �̂�𝑥 obeys the following recursive expression

�̂�𝑥(𝑥𝑁 , 𝑥0, 𝜔) = �̂�𝑥(𝑥𝑁 , 𝑥𝑁−1, 𝜔)⋯ �̂�𝑥(𝑥𝑛, 𝑥𝑛−1, 𝜔)⋯ �̂�𝑥(𝑥1, 𝑥0, 𝜔), (77)

where 𝑥1 ⋯ 𝑥𝑛 ⋯ 𝑥𝑁−1 are points where the material parameters may be discontinuous. As a special case of Eq. (77) we obtain

�̂�𝑥(𝑥𝑛−1, 𝑥𝑛, 𝜔)�̂�𝑥(𝑥𝑛, 𝑥𝑛−1, 𝜔) = �̂�𝑥(𝑥𝑛−1, 𝑥𝑛−1, 𝜔) = 𝐈, (78)

from which it follows that �̂�𝑥(𝑥𝑛−1, 𝑥𝑛, 𝜔) is the inverse of �̂�𝑥(𝑥𝑛, 𝑥𝑛−1, 𝜔). For a homogeneous slab between 𝑥𝑛−1 and 𝑥𝑛, with
parameters 𝛼𝑛, 𝛽𝑛, 𝑐𝑛 = 1∕

√

𝛼𝑛𝛽𝑛, 𝜂𝑛 =
√

𝛽𝑛∕𝛼𝑛 and thickness 𝛥𝑥𝑛 = 𝑥𝑛 − 𝑥𝑛−1, we have

�̂� 𝑃 ,𝑃
𝑥 (𝑥𝑛, 𝑥𝑛−1, 𝜔) = cos(𝜔𝛥𝑥𝑛∕𝑐𝑛), (79)

�̂� 𝑃 ,𝑄
𝑥 (𝑥𝑛, 𝑥𝑛−1, 𝜔) = 𝑖𝜂𝑛 sin(𝜔𝛥𝑥𝑛∕𝑐𝑛), (80)

�̂� 𝑄,𝑃
𝑥 (𝑥𝑛, 𝑥𝑛−1, 𝜔) = 𝑖

𝜂𝑛
sin(𝜔𝛥𝑥𝑛∕𝑐𝑛), (81)

�̂� 𝑄,𝑄
𝑥 (𝑥𝑛, 𝑥𝑛−1, 𝜔) = cos(𝜔𝛥𝑥𝑛∕𝑐𝑛). (82)

From Eq. (77), we obtain a similar recursive expression in the space–time domain, according to

𝐖𝑥(𝑥𝑁 , 𝑥0, 𝑡) = 𝐖𝑥(𝑥𝑁 , 𝑥𝑁−1, 𝑡) ∗𝑡 ⋯ ∗𝑡 𝐖𝑥(𝑥𝑛, 𝑥𝑛−1, 𝑡) ∗𝑡 ⋯ ∗𝑡 𝐖𝑥(𝑥1, 𝑥0, 𝑡), (83)

where ∗𝑡 denotes a time convolution (more formally defined in Eq. (72)). For a homogeneous slab between 𝑥𝑛−1 and 𝑥𝑛, we find
from Eqs. (79)–(82)

𝑊 𝑃 ,𝑃
𝑥 (𝑥𝑛, 𝑥𝑛−1, 𝑡) = 1

2
{𝛿(𝑡 − 𝛥𝑥𝑛∕𝑐𝑛) + 𝛿(𝑡 + 𝛥𝑥𝑛∕𝑐𝑛)}, (84)

𝑊 𝑃 ,𝑄
𝑥 (𝑥𝑛, 𝑥𝑛−1, 𝑡) =

𝜂𝑛
2
{𝛿(𝑡 − 𝛥𝑥𝑛∕𝑐𝑛) − 𝛿(𝑡 + 𝛥𝑥𝑛∕𝑐𝑛)}, (85)

𝑊 𝑄,𝑃
𝑥 (𝑥𝑛, 𝑥𝑛−1, 𝑡) = 1

2𝜂𝑛
{𝛿(𝑡 − 𝛥𝑥𝑛∕𝑐𝑛) − 𝛿(𝑡 + 𝛥𝑥𝑛∕𝑐𝑛)}, (86)

𝑊 𝑄,𝑄
𝑥 (𝑥𝑛, 𝑥𝑛−1, 𝑡) = 1

2
{𝛿(𝑡 − 𝛥𝑥𝑛∕𝑐𝑛) + 𝛿(𝑡 + 𝛥𝑥𝑛∕𝑐𝑛)}. (87)

For the same piecewise homogeneous material as used for the numerical example in Section 3.1, the elements 𝑊 𝑃 ,𝑃
𝑥 (𝑥, 𝑥0, 𝑡) and

𝑊 𝑃 ,𝑄
𝑥 (𝑥, 𝑥0, 𝑡) for 𝑥0 = 40 mm (convolved with a temporal wavelet with a central frequency 𝜔0∕2𝜋 = 300 kHz) are shown as 𝑥, 𝑡-

diagrams in Fig. 3a and b. The green lines indicate the boundary conditions 𝑊 𝑃 ,𝑃
𝑥 (𝑥0, 𝑥0, 𝑡) = 𝛿(𝑡) and 𝑊 𝑃 ,𝑄

𝑥 (𝑥0, 𝑥0, 𝑡) = 0 (Eqs. (71)
nd (73)). Note that these figures clearly exhibit the recursive character, described by Eq. (83).
12
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Fig. 3. Propagator matrix elements 𝑊 𝑃 ,𝑃
𝑥 (𝑥, 𝑥0 , 𝑡) (a) and 𝑊 𝑃 ,𝑄

𝑥 (𝑥, 𝑥0 , 𝑡) (b) (convolved with a temporal wavelet) for a piecewise homogeneous space-dependent
material. The labels at the vertical axes denote time (in μs) and those at the horizontal axes denote space (in mm). With interchanged labels (and ‘‘boundary
condition’’ replaced by ‘‘initial condition’’) these figures can be interpreted as 𝑊 𝑈,𝑈

𝑡 (𝑥, 𝑡, 𝑡0) (a) and 𝑊 𝑈,𝑉
𝑡 (𝑥, 𝑡, 𝑡0) (b) (convolved with a spatial wavelet) for a

piecewise constant time-dependent material.

9.2. Time-dependent material

For a time-dependent material, a propagator matrix propagates a wave field from one instant in time to another. In the literature
on time-dependent materials this matrix is usually called the transfer matrix [12,14,78], but for consistency with Section 9.1, we
hold on to the name propagator matrix.

We define the propagator matrix 𝐖𝑡(𝑥, 𝑡, 𝑡0) for a time-dependent material with continuous parameters 𝛼(𝑡) and 𝛽(𝑡) as the solution
of matrix–vector Eq. (66) without the source term, hence

𝜕𝑡𝐖𝑡 = 𝐀𝑡𝐖𝑡, (88)

with operator matrix 𝐀𝑡(𝑥, 𝑡) defined in Eq. (67) and with initial condition

𝐖𝑡(𝑥, 𝑡0, 𝑡0) = 𝐈𝛿(𝑥). (89)

Note that the mapping of Eq. (16) not only applies to the wave equations (Eqs. (70) and (88)), but also to the boundary and initial
conditions (Eqs. (71) and (89)). Consequently, the mappings of Eqs. (16) and (30) also apply to all expressions for the propagator
matrix in the space–time and Fourier-domains, respectively. We discuss a few of these mappings explicitly.
13
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The representation of Eq. (72) maps to

𝐪𝑡(𝑥, 𝑡) = ∫

∞

−∞
𝐖𝑡(𝑥 − 𝑥′, 𝑡, 𝑡0)𝐪𝑡(𝑥′, 𝑡0)d𝑥′. (90)

Note that 𝐖𝑡(𝑥, 𝑡, 𝑡0) propagates the wave field vector 𝐪𝑡 from 𝑡0 to 𝑡. We partition 𝐖𝑡(𝑥, 𝑡, 𝑡0) as follows

𝐖𝑡(𝑥, 𝑡, 𝑡0) =

(

𝑊 𝑈,𝑈
𝑡 𝑊 𝑈,𝑉

𝑡

𝑊 𝑉 ,𝑈
𝑡 𝑊 𝑉 ,𝑉

𝑡

)

(𝑥, 𝑡, 𝑡0). (91)

The first and second superscripts refer to the wave field quantities in vector 𝐪𝑡, defined in Eq. (67), at 𝑡 and 𝑡0, respectively. The
ecursive expression of Eq. (83) maps to

𝐖𝑡(𝑥, 𝑡𝑁 , 𝑡0) = 𝐖𝑡(𝑥, 𝑡𝑁 , 𝑡𝑁−1) ∗𝑥 ⋯ ∗𝑥 𝐖𝑡(𝑥, 𝑡𝑛, 𝑡𝑛−1) ∗𝑥 ⋯ ∗𝑥 𝐖𝑡(𝑥, 𝑡1, 𝑡0), (92)

here ∗𝑥 denotes a space convolution (more formally defined in Eq. (90)). For a constant slab between 𝑡𝑛−1 and 𝑡𝑛 with duration
𝑡𝑛 = 𝑡𝑛 − 𝑡𝑛−1, we find from Eqs. (84)–(87)

𝑊 𝑈,𝑈
𝑡 (𝑥, 𝑡𝑛, 𝑡𝑛−1) = 1

2
{𝛿(𝑥 − 𝑐𝑛𝛥𝑡𝑛) + 𝛿(𝑥 + 𝑐𝑛𝛥𝑡𝑛)}, (93)

𝑊 𝑈,𝑉
𝑡 (𝑥, 𝑡𝑛, 𝑡𝑛−1) = 1

2𝜂𝑛
{𝛿(𝑥 − 𝑐𝑛𝛥𝑡𝑛) − 𝛿(𝑥 + 𝑐𝑛𝛥𝑡𝑛)}, (94)

𝑊 𝑉 ,𝑈
𝑡 (𝑥, 𝑡𝑛, 𝑡𝑛−1) =

𝜂𝑛
2
{𝛿(𝑥 − 𝑐𝑛𝛥𝑡𝑛) − 𝛿(𝑥 + 𝑐𝑛𝛥𝑡𝑛)}, (95)

𝑊 𝑉 ,𝑉
𝑡 (𝑥, 𝑡𝑛, 𝑡𝑛−1) = 1

2
{𝛿(𝑥 − 𝑐𝑛𝛥𝑡𝑛) + 𝛿(𝑥 + 𝑐𝑛𝛥𝑡𝑛)}. (96)

For the same piecewise constant material as used for the first numerical example in Section 3.2, the elements 𝑊 𝑈,𝑈
𝑡 (𝑥, 𝑡, 𝑡0) and

𝑊 𝑈,𝑉
𝑡 (𝑥, 𝑡, 𝑡0) for 𝑡0 = 40 μs (convolved with a spatial wavelet with a central wavenumber 𝑘0∕2𝜋 = 300 ∗ 103 km−1) are shown as

𝑥, 𝑡-diagrams in Fig. 3a and b. The green lines indicate the initial conditions 𝑊 𝑈,𝑈
𝑡 (𝑥, 𝑡0, 𝑡0) = 𝛿(𝑥) and 𝑊 𝑈,𝑉

𝑡 (𝑥, 𝑡0, 𝑡0) = 0 (Eqs. (89)
nd (91)). Note that these figures clearly exhibit the recursive character, described by Eq. (92).

Finally we show that the Green’s function 𝑡(𝑥, 𝑡, 𝑡0), obeying Eq. (17) with causality condition (18), is related to 𝑊 𝑈,𝑉
𝑡 (𝑥, 𝑡, 𝑡0)

ia

−𝜕𝑥𝑡(𝑥, 𝑡, 𝑡0) = 𝐻(𝑡 − 𝑡0)𝑊
𝑈,𝑉
𝑡 (𝑥, 𝑡, 𝑡0). (97)

ue to the Heaviside function 𝐻(𝑡− 𝑡0), the causality condition (18) is fulfilled, so we only need to show that 𝐻(𝑡− 𝑡0)𝑊
𝑈,𝑉
𝑡 (𝑥, 𝑡, 𝑡0)

beys the same wave equation as −𝜕𝑥𝑡(𝑥, 𝑡, 𝑡0). For the first derivative with respect to time we obtain, using the product rule for
ifferentiation and Eqs. (67), (88), (89) and (91),

𝜕𝑡{𝐻(𝑡 − 𝑡0)𝑊
𝑈,𝑉
𝑡 (𝑥, 𝑡, 𝑡0)} = − 1

𝛽(𝑡)
𝐻(𝑡 − 𝑡0)𝜕𝑥𝑊

𝑉 ,𝑉
𝑡 (𝑥, 𝑡, 𝑡0). (98)

Multiplying both sides with 𝛽(𝑡) and differentiating again with respect to time, we obtain in a similar way

𝜕𝑡
(

𝛽(𝑡)𝜕𝑡{𝐻(𝑡 − 𝑡0)𝑊
𝑈,𝑉
𝑡 (𝑥, 𝑡, 𝑡0)}

)

= −𝜕𝑥𝛿(𝑥)𝛿(𝑡 − 𝑡0) (99)

+ 1
𝛼(𝑡)

𝜕2𝑥{𝐻(𝑡 − 𝑡0)𝑊
𝑈,𝑉
𝑡 (𝑥, 𝑡, 𝑡0)}.

Comparing this with Eq. (17), with 𝑐(𝑡) defined in Eq. (8), we observe that 𝐻(𝑡 − 𝑡0)𝑊
𝑈,𝑉
𝑡 (𝑥, 𝑡, 𝑡0) indeed obeys the same wave

equation as −𝜕𝑥𝑡(𝑥, 𝑡, 𝑡0). Hence, 𝑡(𝑥, 𝑡, 𝑡0) is obtained by integrating −𝐻(𝑡− 𝑡0)𝑊
𝑈,𝑉
𝑡 (𝑥, 𝑡, 𝑡0) with respect to 𝑥 (see Figs. 2a and 3b).

ote that a relation similar to Eq. (97) does not exist for a space-dependent material (since the causality conditions (Eqs. (11) and
18)) do not follow the mapping of Eq. (16)).

0. Matrix–vector reciprocity theorems

0.1. Space-dependent material

We review matrix–vector reciprocity theorems for a space-dependent material with piecewise continuous parameters 𝛼(𝑥) and
(𝑥). We consider two independent states, indicated by subscripts 𝐴 and 𝐵, obeying Eq. (60), and we derive relations between these
tates. In the most general case, sources, material parameters and wave fields may be different in the two states. We consider the
uantities 𝜕𝑥{�̂�𝑡𝑥,𝐴(𝑥, 𝜔)𝐍�̂�𝑥,𝐵(𝑥, 𝜔)} and 𝜕𝑥{�̂�

†
𝑥,𝐴(𝑥, 𝜔)𝐊�̂�𝑥,𝐵(𝑥, 𝜔)}. Applying the product rule for differentiation, using wave Eq. (60)

nd symmetry relations (62) and (63) for states 𝐴 and 𝐵, yields

𝜕𝑥{�̂�𝑡𝑥,𝐴𝐍�̂�𝑥,𝐵} = �̂�𝑡𝑥,𝐴𝐍𝛥�̂�𝑥�̂�𝑥,𝐵 + �̂�𝑡𝑥,𝐴𝐍�̂�𝑥,𝐵 + �̂�𝑡𝑥,𝐴𝐍�̂�𝑥,𝐵 , (100)

𝜕𝑥{�̂�
†
𝑥,𝐴𝐊�̂�𝑥,𝐵} = �̂�†𝑥,𝐴𝐊𝛥�̂�𝑥�̂�𝑥,𝐵 + �̂�†𝑥,𝐴𝐊�̂�𝑥,𝐵 + �̂�†𝑥,𝐴𝐊�̂�𝑥,𝐵 , (101)

with 𝛥�̂�𝑥 = �̂�𝑥,𝐵 − �̂�𝑥,𝐴. Eqs. (100) and (101) are the matrix–vector forms of the local reciprocity theorems of the time-convolution
14

and time-correlation type, respectively, as formulated by Eqs. (23) and (24). Integration of both sides of Eqs. (100) and (101) from
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𝑥𝑏 to 𝑥𝑒 yields [79,80]

�̂�𝑡𝑥,𝐴𝐍�̂�𝑥,𝐵
|

|

|

𝑥𝑒

𝑥𝑏
= ∫

𝑥𝑒

𝑥𝑏
{�̂�𝑡𝑥,𝐴𝐍𝛥�̂�𝑥�̂�𝑥,𝐵 + �̂�𝑡𝑥,𝐴𝐍�̂�𝑥,𝐵 + �̂�𝑡𝑥,𝐴𝐍�̂�𝑥,𝐵}d𝑥, (102)

�̂�†𝑥,𝐴𝐊�̂�𝑥,𝐵
|

|

|

𝑥𝑒

𝑥𝑏
= ∫

𝑥𝑒

𝑥𝑏
{�̂�†𝑥,𝐴𝐊𝛥�̂�𝑥�̂�𝑥,𝐵 + �̂�†𝑥,𝐴𝐊�̂�𝑥,𝐵 + �̂�†𝑥,𝐴𝐊�̂�𝑥,𝐵}d𝑥. (103)

These are the matrix–vector forms of the global reciprocity theorems of the time-convolution and time-correlation type, respectively,
as formulated by Eqs. (34) and (35). When there are no sources and the material parameters are identical in both states, the
right-hand sides of Eqs. (100)–(103) are zero. From Eqs. (100) and (101) it then follows that �̂�𝑡𝑥,𝐴𝐍�̂�𝑥,𝐵 and �̂�†𝑥,𝐴𝐊�̂�𝑥,𝐵 are
space-propagation invariants [36–39].

We use Eqs. (102) and (103) (with zeroes on the right-hand sides) to derive reciprocity relations for the propagator matrix.
For state 𝐴 we substitute �̂�𝑥,𝐴(𝑥, 𝜔) = �̂�𝑥(𝑥, 𝑥𝐴, 𝜔) and, using Eq. (75), �̂�𝑥,𝐴(𝑥𝐴, 𝜔) = 𝐈. Similarly, For state 𝐵 we substitute
̂𝑥,𝐵(𝑥, 𝜔) = �̂�𝑥(𝑥, 𝑥𝐵 , 𝜔) and �̂�𝑥,𝐵(𝑥𝐵 , 𝜔) = 𝐈. Taking 𝑥𝐴 and 𝑥𝐵 equal to 𝑥𝑏 and 𝑥𝑒 (in arbitrary order) yields

�̂�𝑡
𝑥(𝑥𝐵 , 𝑥𝐴, 𝜔)𝐍 = 𝐍�̂�𝑥(𝑥𝐴, 𝑥𝐵 , 𝜔), (104)

�̂�†
𝑥(𝑥𝐵 , 𝑥𝐴, 𝜔)𝐊 = 𝐊�̂�𝑥(𝑥𝐴, 𝑥𝐵 , 𝜔). (105)

sing 𝐍−1𝐊 = −𝐉 we find from Eqs. (104) and (105)

�̂�∗
𝑥(𝑥𝐴, 𝑥𝐵 , 𝜔)𝐉 = 𝐉�̂�𝑥(𝑥𝐴, 𝑥𝐵 , 𝜔), (106)

r, in the space–time domain

𝐖𝑥(𝑥𝐴, 𝑥𝐵 ,−𝑡)𝐉 = 𝐉𝐖𝑥(𝑥𝐴, 𝑥𝐵 , 𝑡). (107)

0.2. Time-dependent material

The matrix–vector reciprocity theorems for a time-dependent material with piecewise continuous parameters 𝛼(𝑡) and 𝛽(𝑡) follow
rom those in Section 10.1 by applying the mappings of Eqs. (16) and (30). In particular, the reciprocity relations for the propagator
atrix are

�̌�𝑡
𝑡(𝑘, 𝑡𝐵 , 𝑡𝐴)𝐍 = 𝐍�̌�𝑡(𝑘, 𝑡𝐴, 𝑡𝐵), (108)

�̌�†
𝑡 (𝑘, 𝑡𝐵 , 𝑡𝐴)𝐊 = 𝐊�̌�𝑡(𝑘, 𝑡𝐴, 𝑡𝐵), (109)

�̌�∗
𝑡 (𝑘, 𝑡𝐴, 𝑡𝐵)𝐉 = 𝐉�̌�𝑡(𝑘, 𝑡𝐴, 𝑡𝐵), (110)

𝐖𝑡(−𝑥, 𝑡𝐴, 𝑡𝐵)𝐉 = 𝐉𝐖𝑡(𝑥, 𝑡𝐴, 𝑡𝐵). (111)

1. Marchenko-type focusing functions

1.1. Space-dependent material

Building on work by Rose [81,82], geophysicists used the Marchenko equation to develop methods for retrieving the wave
ield inside a space-dependent material from reflection measurements at its boundary [83–88]. Focusing functions play a central
ole in this methodology. For a 1D space-dependent material, a Marchenko-type focusing function 𝐹𝑥(𝑥, 𝑥0, 𝑡) is defined as a specific
olution of the wave equation, which focuses at the focal point 𝑥 = 𝑥0 (i.e., 𝐹𝑥(𝑥0, 𝑥0, 𝑡) ∝ 𝛿(𝑡)) and which propagates unidirectionally

through the focal point. It has recently been shown that there exists a close relation between focusing functions and the propagator
matrix [89,90]. Here we briefly review this relation for a space-dependent material with parameters 𝛼(𝑥) and 𝛽(𝑥). We start by
oting that the elements 𝑊 𝑃 ,𝑃

𝑥 (𝑥, 𝑥0, 𝑡) and 𝑊 𝑄,𝑄
𝑥 (𝑥, 𝑥0, 𝑡) are symmetric functions of time, whereas 𝑊 𝑃 ,𝑄

𝑥 (𝑥, 𝑥0, 𝑡) and 𝑊 𝑄,𝑃
𝑥 (𝑥, 𝑥0, 𝑡)

re asymmetric functions of time. This follows simply from Eq. (107) and the expressions for matrices 𝐖𝑥 and 𝐉 in Eqs. (73) and
65). For elements 𝑊 𝑃 ,𝑃

𝑥 (𝑥, 𝑥0, 𝑡) and 𝑊 𝑃 ,𝑄
𝑥 (𝑥, 𝑥0, 𝑡) these symmetry properties are also clearly seen in Fig. 3a and b, respectively.

xploiting these symmetries, Marchenko-type focusing functions can be expressed in terms of the elements of the propagator matrix,
ccording to [90]

𝐹 𝑃
𝑥 (𝑥, 𝑥0, 𝑡) = 𝑊 𝑃 ,𝑃

𝑥 (𝑥, 𝑥0, 𝑡) −
1

𝜂(𝑥0)
𝑊 𝑃 ,𝑄

𝑥 (𝑥, 𝑥0, 𝑡), (112)

𝐹𝑄
𝑥 (𝑥, 𝑥0, 𝑡) = 𝑊 𝑄,𝑃

𝑥 (𝑥, 𝑥0, 𝑡) −
1

𝜂(𝑥0)
𝑊 𝑄,𝑄

𝑥 (𝑥, 𝑥0, 𝑡). (113)

From these expressions and Eqs. (71) and (73) we obtain the following focusing conditions for 𝑥 = 𝑥0

𝐹 𝑃
𝑥 (𝑥0, 𝑥0, 𝑡) = 𝛿(𝑡), (114)

𝐹𝑄
𝑥 (𝑥0, 𝑥0, 𝑡) = − 1

𝜂(𝑥0)
𝛿(𝑡). (115)

Fig. 4 shows an 𝑥, 𝑡-diagram of 𝐹 𝑃
𝑥 (𝑥, 𝑥0, 𝑡) (convolved with a temporal wavelet with a central frequency 𝜔0∕2𝜋 = 300 kHz) for a

focal point at 𝑥 = 40 mm. The interpretation is as follows. The four blue arrows in the right-most slab indicate leftward propagating
15
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Fig. 4. Focusing function 𝐹 𝑃
𝑥 (𝑥, 𝑥0 , 𝑡) (convolved with a temporal wavelet) for a piecewise homogeneous space-dependent material. The label at the vertical axis

denotes time (in μs) and that at the horizontal axis denotes space (in mm). With interchanged labels and reversed blue arrows this figure can be interpreted as
𝐹𝑈
𝑡 (𝑥, 𝑡, 𝑡0) (convolved with a spatial wavelet) for a piecewise constant time-dependent material.

waves that are emitted into the material from the right, at 𝑥 = 𝑥𝑁 = 200 mm. After interaction with the boundaries between the
homogeneous slabs, a single leftward propagating wave arrives at 𝑥 = 𝑥0 = 40 mm, where it obeys the focusing condition of Eq. (114).
The red arrows indicate the rightward propagating scattered part of the focusing function 𝐹 𝑃

𝑥 (𝑥, 𝑥0, 𝑡).
Finally, note that the elements of the propagator matrix can be expressed in terms of the Marchenko-type focusing functions,

according to

𝑊 𝑃 ,𝑃
𝑥 (𝑥, 𝑥0, 𝑡) = 1

2
{𝐹 𝑃

𝑥 (𝑥, 𝑥0, 𝑡) + 𝐹 𝑃
𝑥 (𝑥, 𝑥0,−𝑡)}, (116)

𝑊 𝑃 ,𝑄
𝑥 (𝑥, 𝑥0, 𝑡) = −

𝜂(𝑥0)
2

{𝐹 𝑃
𝑥 (𝑥, 𝑥0, 𝑡) − 𝐹 𝑃

𝑥 (𝑥, 𝑥0,−𝑡)}, (117)

𝑊 𝑄,𝑃
𝑥 (𝑥, 𝑥0, 𝑡) = 1

2
{𝐹𝑄

𝑥 (𝑥, 𝑥0, 𝑡) − 𝐹𝑄
𝑥 (𝑥, 𝑥0,−𝑡)}, (118)

𝑊 𝑄,𝑄
𝑥 (𝑥, 𝑥0, 𝑡) = −

𝜂(𝑥0)
2

{𝐹𝑄
𝑥 (𝑥, 𝑥0, 𝑡) + 𝐹𝑄

𝑥 (𝑥, 𝑥0,−𝑡)}. (119)

11.2. Time-dependent material

The relations between the Marchenko-type focusing functions and the propagator matrix for a time-dependent material with
parameters 𝛼(𝑡) and 𝛽(𝑡) follow from those in Section 11.1 by applying the mapping of Eq. (16), hence

𝐹𝑈
𝑡 (𝑥, 𝑡, 𝑡0) = 𝑊 𝑈,𝑈

𝑡 (𝑥, 𝑡, 𝑡0) − 𝜂(𝑡0)𝑊
𝑈,𝑉
𝑡 (𝑥, 𝑡, 𝑡0), (120)

𝐹 𝑉
𝑡 (𝑥, 𝑡, 𝑡0) = 𝑊 𝑉 ,𝑈

𝑡 (𝑥, 𝑡, 𝑡0) − 𝜂(𝑡0)𝑊
𝑉 ,𝑉
𝑡 (𝑥, 𝑡, 𝑡0), (121)

with focusing conditions for 𝑡 = 𝑡0

𝐹𝑈
𝑡 (𝑥, 𝑡0, 𝑡0) = 𝛿(𝑥), (122)

𝐹 𝑉
𝑡 (𝑥, 𝑡0, 𝑡0) = −𝜂(𝑡0)𝛿(𝑥). (123)

Fig. 4 shows an 𝑥, 𝑡-diagram of 𝐹𝑈
𝑡 (𝑥, 𝑡, 𝑡0) (convolved with a spatial wavelet with a central wavenumber 𝑘0∕2𝜋 = 300 ∗ 103 km−1) for

a focal time at 𝑡0 = 40 μs. For a correct interpretation, the direction of the blue arrows should be reversed. Starting with a leftward
propagating wave at 𝑡 = 𝑡0 = 40 μs, the response at 𝑡 = 𝑡𝑁 = 200 μs, i.e., 𝐹𝑈

𝑡 (𝑥, 𝑡𝑁 , 𝑡0), consists of leftward (blue) and rightward
(red) propagating waves. Using the mapping of Eq. (16), this response is identical to the focusing function 𝐹 𝑃

𝑥 (𝑥𝑁 , 𝑥0, 𝑡) of the
complimentary space-dependent material. Van Manen et al. [22] exploit this property to design an acoustic space–time material
which computes its own inverse.

12. Conclusions

We have discussed and compared some fundamental aspects of waves in space-dependent and in time-dependent materials. The
basic equations for a 1D space-dependent material can be transformed into those for a time-dependent material and vice-versa by
16
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interchanging the space and time coordinates and by applying a specific mapping of wave field components, material parameters
and source terms. When the boundary and initial conditions can be transformed in the same way, then also the solutions of the
equations for space-dependent and time-dependent materials can be transformed into one another by the same mapping. When the
boundary and initial conditions cannot be transformed in the same way, then the solutions are different.

Green’s functions in space-dependent and in time-dependent materials obey the same causality condition (i.e., they are zero
efore the action of the source) and therefore they cannot be transformed into one another. We have derived a source–receiver
eciprocity relation for time-dependent materials, which relates a causal Green’s function to an acausal Green’s function with
nterchanged time coordinates. This is different from the source–receiver reciprocity relation for space-dependent materials,
hich interrelates two causal Green’s functions with interchanged space coordinates. We have also derived a new representation

or retrieving Green’s functions from the space correlation of passive measurements in time-dependent materials. Unlike the
orresponding representation for space-dependent materials it is single-sided, meaning that it suffices to correlate two responses
at two time instants) to sources at a single time instant.

Propagator matrices in space-dependent and in time-dependent materials obey boundary and initial conditions which can be
ransformed into one another in the same way as the underlying wave equations. Hence, these propagator matrices are interrelated
n the same way. This also applies to representations and reciprocity theorems involving propagator matrices, and to Marchenko-type
ocusing functions, which can be expressed as combinations of elements of the propagator matrix.
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Appendix. Reflection and transmission coefficients

A.1. Space-dependent material

We review reflection and transmission coefficients for a wave incident on a space boundary between two homogeneous time-
invariant half-spaces. Although the derivation is well-known, it also serves as an introduction for the derivation of reflection and
transmission coefficients of a time boundary in the next subsection.

For a homogeneous time-invariant source-free material, the wave equation is derived by substituting the constitutive Eqs. (3)
and (4) with constant parameters 𝛼 and 𝛽 into Eqs. (1) and (2), and subsequently eliminating 𝑄 from these equations. We thus
obtain

1
𝑐2

𝜕2𝑡 𝑃 − 𝜕2𝑥𝑃 = 0, (A.1)

with propagation velocity 𝑐 given by Eq. (8). Once 𝑃 is resolved from Eq. (A.1), 𝑄 follows from 𝛽𝜕𝑡𝑄 = −𝜕𝑥𝑃 , and 𝑈 and 𝑉 follow
from the constitutive Eqs. (3) and (4).

Consider two homogeneous time-invariant source-free half-spaces, separated by a space boundary, which we take for convenience
at 𝑥 = 0, see Fig. A.5a. The parameters of the half-spaces 𝑥 < 0 and 𝑥 > 0 are denoted with subscripts 1 and 2, respectively. In the
alf-space 𝑥 < 0 we define a rightward propagating monochromatic incident field with unit amplitude and angular frequency 𝜔1.
sing complex notation, we have

𝑃𝐼 (𝑥, 𝑡) = exp 𝑖(𝑘1𝑥 − 𝜔1𝑡), with 𝑘1 =
𝜔1
𝑐1

, (A.2)

𝑄𝐼 (𝑥, 𝑡) = 1 𝑃𝐼 (𝑥, 𝑡), with 𝜂1 = 𝛽1𝑐1 =

√

𝛽1 . (A.3)
17
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Fig. A.5. Incident (𝑃𝐼 ), transmitted (𝑃𝑇 ) and reflected (𝑃𝑅) fields for the situation of a space boundary (a) and a time boundary (b). Note that the axes are
interchanged between (a) and (b). Hence, waves propagating rightward and leftward along the 𝑥-axis are represented by rightward and leftward pointing arrows
in (a) and by downward and upward pointing arrows in (b).

The rightward propagating transmitted field in the half-space 𝑥 > 0 is defined as

𝑃𝑇 (𝑥, 𝑡) = 𝑇𝑥 exp 𝑖(𝑘2𝑥 − 𝜔2𝑡), with 𝑘2 =
𝜔2
𝑐2

, (A.4)

𝑄𝑇 (𝑥, 𝑡) = 1
𝜂2

𝑃𝑇 (𝑥, 𝑡), with 𝜂2 = 𝛽2𝑐2 =

√

𝛽2
𝛼2

, (A.5)

where 𝑇𝑥 is the transmission coefficient. The subscript 𝑥 denotes that this coefficient belongs to a space boundary. The leftward
propagating reflected field in the half-space 𝑥 < 0 is defined as

𝑃𝑅(𝑥, 𝑡) = 𝑅𝑥 exp 𝑖(−𝑘1𝑥 − 𝜔1𝑡), (A.6)

𝑄𝑅(𝑥, 𝑡) = − 1
𝜂1

𝑃𝑅(𝑥, 𝑡), (A.7)

where 𝑅𝑥 is the reflection coefficient. The boundary conditions at 𝑥 = 0 state that 𝑃 and 𝑄 are continuous, hence

𝑃𝐼 (0, 𝑡) + 𝑃𝑅(0, 𝑡) = 𝑃𝑇 (0, 𝑡), (A.8)
𝑄𝐼 (0, 𝑡) +𝑄𝑅(0, 𝑡) = 𝑄𝑇 (0, 𝑡). (A.9)

These equations should hold for all 𝑡, from which it follows that 𝜔2 = 𝜔1 and hence 𝑘2 = 𝑐1
𝑐2
𝑘1, meaning that the wavenumber 𝑘2

f the transmitted field is different from the wavenumber 𝑘1 of the incident and reflected fields (unless of course when 𝑐2 = 𝑐1).
Moreover, it follows that

𝑅𝑥 =
𝜂2 − 𝜂1
𝜂2 + 𝜂1

, (A.10)

𝑇𝑥 =
2𝜂2

𝜂2 + 𝜂1
, (A.11)

which are the well-known expressions for the reflection and transmission coefficients of a space boundary. Note that
1
𝜂1

(1 − 𝑅2
𝑥) =

1
𝜂2

𝑇 2
𝑥 . (A.12)

We define the net power-flux density in the 𝑥-direction as

𝑗 = 1
2
ℜ{𝑃 ∗𝑄}. (A.13)

Substituting 𝑃 = 𝑃𝐼 + 𝑃𝑅, 𝑄 = 𝑄𝐼 +𝑄𝑅 for 𝑥 < 0 and 𝑃 = 𝑃𝑇 , 𝑄 = 𝑄𝑇 for 𝑥 > 0 into Eq. (A.13) we find, using Eq. (A.12), that 𝑗 is
constant. Hence, the net power-flux density of a monochromatic wave field is conserved when traversing a space boundary.

A.2. Time-dependent material

We review reflection and transmission coefficients for a wave incident on a time boundary between two homogeneous time-
invariant ‘‘half-times’’ [1,2,13,15]. We take the time boundary for convenience at 𝑡 = 0, see Fig. A.5b. The parameters for 𝑡 < 0
and 𝑡 > 0 are denoted with subscripts 1 and 2, respectively. The monochromatic incident and transmitted fields are again given by
Eqs. (A.2)–(A.5), this time for 𝑡 < 0 and 𝑡 > 0, respectively, and with 𝑇𝑥 replaced by 𝑇𝑡, with subscript 𝑡 denoting that this coefficient
belongs to a time boundary. Due to causality, the reflected field will not propagate back in time. Instead, the leftward propagating
reflected field for 𝑡 > 0 (indicated by the upward pointing arrow in Fig. A.5b) is defined as
18
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𝑄𝑅(𝑥, 𝑡) = − 1
𝜂2

𝑃𝑅(𝑥, 𝑡), (A.15)

where 𝑅𝑡 is the reflection coefficient. In the literature on waves in time-dependent materials there has been debate whether the
tangential electric and magnetic flux densities (𝐷𝑦, 𝐷𝑧, 𝐵𝑦 and 𝐵𝑧) or the tangential electric and magnetic field strengths (𝐸𝑦, 𝐸𝑧,
𝐻𝑦 and 𝐻𝑧) should be continuous at a time boundary. Refs. [1,2,13,15] are proponents of continuity of the flux densities and Ref. [3]
is a proponent of continuity of the field strengths. Today the consensus is that the flux densities are continuous at a time boundary,
see Refs. [1,13,15] for a clear explanation. According to Table 1 the flux densities are examples of the 𝑈 and 𝑉 fields. Taking 𝑈
and 𝑉 continuous at 𝑡 = 0 we obtain (using Eqs. (3) and (4))

𝛼1𝑃𝐼 (𝑥, 0) = 𝛼2{𝑃𝑅(𝑥, 0) + 𝑃𝑇 (𝑥, 0)}, (A.16)
𝛽1𝑄𝐼 (𝑥, 0) = 𝛽2{𝑄𝑅(𝑥, 0) +𝑄𝑇 (𝑥, 0)}. (A.17)

These equations should hold for all 𝑥, from which it follows that 𝑘2 = 𝑘1 and hence 𝜔2 = 𝑐2
𝑐1
𝜔1, meaning that the frequency 𝜔2 of

the transmitted and reflected fields is different from the frequency 𝜔1 of the incident field [6,13,15] (unless of course when 𝑐2 = 𝑐1).
Moreover, it follows that

𝑅𝑡 = 1
2

(𝛼1
𝛼2

−
𝑐2
𝑐1

)

, (A.18)

𝑇𝑡 = 1
2

(𝛼1
𝛼2

+
𝑐2
𝑐1

)

. (A.19)

These are expressions for the reflection and transmission coefficients of a time boundary. For TE waves, substituting the material
parameters from row 1 of Table 1, it is easily seen that these expressions are the same as those given by Eqs. (4) and (5) in [1].
Note that

𝛼1
𝑐1

=
𝛼2
𝑐2

(𝑇 2
𝑡 − 𝑅2

𝑡 ). (A.20)

We define the net field-momentum density in the 𝑥-direction as [21,40]

𝑀 = 1
2
ℜ{𝑈∗𝑉 }. (A.21)

Substituting 𝑈 = 𝛼1𝑃𝐼 , 𝑉 = 𝛽1𝑄𝐼 for 𝑡 < 0 and 𝑈 = 𝛼2(𝑃𝑅 +𝑃𝑇 ), 𝑉 = 𝛽2(𝑄𝑅 +𝑄𝑇 ) for 𝑡 > 0 into Eq. (A.21) we find, using Eq. (A.20),
that 𝑀 is constant. Hence, the net field-momentum density of a monochromatic wave field is conserved when traversing a time
boundary.

Using Eqs. (3), (4) and (8), the net power-flux density in the 𝑥-direction can be expressed as 𝑗 = 𝑐2𝑀 . Since 𝑀 is constant, we
find 𝑗2 =

𝑐22
𝑐21
𝑗1. This is the discrete counterpart of Eq. (33) for a continuously varying time-dependent material.
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