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Introduction

The interaction of elastodynamic waves with imperfectly coupled interfaces has been investigated by many
authors for various situations. Schoenberg [2] introduced the linear slip model for an interface between two
elastic media. In this model it is assumed that the particle displacement of an elastic wave at an interface
jumps by a finite amount, linearly proportional to the stress at the interface. The stress itself is assumed
continuous across the interface. The ratio of the stress and the displacement jump is the specific boundary
stiffness. Pyrak-Nolte et al. [1] extended this model with a specific boundary viscosity, which is the ratio of
stress and a velocity jump across the interface. Other authors considered imperfect boundary conditions for
amongst others, electromagnetic waves in matter and for Biot waves in porous media.

In this paper we analyze reciprocity theorems and power balances for various wave types in piecewise
continuous inhomogeneous media, containing arbitrarily shaped interfaces with imperfect coupling. We
illustrate the relations for the elastodynamic linear slip models of Schoenberg [2] and Pyrak-Nolte et al. [1].

General boundary conditions for wave fields at imperfectly coupled interfaces

We use a unified notation that applies to acoustic waves in fluids, elastodynamic waves in solids, electro-
magnetic waves in matter, poroelastic waves in porous solids and seismoelectric waves in porous solids.
The general boundary conditions for each of these wave phenomena can be cast in a single matrix-vector
equation, according to

∆(Mû) = Ŷ〈Mû〉, (1)

whereû is the wave field vector,M is a matrix that contracts this wave vector to the components that are
involved in the boundary conditions and̂Y is a matrix containing the specific boundary parameters.∆(·)
and〈·〉 represent the jump and the average across the interface, respectively. We illustrate equation (1) for the
situation of elastodynamic waves in solids. An elastodynamic wave field is described in the space-frequency
(x, ω) domain in terms of the stresŝτij(x, ω) and the particle velocitŷvi(x, ω). We use a subscript notation
for the components of vectorial and tensorial quantities. Lower-case Latin subscripts take on the values 1,
2 and 3 and Einstein’s summation convention applies to repeated subscripts. Consider an interface with
normal vectorn = (n1, n2, n3)T between two solids with different (space-dependent) medium parameters
(superscriptT denotes transposition). The general boundary conditions for an elastodynamic wave field at
an imperfectly coupled interface read

∆(τ̂ijnj) = β̂ik〈v̂k〉, (2)

∆v̂i = γ̂ik〈τ̂kjnj〉. (3)

Here β̂ik = β̂ik(x, ω) and γ̂ik = γ̂ik(x, ω) are anisotropic frequency-dependent parameters. Boundary
conditions (2) and (3) can be captured by matrix-vector equation (1), with

û =




v̂
−τ̂τττ1

−τ̂τττ2

−τ̂τττ3


 ,M =

(
I O O O
O n1I n2I n3I

)
, Ŷ =

(
O −γ̂γγγ

−β̂βββ O

)
, (4)
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where(v̂)i = v̂i, (τ̂τττ j)i = τ̂ij , (β̂βββ)ik = β̂ik, (γ̂γγγ)ik = γ̂ik, (I)ik = δik and (O)ik = 0. We consider
some special situations. Whenβ̂βββ = O (which is usually the case) andn = (0, 0, 1)T (i.e., the interface is
horizontal), then equations (1) and (4) yield∆v̂ = γ̂γγγ τ̂τττ3. Furthermore, when̂γγγγ can be written as

γ̂γγγ =




(K1
jω + η)−1 0 0

0 (K2
jω + η)−1 0

0 0 (K3
jω )−1


 , (5)

this yields

τ̂13 = K1
∆v̂1

jω
+ η∆v̂1, τ̂23 = K2

∆v̂2

jω
+ η∆v̂2, τ̂33 = K3

∆v̂3

jω
. (6)

These equations represent the frequency domain equivalent of the extended linear slip model of Pyrak-Nolte
et al. [1]. The first term on the right-hand side of each of these equations represents the specific boundary
stiffnessKi multiplied with the displacement jump∆v̂i/jω; the second term is the product of the specific
boundary viscosityη and the velocity jump∆v̂i. Whenη = 0 andK1 = K2, these equations reduce to the
linear slip model of Schoenberg [2].

Unified reciprocity theorems

For any of the wave phenomena mentioned in the previous section, we derived two unified reciprocity
theorems (Wapenaar and Fokkema [3]), which are briefly reviewed here. We consider two physical states
in a volumeV, enclosed by surface∂V with outward pointing normal vectorn. The field quantities, the
material parameters, as well as the source functions may be different in both states; they will be distinguished
with subscriptsA andB (of course the summation convention does not apply for these subscripts). For the
moment we assume that there are no interfaces inV. In the frequency domain, the reciprocity theorem of
the convolution type reads
∮

∂V
ûT

AKNxûB d2x =
∫

V

[
ûT

AKŝB − ŝT
AKûB

]
d3x+

∫

V
ûT

AK
[
jω(AA−AB)+(BA−BB)

]
ûB d3x. (7)

We speak of a convolution-type theorem, because the multiplications in the frequency domain correspond
to convolutions in the time domain. This theorem interrelates the wave field quantities (contained inûA and
ûB), the material parameters (contained inAA, BA, AB andBB) as well as the source functions (contained
in ŝA and ŝB) of statesA andB. The material parameter matrices, the source vectors as well as matrices
Nx andK are given in [3] for the different wave phenomena discussed above. The reciprocity theorem of
the correlation type reads

∮

∂V
ûH

A NxûB d2x =
∫

V

[
ûH

A ŝB + ŝH
A ûB

]
d3x +

∫

V
ûH

A

[
jω(AA −AB)− (BH

A + BB)
]
ûB d3x, (8)

where superscriptH denotes transposition and complex conjugation. We speak of correlation type, because
the multiplications in the frequency domain correspond to correlations in the time domain. For elastody-
namic waves, the matricesNx andK are given by

Nx =




O n1I n2I n3I
n1I O O O
n2I O O O
n3I O O O


 and K =




I O O O
O −I O O
O O −I O
O O O −I


 . (9)

Reciprocity for imperfectly coupled interfaces

We now extend the reciprocity theorems for the situation in whichV contains imperfectly coupled internal
interfaces. To this end we subdivideV into L continuous regions, according toV = V1 ∪ V2 · · · · ∪ VL,
see Figure 1. RegionVl is enclosed by surface∂Vl with outward pointing normal vectornl. The boundaries
between these regions represent the imperfectly coupled internal interfaces. Note that each internal interface
is part of two surfaces∂Vl, with oppositely pointing normal vectorsnl, see Figure 1.
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Figure 1:Piecewise continuous volumeV = V1 ∪ V2 · · · · ∪ VL.

Since the medium parameters in regionVl are continuous, the reciprocity theorems (7) and (8) apply to each
of these regions. Summing both sides of these equations overl yields again equations (7) and (8) for the
total volumeV, with in the left-hand sides extra integrals over the internal interfaces, given by

∫

Σint

[(
ûT

AKNxûB

)
1
+

(
ûT

AKNxûB

)
2

]
d2x and

∫

Σint

[(
ûH

A NxûB

)
1
+

(
ûH

A NxûB

)
2

]
d2x, (10)

respectively, whereΣint constitutes the total of all internal interfaces; the subscripts1 and2 denote the two
sides of the internal interfaces. In the following, we evaluate these integrals, using the general boundary
condition of equation (1). To this end we first introduce matricesN andJ, such that

KNx = MTNM and Nx = MHJM. (11)

For example, for elastodynamic waves in solids, matricesN andJ are given by

N =
(

O I
−I O

)
and J =

(
O I
I O

)
. (12)

Since the normal vectors have different signs at opposite sides of an interface (see Figure 1), we have

MT
2 NM2 = −MT

1 NM1 and MH
2 JM2 = −MH

1 JM1. (13)

We use equations (11) and (13) to rewrite the interface integrals of equation (10) as
∫

Σint

(
ûT

1,AMTNMû1,B − ûT
2,AMTNMû2,B

)
d2x (14)

and ∫

Σint

(
ûH

1,AMHJMû1,B − ûH
2,AMHJMû2,B

)
d2x, (15)

respectively, whereM stands forM1. In case of perfect coupling, we haveMû2 = Mû1 for stateA as
well as stateB, hence, the internal interface integrals vanish. This means that the reciprocity theorems (7)
and (8) are valid for a piecewise continuous medium (as in Figure 1) with perfectly coupled interfaces. Of
course the more interesting case is the one in which the interfaces are partially coupled. For this situation
we rewrite the general boundary condition (1) as

M(û2 − û1) = ŶM(û2 + û1)/2, (16)

or
Mû2 = ẐMû1, with Ẑ = (I− Ŷ/2)−1(I + Ŷ/2). (17)

We substitute equation (17) for statesA andB into the interface integrals (14) and (15), which yields
∫

Σint

ûT
AMT

(
N− ẐT

ANẐB

)
MûB d2x and

∫

Σint

ûH
A MH

(
J− ẐH

A JẐB

)
MûB d2x, (18)

respectively. This is the final form of the integrals that have to be added to the left-hand sides of equations
(7) and (8), respectively. Note thatûA andûB stand forû1,A andû1,B, respectively (similar asM stands
for M1). It is arbitrary which side of the interface is designated ‘side 1’. All that matters is thatûA, ûB and
M all refer to the same side of the interface.
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Analysis of the internal interface integral in the reciprocity theorem of the convolution type

In the following analysis we takêZA = ẐB = Ẑ. The internal interface integral in the reciprocity theorem
of the convolution type (equation 18, first integral) vanishes when

ẐTNẐ = N, (19)

or, substituting equation (17), reorganizing some terms and using the propertyN−1 = −N, when

(I− Ŷ/2)N(I− ŶT /2) = (I + Ŷ/2)N(I + ŶT /2). (20)

Hence, reciprocity theorem (7) is valid in all situations where equation (20) is fulfilled. As a consequence,
in those situations source-receiver reciprocity remains valid when the source and receiver are separated by
imperfectly coupled interfaces.

As an example, we substitutêY andN as defined in equations (4) and (12) for elastodynamic waves in
solids into equation (20). It thus follows that the interface integral vanishes whenβ̂βββ = β̂βββT andγ̂γγγ = γ̂γγγT . In
the linear slip model of Schoenberg [2] as well as the extended linear slip model of Pyrak-Nolte et al. [1]
these conditions are fulfilled sincêββββ = O andγ̂γγγ is diagonal (equation 5).

Analysis of the internal interface integral in the reciprocity theorem of the correlation type

The internal interface integral in the reciprocity theorem of the correlation type (equation 18, second inte-
gral) vanishes when

ẐHJẐ = J, (21)

or, substituting equation (17), reorganizing some terms and using the propertyJ−1 = J, when

(I− Ŷ/2)J(I− ŶH/2) = (I + Ŷ/2)J(I + ŶH/2). (22)

Hence, reciprocity theorem (8) is valid in all situations where equation (22) is fulfilled. As a consequence,
in those situations no power dissipation occurs at the imperfectly coupled interfaces.

As an example, we substitutêY andJ as defined in equations (4) and (12) for elastodynamic waves in solids
into equation (22). It thus follows that the interface integral vanishes whenβ̂βββ = −β̂βββH andγ̂γγγ = −γ̂γγγH . In the
linear slip model of Schoenberg [2] these conditions are fulfilled, sinceβ̂βββ = O andγ̂γγγ is a purely imaginary
diagonal matrix (equation (5), withη = 0). However, in the extended linear slip model of Pyrak-Nolte et al.
[1] these conditions are not fulfilled since the diagonal matrixγ̂γγγ (equation 5) is not purely imaginary.

Conclusions

We have formulated general boundary conditions at imperfectly coupled interfaces for acoustic waves in
fluids, elastodynamic waves in solids, electromagnetic waves in matter, poroelastic waves in porous solids
and seismoelectric waves in porous solids. These boundary conditions are captured by the general matrix-
vector equation∆(Mû) = Ŷ〈Mû〉, where matrixŶ contains the specific interface parameters. Using
this equation, we have extended two unified reciprocity theorems (one of the convolution-type and one of
the correlation-type) with an extra integral over the imperfectly coupled interfaces. We have formulated
conditions for the matrix̂Y under which the extra integrals vanish [equations (20) and (22)]. It appears that
the extra integral in the convolution-type reciprocity theorem vanishes in the considered cases, which means
amongst others that source-receiver reciprocity remains valid when the source and receiver are separated by
imperfectly coupled interfaces. The extra integral in the correlation-type reciprocity theorem vanishes only
in a limited number of cases. In those situations where it does not vanish, the imperfectly coupled interfaces
dissipate power.
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