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Summary 
 
Our aim is to redatum multi-component sources from their 
actual location near the earth surface to multi-component 
receiver locations in a horizontal borehole, without 
requiring any information about the medium between 
sources and receivers. For this purpose we use elastic 
interferometry by Multi-Dimensional Deconvolution 
(MDD). We show how MDD is related to Cross-
Correlation-based (CC) redatuming techniques such as the 
Virtual Source method. We test the accuracy of MDD on a 
2D synthetic elastic model in the presence of intrinsic 
losses and background noise. We observe that loss terms 
are handled correctly and that MDD is numerically stable 
under the corruption of uncorrelated noise.  
 
Introduction 
 
Recently, various cross-correlation (CC) based techniques 
have emerged to redatum source locations to subsurface 
receivers without requiring a velocity model of the medium 
between sources and receivers. Examples include the 
Virtual Source method (Bakulin and Calvert, 2006), 
Interferometric Imaging (Schuster et al., 2004) and other 
forms of Seismic Interferometry (Wapenaar et al., 2008a). 
The underlying theory generally relies on a closed 
boundary of sources surrounding the receivers and the 
assumption of a lossless medium. In practice, these 
methods are often applied to cases with one-sided 
illumination and intrinsic losses may be significant. As a 
consequence, spurious events can emerge and seismic 
amplitudes of retrieved data will generally be incorrect 
(Snieder et al., 2006). Alternatively, we can apply Seismic 
Interferometry by Multi-Dimensional Deconvolution 
(MDD) (Wapenaar et al., 2008b). This method can be 
applied in general anisotropic inhomogeneous dissipative 
media and it has the ability to compensate for anisotropic 
illumination (Wapenaar et al., 2008c). We review the 
theory of MDD-based interferometry and show its relation 
to CC-based methods. Then we introduce a simple 
synthetic 2D elastic model to test the stability of MDD in 
the presence of intrinsic losses and uncorrelated noise.  
 

 
Figure 1: Configuration. 1001 multi-component sources are 
located near the earth surface with 8m spacing. 201 multi-
component receivers are located at 800m depth with 8m spacing. 
Shown is the P-wave velocity model in m/s. 
 
Theory 
 
The configuration for a typical experiment of our interest is 
shown in Figure 1. We assume to have multi-component 
sources at the surface and registrations of particle velocity 
( )ω,,ˆ SR xxv  and tractions ( )ω,,ˆ SR xxτ  in a borehole at 

depth, where Rx  is the receiver location, Sx  the source 
location and ω  the angular frequency (the circumflex 
denotes the space-frequency-domain). Each source-receiver 
pair is then decomposed into a flux-normalized downgoing 
field ( )ˆ , ,R S ω+p x x  and upgoing field ( )ˆ , ,R S ω−p x x  by 

the following  operation: 
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where 1−̂L  is a decomposition operator; depending on the 
medium parameters at the receiver level; see Wapenaar et 
al. (2008b) for details. The decomposed wave fields can be 

represented as ( )T±±±± ΥΨΦ= ˆˆp̂ , where ±Φ̂ , ±Ψ̂  

and ±Υ  are representations of the down- or upgoing P-, Sv 
and Sh-wave potential, respectively. The decomposition is 
scaled such that all wave fields are power-flux normalized.  

8m 201 receivers

8m 1001 sources
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Due to this normalization, it can be shown that the 
following reciprocity relation of the convolution type is 
satisfied: 
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where the integrals are over any arbitrary depth levels 1D∂  
and 2D∂ . Subscripts A and B represent two wavefields in 
state A and B, respectively. In state B we choose the actual 
parameters, with a source at location Sx , yielding the 

observed decomposed data ( )ω,,ˆˆ SB xxpp ±± = .  For state 
A we choose a reference medium, where the medium above 
the receiver array has been replaced by a homogeneous 
halfspace. We choose a source at location Ax  just above 
the actual receiver array. We refer to this state with 
subscript zero; thus: ( )ω,,ˆˆ 0 AA xxpp ±± = . Level 1D∂  is 
chosen as the receiver level. Since this level is situated 
right below the source location Ax  and all inhomogenities 
above 1D∂  have been removed in the reference state, the 
downgoing field at 1D∂  can be interpreted as a 2D delta-
function convolved with the source wavelet: 

( )AHHS ,0
ˆˆ xxp −=+ δ , where subscript H  denotes that 

only the horizontal coordinates are taken into account.  We 
choose 2D∂  as the deepest level where scattering occurs, 

such that ( ) 0,,ˆ =− ωSxxp  and ( ) 0,,ˆ 0 =− ωSxxp  for 

2D∂∈x . In practice these conditions can be satisfied by 
assuming the level to be deep enough such that all 
amplitudes are below the noise level. Substituting these 
boundary conditions into representation 2 and we find 
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where we substituted ++ = 00 ˆˆˆ pRS  , with +
0R̂  being the 

reflection response of the medium below the receiver array, 
which we can write as 
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where +
XYR ,0

ˆ  represents the reflection response relating 

the reflected X -mode to the incident Y -mode. The 
purpose of MDD is to solve this integral in a least-squares 
sense. This method is closely related to Betti 
Deconvolution (Amundsen, 1999; Holvik and Amundsen, 
2005) and Least-Squares Redatuming (Schuster and Zhou, 
2006). First we discretize equation 3 as 
 

++= PRP 0
- ˆˆˆ .      (5) 

Here ±P̂  is a matrix of vectors ( )ˆ , ,R S ω±p x x , where the 

columns have fixed source type and location but variable 
receiver type and location and the rows have fixed receiver 
type and location but variable source type and location. 

0
ˆ +R  is a matrix of multi-component reflection matrices 

( )ω,,ˆ
0 AR xxR+ . Equation 2 can be solved by least-

squares inversion as 
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where ε  is introduced as a stabilization factor, superscript 
†  denotes the complex-conjugate transpose and I  is the 
identity matrix. If we approximate the term between square 
brackets by the identity matrix, we are left with 
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which can be written in integral notation as 
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where the integral is over source locations Sx . Equation 8 
can be recognized as a multi-dimensional variant of the 
Virtual Source method for up- and downgoing wavefields, 
as suggested by Mehta et al. (2007). In the following 
example we will use both Multi-Dimensional 
Deconvolution and Cross-Correlation to demonstrate that 
the first can  yield improvements in some particular cases.  
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Example 
 
The P-wave velocity model and geometry for this example 
is shown in Figure 1. 1001 2-component sources are 
located at the surface, whereas the tractions and particle 
velocities are assumed to be known at the receiver level at 
800m depth. We use visco-elastic finite difference 
modeling (Robertsson et al, 1994) to generate synthetic 
data with intrinsic losses, where we choose a Q-factor for 
P-waves 21=PQ  and a Q-factor for S-waves 16=SQ  
at 30 Hz frequency. The wave fields are decomposed with 
equation 1 and redatumed to the receiver level by MDD 
(equation 8). We also generate a reference data set. This is 
done by replacing the medium above the receiver array 
with a homogeneous halfspace with similar properties as at 
the receiver array and placing multi-component sources at 
the receiver locations. The reference responses are 
decomposed with equation 1 at both the source and receiver 
side to generate the reference reflection matrix for 

( )ω,,ˆ
0 AR xxR+ . In Figure 2 we show 9 retrieved traces in 

red versus the reference data in black for the PP reflection 
response. Note that MDD was very successful in retrieving 
the correct response for this shot record. Next we compare 
the response with that of CC-based redatuming through 
equation 7 – see Figure 3. Note that the phase is still 
handled correct, but the amplitude to offset behavior is less 
accurate. This is even better visible if we present the 
amplitude spectra in the frequency-space domain.  Figure 4 
presents the amplitude spectrum of the PP reference 
response in the frequency-space domain. In Figure 5 we 
show the equivalent retrieved spectrum by CC-based 
interferometry. Note that the match with the reference 
response (Figure 4) is quite poor, due to the fact that the 
underlaying assumptions of CC-based interferometry are 
not exactly met. Proper handling of the inverse in equation 
6, however, like we do in implementation of MDD, 
retrieves the amplitude spectrum more accurately, as we 
demonstrate in Figure 6. Next we redo the modeling 
without loss-terms but with corruption of uncorrelated 
noise within the seismic frequency bandwidth with 
amplitudes up to 30% of the maximum amplitude in the 
initial shot gathers. In Figure 7 we show an example of a 
noise corrupted shot record that was used as input. Once 
more we used equation 7 to apply MDD to redatum the 
field. As an example we show the PS-converted response in 
Figure 8. Note that also for these noise corrupted gathers, 
MDD is able to give a very reasonable prediction of both 
amplitude and phase. 
 
 
 

Conclusion 
 
We have tested elastic interferometry by Multi-
Dimensional Deconvolution for its ability to handle 
intrinsic losses and noise. It is shown that MDD provides a 
very accurate response in dissipative media with better 
amplitude to offset characteristics than Cross-Correlation 
(CC) based methodology. Further MDD proofed stable 
under the corruption of random noise within the seismic 
frequency band. 
 

 
Figure 2: PP reflection response at the receiver level as retrieved 
by Multi-Dimensional Deconvolution (red), compared with a 
reference response (black) for a selection of 9 traces. 

 

 
Figure 3: PP reflection response at the receiver level as retrieved 
by Cross-Correlation (red), compared with a reference response 
(black) for a selection of 9 traces. 
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Figure 4: Amplitude spectrum of the reference PP response in the 
frequency-space domain.  

 
Figure 5: Amplitude spectrum of the PP reflection response in the 
frequency-space domain as retrieved by Cross-Correlation.  

 
Figure 6: Amplitude spectrum of the PP reflection response in the 
frequency-space domain as retrieved by Multi-Dimensional 
Deconvolution.. 

Figure 7: Example of a shot record corrupted wit uncorrelated 
noise (red) overlaying the same shot record without noise (black); 
a vertical force source was located at the earth surface and we 
show vertical particle velocities at 800m depth. 

 

 
Figure 8: PS reflection response at the receiver level as retrieved 
by Multi-Dimensional Deconvolution (red), compared with a 
reference response (black) for a selection of 9 traces. Uncorrelated 
noise was added to the input data. 
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