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Summary

Three-dimensional prestack downward extrapolation of a complete
areal survey over a point diffractor yields a circular symmetric
resolution function with the main lobe width being approximately
6A/5. In practice, however, the sampling distance of the sources
and detectors never fulfils the anti-aliasing condition in the z- as
well as in the y-direction. In this paper we analyze an extreme case
of spatial undersampling, i.e., we consider a single line of sources
along the z-axis and a single line of detectors along the y-axis.
For this situation the “matched filter approach” cannot be used.
We propose a “true amplitude” operator that is adapted for this
acquisition configuration. Although its resolution function is no
longer circular symmetric and side lobes occur, its main lobe is
only approximately v/2 times wider than in the case of full areal
acquisition. Hence, even for this extreme case of spatial under-
sampling, reasonable images can be obtained. This is illustrated
with a prestack migration example of physical model data.

Introduction

Three-dimensional downward wave field extrapolation can be car-
ried out very accurately when the wave fields are sampled on a reg-
ular two-dimensional grid along the surface and when the gridsize
is equal to or less than half the smallest wavelength (anti-aliasing
condition). In seismic practice, however, the grids are often not
regular. Moreover, the sampling distance of the sources and de-
tectors never fulfils the anti-aliasing condition in the z- as well as
in the y-direction. In poststack applications these problems are
'solved’ by sorting the midpoints between sources and detectors
into a regular grid of ’bins’.

This paper aims at analyzing the effects of spatial undersampling
of 3-D data on prestack wave equation based processing. In par-
ticular the spatial resolution of 3-1) downward extrapolation of in-
complete data will be analyzed analytically and a true amplitude
operator will be proposed. Moreover, prestack migration results
will be presented of an “incomplete data acquisition experiment”
that has been conducted in our physical modeling facility.

Forward model of 3-D reflection data

Consider the linearized one-way representation for primary reflec-
tion data (i.e., after decomposition into downgoing and upgoing
waves and after surface related multiple elimination):

P_(XD,XS):/ﬂW_(XD,X)R+(x)l4/+(x,XS)S"'(XS)de, (1)

with x = (z,y, z). The frequency w is omitted for notational con-
venience. ST is a one-way source for downgoing waves, W7, Rt
and W~ describe downward propagation from xg to x, reflection
at x and upward propagation from x to xp, respectively. Finally,
P~ is the received upgoing wave field at xp.

In the following we consider for convenience a source function with
unit amplitude, i.e. ST = 1. Moreover, we consider a single point
diffractor with unit amplitude at x = xp, according to Rt (x) =
d(x — xp). Hence, equation (1) simplifies to



P~ (xp,xs) = W™ (xp,xr)WT(xg,xs). (2)

For a homogeneous macro model the propagators W+ and W~ are
shift invariant: W+ (xpg,xs) = WT(xg—xg,0) and W~ (xp,xg) =
W~ (xp — xr,0). Replacing W*(x,0) and W~ (x,0) by one and
the same propagator W(x) and slightly modifying the notation
yields

P~ (zp,yp,0|zs,ys,0) = (3)
W(zp —2Rr,yp — YR, 2R)W (2R — 5,YR — ¥Us, 2R),

where .
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W(.T,y,Z) = g 3_ ) (4)
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with the ’3-D distance’ r3 defined as r3 = y/z? +y? + 2% and
k = w/e, w being the angular frequency and ¢ the propagation
velocity. Note that the source at (zg, ys, 0) as well as the diffractor
at (zR, YR, zr) are assumed to behave as dipoles.

True amplitude three-dimensional downward extrap-
olation of full 3-D data

In this section we analyze 3-1D downward extrapolation of the data,
described in the previous section. We assume that the sampling
distance of the sources and detectors fulfils the anti-aliasing con-
ditions in the z- as well as in the y-direction. Hence, for this
analysis we may as well use a continuous formulation. The only
approximation in this section will be due to the matched filter,
which suppresses the evanescent part of the wave field.

The expression for full 3-1D downward extrapolation of sources and
detectors to an arbitrary depth level z reads
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P_(ffDﬂ?D,Zlﬁsﬂ?S,Z)=////F(€D—wp,np—yp,z) X
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P~ (zp,yp,0lzs,ys,0)F(zs — &3, ys — 13, 2)dz pdypd sdys,

(5)

where F'(z,y, z) represents the matched filter for a homogeneous
macro model, given by F'(z,y,z) = W*(z,y,z), where * denotes
complex conjugation and where W(z,y, z) is defined in equation
(4). In the following we consider only the zero-offset result, ac-
cording to P,,(&,n,2) = P~(&,n,2|€,n,2). Substitution of the
forward model, defined in equation (3), gives

PZ_O(gvnvz):PD(€77772)P5(€77772)7 (6)
where
Pp 53777 (7)
/ / —xp,n—yp,2)W(zp — 2R, YD — Yr, 2r)d2pdyp
and

PS(fvnaz):PD(ganvz)' (8)



Figure 1: Spatial resolution of 3-D downward extrapolation of full
3-D data. The horizontal axes have been normalized with respect
to the wavelength.

Using some basic results of Fourier theory, we may express Pp (&, 7, z)
in terms of the Fourier transforms of W and F’, according to

1 [ele] oo
PD(g,TI’Z):m/;oo/;ooF(kx’ky’Z) X (9)
W (kg by, 2 )e~ 3 thaEor) TRy (1=VR)} g ik,

where W and F are the spatial Fourier transforms of W and F,
respectively, according to

W (ky, by, 2R) = €% and  F(kg, ky, z) = et9%2 0 (10)
where the vertical wavenumber £, is defined for propagating waves
(i.e., for k2 + k2 < k?) according to k. = +,/k* — kZ — k2 with

k¥ = k. and for evanescent waves (i.e., for kg—l—kz > k?) according

to k, = —j,/k%+k§ — k? with k¥ = —k,. Note that I is the

exact inverse of W for propagating waves, whereas it suppresses
evanescent waves. Substituting these expressions into equation (9)
yields

PD(€,77,Z)=4—71r2 / / e~ ika(2r=2) =i lke(E=ar)+hy (1=vR)} gk,
S~

prop.
waves

(11)
+4—7172 // e_jkz(ZR+Z)e—j{kz(§—$R)+ky(W—QR)}dkxdky_
—~

evan. waves

Next we evaluate Pp(&,n,z) for the diffractor depth z = zg, ig-
noring the erroneous contribution of the evanescent waves. This is
done most conveniently if we introduce polar coordinates, accord-
ingto{—axpr=rcoso, n—yr =rsin ¢, k, = k,cos b, ky, = k,sin 0
and dk,dk, = k,.dfdk,. Hence, for the first integral in equation
(11) we now obtain

Po(&§,n, zr) = :?/()k(/()

k
L/ Jo(kpr)kepdke, = EM
0 27
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where r = /(£ — zr)? + (n — yr)? and where J,, is the n’th order
Bessel function. Using equation (6) we finally find
8 33k

PZ_O (5) m ZR) = Pp (57 m ZR)IDS(ga m ZR) = An2 p2 (13)
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Figure 2: Incomplete data acquisition configuration. The situation
is shown for xp = yr = 0.

see Figure 1 for xg = yr = 0. This result represents the (monochro-
matic) zero-offset response of the diffractor, 'measured’ at the
depth level of the diffractor. Instead of a spatial delta function
we observe a circular symmetric resolution function. The limited
resolution is due to the suppression of the evanescent wave field.
The width of the main lobe (measured at the first zero cross-
ing) is approximately 6A/5, where the wavelength X is defined as
A = 27 /k. Note that the side lobes have very low amplitudes.

True amplitude three-dimensional downward extrap-
olation of incomplete data

As was mentioned in the introduction, in seismic practice the sam-
pling distance of the sources and detectors never fulfils the anti-
aliasing condition in the z- as well as in the y-direction. In this
section we analyze an extreme situation of spatial undersampling
and we derive a true amplitude propagator. We consider a situa-
tion with sources only along the z-axis and detectors only along
the y-axis, see Figure 2. Hence, the sources are severely under-
sampled in the y-direction, but we assume that they are properly
sampled in the z-direction. Similarly, the detectors are severely
undersampled in the z-direction, but we assume that they are
properly sampled in the y-direction. Hence, for our analysis we
may use again a continuous formulation, if we make the following
replacement

P (‘rD7 YD, 0|$S7 ys, 0) - 5($D)P_ (mD7 YD, O|$S7 ys, 0)5(y5)
(14)
Substituting this into equation (5) for 3-D downward extrapolation
and selecting the zero-offset result yields

Pro€ns = [ Fen-w) x  5)
P_(anD70|$57070)F($S _67 _nvz)dde*TS-

Taking for P~ again the response of a point diffractor at (zg, yr, zr)
in a homogeneous macro model (equation 3, with zp = 0 and
ys = 0) yields

Pro(&n,2) = Pp(&,n,2)Ps(&,m, 2), (16)
where
Pp(&,n,2) = /_OO F(& n—yp,z2)W(—zr,yp — yr, 2r)dyp (17)
and

Ps(&,m,2) = / W(zr —2s,yr, 2r)F(zs — &, —1n, 2)dzs. (18)



Note that this time Pp and Ps are different. Since in equations
(17) and (18) we consider one-dimensional integrals, it is useful to
replace the expressions for W and F by pseudo 2-D propagators,
according to

F&n—yp,2) — Fn—yp,z"%); 2?2+ &2,
W(-2r,yp — Yr,28) — W(Up — YR, 23)); =\/2r + 2k,
W(en =25,y 2n) — W(r—2s,20); =\ %h+ Vh

Flzs =&, —-n,2) — F(ms—f,z ); P :\/z + 72

Note that z(8), 21(;), z](%y) and z(") represent ’effective depths’. With
these replacements we obtain

Pp(&,n,2) = / F(n—yp, 2OYW(yp — yr, 2dyp  (19)

—00

and

Po(€n2)= [ Wien—os ) Flas - €20)das,  (20)

where ,

1 1+ jkry z e—Jkr2
g T2 E ] k
with the '2-D distance’ ro defined as ro = vVh2+ 22, h = 2 or
h = y. Note that equations (19) and (20) are fully equivalent
with equations (17) and (18). Again we analyze these expressions
by introducing the Fourier transforms of propagators W and F.
Since we consider incomplete data we cannot use the matched
filter approach for F. Instead, in the Fourier domain we define F
as W1, Using the method of stationary phase we obtain

. [ ik, _. . [2 "
W(kh, z) ~ ;Tr_ze—ﬂczz Y F(kh, z) ~ jﬂTze-l-szz’ (22)

where, for propagating waves (i.e., for k¥ < k?) we have k, =

W(h, z) =

(21)

+1/k? — k? and for evanescent waves (i.e., for k7 > k*) we have

k, = —j\/k? — k?. Using the method of stationary phase again
yields

+ikra 92
¢ or F(h,z)~ T
) k

F(h,z)~ —jz W*(h, z), (23)

for h = x or h = y. Hence, for Pp, as defined in (19), we obtain

Po(€m,2) = 5 [ Flly, 2O (hy, 7)o" 0=k, (20
T

or, ignoring evanescent waves,

5 .’L‘
(& m,2) = 5= / ek Je=iky(1=vR) qk, . (25)

We evaluate this expression for the depth of the diffractor z = zp,
& _

assuming small &/zp and small zp/zp. Hence, 28 — 2z
\2h +&% & zp + £*/2zp. Similarly, z](:f) ~ zp + 2%/2zp. The
terms that are quadratic in € and zg will be ignored in the evalu-
ation of equation (25), which contains other terms that are linear
in n and ygr. Hence, we approximate equation (25) by

1ok sin(k(n = yr))
- iky(n—yr) =
PD(€7 777 ZR) ~ _277 /_ke R dky — 71'(7] — yR) . (26)
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Figure 3: Spatial resolution of 3-D downward extrapolation of in-
complete data. The horizontal axes have been normalized with
respect to the wavelength.

Similarly, for small n/zgr and small yr/zr we obtain

sin(k(€ — mR)).

o p—— (27)

k .
PS(£7 m ZR) ~ i‘/‘ e_sz(g_xR)dkx —
21 J_k
Using equation (16) we finally find

P;5(&m,2r) = Pp(&,m,2r) Ps(&, 1, 2R) (28)
« Sin(k(€ — zr)) sin(k(n — yr))
m(€-ar)  m(n—yr)

see Figure 3 for 2 = ygr = 0. This result represents the (monochro-
matic) zero-offset response of the diffractor, 'measured’ at the
depth level of the diffractor. It is of course not circular sym-
metric, as was the case with full 3-D data (see Figure 1). The
width of the main lobe measured along a diagonal in Figure 3 is
V2 times the width of the main lobe in Figure 1. Also the side
lobes in Figure 3 are more severe. However, looking at the severe
undersampling (Figure 2) we may conclude that the resolution is
quite acceptable.

Finally we analyze the downward extrapolation result for the sit-
uation of an infinite horizontal perfect reflector at depth zr. This
reflector may be seen as a continuous distribution of point diffrac-
tors at depth level zg, hence, the downward extrapolation result
is simply obtained by integrating equation (28) along zr and yg,
according to

[ sin(k(§ — xp)) sin(k(n — yr)) , B
/_Oo /_Oo (€ —2n) iy drpdyp = 1. (29)

This result confirms that F, as defined in equation (23), is indeed
a true amplitude inverse propagator.

Numerical examples

The analytical results in the previous sections are approximations
for small £/zr, /2R, xr/zR and yr/zr. In this section we check
the previously obtained results by a numerical evaluation of equa-
tions (25) and we consider some examples where the above men-
tioned conditions are violated. Figure 4 shows the spatial reso-
lution result for downward extrapolation of incomplete data for
a diffractor depth zr = 20A. Note that this numerical result re-
sembles the approximated analytical result very well. Figure 5
is obtained in the same way, but this time for a diffractor depth



Figure 4: Spatial resolution of numerical 3-D downward extrapola-
tion of incomplete data. The horizontal axes have been normalized
with respect to the wavelength. The extrapolation depth equals 20
wavelengths.

Figure 5: As in Figure 4. The extrapolation depth equals 5 wave-
lengths.

Figure 6: As in Figure 4. Nine diffractor model.

zr = BA, so that the conditions of small £/zg and 7/zg are vi-
olated. In spite of this violation, the character of the resolution
function hardly changed. Finally, Figure 6 shows the result for a
range of diffractors at zg = 20, for which the conditions of small
tr/zr and yr/zg are violated. Note again that the resolution
function is not seriously distorted.

Physical modeling example

We conducted a physical modeling experiment with the acquisi-
tion configuration of Figure 2 over the physical scale model, shown
in Figure 7. The scaling factor that has been used is 20,000; dis-
tances and times are given at the seismic scale. We modeled 101
shots with 101 receivers each. The frequency rangeis 20 < f < 70
Hz. The shot sampling as well as the receiver sampling is 15 m.
Because in the modeling facility it is not possible to have inter-
secting source and receiver lines, we had to make use of reciprocity
and the missing near offsets had to be interpolated. Figures 8 and
9 show the 51rst shot record before and after interpolation of the
missing near offsets.

The data have been downward extrapolated, using equation (15),
with a stepsize Az = 5m. Imaging has been performed by inte-
grating the results along the frequency axis.

Figure 10 is a plan view of the model at depth level z = 400m.
The best imaging results may be expected around the vertical axis



through the intersection of the source and receiver lines. Figure 11
shows a migrated horizontal depth slice at z = 400m. Apart from
the image of the horizontal reflector, the contours of the dome
and the fault can also (just) be recognized (compare with Figure
10). Figures 12 and 13 show migrated vertical cross-sections at
zp = 3200m and ys = 4400m, respectively. Note that, partic-
ularly in Figure 12, the fault is accurately imaged, despite the
severe undersampling. Finally, for comparison Figure 14 shows
a migrated vertical cross-section parallel to the source line at
z = 3620m, obtained by the areal shot record migration of the
second author.

Conclusions

It has been shown that 3-D prestack downward extrapolation of
full 3-D data yields a circular symmetric resolution function with
a width of 6A/5 and very low side lobes (Figure 1). For an extreme
situation of spatial undersampling (Figure 2) it has been shown
that the resolution function is still quite acceptable (the width
along the diagonal increases by a factor of /2, the amplitudes of
the side lobes along the main axes increase somewhat, see Figure
3). It has been confirmed in equation (29) that the proposed
inverse propagator F' (equation 23) yields true amplitude results.
It should be noted that the configuration of Figure 2 is an ex-
treme example of spatial undersampling. A more realistic land
acquisition configuration consists of a number of parallel source
lines and a number of parallel receiver lines. For this configura-
tion true amplitude imaging of the zero-offset reflectivity could be
accomplished by applying the true amplitude operator, given by
equation (23), divided by the product of the number of source- and
receiver lines that contribute to the imaging region of interest.
Of course the results derived in this paper strictly apply only to
constant velocity media. However, it is expected that the modi-
fication of the matched filter, formulated in equation (23), is ap-
proximately valid in inhomogeneous media.
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Figure 7: Physical model.
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Figure 10: Cross section through model at z = 400m.

EW position (m)
2500 3000 3500

4000+

4500+

NS position (m)

5000+

z = 400m

Figure 11: Migrated depth slice at z = 400m.
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Figure 12: Migrated vertical cross-section along the detector line
at xp = 3200m.
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Figure 13: Migrated vertical cross-section along the source line at
ys = 4400m.
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Figure 14: Result of areal shot record migration at x = 3620m.



