
Introduction
Since the pioneering work of Weaver and Lobkis (2001), Campillo and Paul (2003) and others, the liter-
ature on retrieving the acoustic Green’s function from the cross-correlation of two wave field recordings
(‘seismic interferometry’) has expanded spectacularly. Apart from the many successful demonstrations
of the method on ultrasonic, geophysical and oceanographic data, many theoretical developments have
been published as well. One particular branch of theory is based on the reciprocity principle. Recent
developments in this branch of research are the extension for situations where time-reversal invariance
does not hold [as for electromagnetic waves in conducting media (Slobet al. , 2006), acoustic waves
in attenuating media (Snieder, 2006a), or general scalar diffusion phenomena (Snieder, 2006b)], as well
as for situations where source-receiver reciprocity breaks down [as in moving fluids (Wapenaar, 2006b;
Godin, 2006)]. Recently we developed a unified representation of Green’s functions in terms of cross-
correlations that covers all these cases (Wapenaaret al. , 2006; Sniederet al. , 2006). Due to the unified
formulation, the theory readily extends to more complex situations, such as electroseismic Green’s func-
tion retrieval in poro-elastic media. In this paper we discuss the main aspects of the unified representation
and discuss its physical interpretation.

General matrix-vector equation
Diffusion, flow and wave phenomena can each be captured by the following differential equation in
matrix-vector form (Wapenaar and Fokkema, 2004),

A
Du
Dt

+ Bu + Dxu = s, (1)

whereu = u(x, t) is a vector containing space- and time-dependent field quantities,s = s(x, t) is a
source vector,A = A(x) andB = B(x) are matrices containing space-dependent material parameters
andDx is a matrix containing the spatial differential operators∂1, ∂2 and∂3. D/Dt denotes the material
time derivative, defined asD/Dt = ∂/∂t + v0 ·∇, where∂/∂t is the time derivative in the reference
frame andv0 = v0(x) the space-dependent flow velocity of the material; the termv0 · ∇ vanishes in
non-moving media. In the following we discuss equation (1) for some specific situations.

For acoustic wave propagation in a moving attenuating fluid we have

u=




p
v1

v2

v3


 , s=




q
f1

f2

f3


 ,A=




κ 0 0 0
0 ρ 0 0
0 0 ρ 0
0 0 0 ρ


 ,B=




bp 0 0 0
0 bv 0 0
0 0 bv 0
0 0 0 bv


 ,Dx =




0 ∂1 ∂2 ∂3

∂1 0 0 0
∂2 0 0 0
∂3 0 0 0


 ,

with p the acoustic pressure,vi the particle velocity,q the volume injection rate,fi the external force,κ
the compressibility,ρ the mass density, andbp andbv the loss terms. ReplacingA byρ diag(1, 0, 0, 0) and
B by 1

ρD diag(0, 1, 1, 1) (with D the diffusion coefficient), equation (1) turns into a diffusion equation.

For electroseismic wave propagation in a non-moving (v0 = 0) saturated porous solid we have (Pride,
1994)

uT = (ET ,HT , {vs}T ,−τT
1 ,−τT

2 ,−τT
3 ,wT , pf ), (2)

sT = (−{Je}T ,−{Jm}T , fT ,hT
1 ,hT

2 ,hT
3 , {ff}T , hf ) (3)

(superscriptT denoting transposition and superscriptss and f referring to the solid and fluid phase,
respectively), whereE andH are the average electric and magnetic field vectors,vs andτ i the solid
particle velocity and bulk traction vectors,w = ϕ(vf − vs) the filtration velocity (withϕ the porosity),
pf the fluid pressure,Je andJm the external electric and magnetic current density vectors,f andff the
external forces on the bulk and on the fluid,hi andhf the modified external deformation rates for the
bulk and the fluid, andA, B andDx being22× 22 matrices.

Omitting E, H, Je andJm from u ands in equations (2) and (3) gives the field and source vectors
for the Biot theory (Biot, 1956). Omitting in additionw, pf , ff andhf gives the field and source vectors
for elastodynamic wave propagation in a solid. On the other hand, omittingvs, τ i, w, pf , f , hi, ff and
hf from u ands in equations (2) and (3) gives the field and source vectors for electromagnetic wave
propagation and/or diffusion in matter.

In all cases, matricesA(x) andB(x) can be replaced by temporal convolutional operatorsA(x, t)∗
andB(x, t)∗ to account for more general attenuation mechanisms. We define the Fourier transform of
a time-dependent functionf(t) as f̂(ω) =

∫
f(t) exp(−jωt)dt, wherej is the imaginary unit andω

denotes the angular frequency. Applying the Fourier transform to all terms in the matrix-vector equation
(with A andB defined as temporal convolutional operators) yields

Â
(
jω + v0 ·∇)

û + B̂û + Dxû = ŝ. (4)
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Figure 1: From (a) to (b): interferometry with controlled sources at the Earth’s surface (Application 1). From (c) to
(b): interferometry with uncorrelated noise sources in the Earth’s subsurface (Application 3). In both examples the
vertical particle velocity is cross-correlated with the horizontal electric field, yielding the electroseismic response of
a horizontal electric current source observed by a vertical geophone.

Green’s matrix
For the introduction of the Green’s matrix we replace the space- and frequency-dependentL× 1 source
vectorŝ(x, ω) in equation (4) by aL×L frequency-independent point source matrixIδ(x−xA), where
I is the identity matrix andxA denotes the source point. Correspondingly, theL× 1 field vectorû(x, ω)
is replaced by aL × L Green’s matrixĜ(x,xA, ω). For example, the acoustic Green’s matrix is given
by

Ĝ(x,xA, ω) =




Ĝp,q Ĝp,f
,1 Ĝp,f

,2 Ĝp,f
,3

Ĝv,q
1 Ĝv,f

1,1 Ĝv,f
1,2 Ĝv,f

1,3

Ĝv,q
2 Ĝv,f

2,1 Ĝv,f
2,2 Ĝv,f

2,3

Ĝv,q
3 Ĝv,f

3,1 Ĝv,f
3,2 Ĝv,f

3,3


 (x,xA, ω). (5)

The superscripts refer to the type of observed wave field atx and the source type atxA, respectively;
the subscripts denote the different components. The(k, l)-element ofĜ represents a receiver-type cor-
responding to thekth element of field vector̂u and a source-type corresponding to thelth element of
source vector̂s.

Unified Green’s function retrieval by cross-correlation
Consider an arbitrary spatial domainD with boundary∂D and outward pointing normal vectorn =
(n1, n2, n3) and define two pointsxA andxB both inD. The general expression for Green’s function
retrieval by cross-correlation reads

Ĝ(xB ,xA, ω) + Ĝ†(xA,xB , ω) =

−
∮

∂D
Ĝ(xB ,x, ω)M̂5Ĝ†(xA,x, ω) d2x +

∫

D
Ĝ(xB ,x, ω)M̂6Ĝ†(xA,x, ω) d3x (6)

(Wapenaaret al. , 2006), withM̂5 = Nx + Â†(v0 · n) andM̂6 = −(∇←− · v
0 − jω)2j=(Â) + B̂ + B̂†,

where∇←− acts on the quantity left of it, superscript† denotes transposition and complex conjugation,=
denotes the imaginary part, andNx is a matrix defined similar asDx, but with∂i replaced byni. Note
that=(Â) andB̂+B̂† account for the attenuation of the medium. Equation (6) is a general representation
of the Green’s matrix betweenxA andxB in terms of cross-correlations of observed fields atxA andxB

due to sources atx on the boundary∂D as well as in the domainD. The inverse Fourier transform of the
left-hand side isG(xB ,xA, t) + GT (xA,xB ,−t), from whichG(xB ,xA, t) is obtained by taking the
causal part.

The application of equation (6) requires independent measurements of the impulse responses of dif-
ferent types of sources at allx ∈ D ∪ ∂D. In the following we consider three special situations.



Application 1. Controlled sources on∂D
Assuming the medium is lossless throughoutD, the domain integral in equation (6) vanishes. When the
medium is non-flowing, the term̂M5 reduces toNx, hence

Ĝ(xB ,xA, ω) + Ĝ†(xA,xB , ω) = −
∮

∂D
Ĝ(xB ,x, ω)NxĜ†(xA,x, ω) d2x. (7)

In practical situations the sources are not available on a closed surface. Assuming the medium is ‘suffi-
ciently inhomogeneous’, the closed surface∂D can be replaced by an open surface (Wapenaar, 2006a).
Hence, in exploration seismology (Figure 1a) it is under specific conditions sufficient to have sources at
the Earth’s surface only. Consider for example the(9, 1)-element of the electroseismic Green’s matrix
G(xB ,xA, t), which is the vertical particle velocity of the solid phase atxB due to an impulsive hori-
zontal electric current source atxA, see Figure 1b. According to equation (7) this particular element is
obtained by cross-correlating the vertical particle velocity atxB [the 9th row ofG(xB ,x, t)], with the
horizontal electric field atxA [the first column ofNxGT (xA,x, t)], summing over the different source
types atx (the row-column multiplication) and integrating along all available sources on the surface∂D.

In the following we modify the right-hand side of equation (6) into a direct cross-correlation (i.e.,
without the integrals) of diffuse field observations atxA andxB , the diffusivity being due to a distribu-
tion of uncorrelated noise sources. Following Snieder (2006a) we separately consider the situation for
uncorrelated sources inD and on∂D.

Application 2. Uncorrelated sources inD
The boundary integral vanishes when homogeneous boundary conditions apply at∂D or, in case of
infinite D, when one or more elements of the loss matrices=(Â) or B̂ + B̂† are non-zero throughout
space. For these situations we consider a noise distributionŝ(x, ω) throughoutD (see Figure 2), where
ŝ is a vector with elementŝsk. We assume that two noise sourcesŝk(x, ω) and ŝl(x′, ω) are mutually
uncorrelated for anyk 6= l andx 6= x′ inD, and that their power spectra are the same for allx andk, apart
from a space- and frequency dependent excitation function. Hence, we assume that these noise sources
obey the relation〈ŝ(x′, ω)ŝ†(x, ω)〉 = λ̂(x, ω)δ(x − x′)Ŝ(ω), where〈·〉 denotes a spatial ensemble
average,̂S(ω) the power spectrum of the noise, andλ̂(x, ω) is a diagonal matrix containing the excitation
functions. We express the observed field vector atxA asûobs(xA, ω) =

∫
D Ĝ(xA,x, ω)ŝ(x, ω) d3x [and

a similar expression for̂uobs(xB , ω)]. Evaluating the cross-correlation of the observed fields yields

〈ûobs(xB , ω){ûobs(xA, ω)}†〉 =
∫

D
Ĝ(xB ,x, ω)λ̂(x, ω)Ĝ†(xA,x, ω)Ŝ(ω) d3x. (8)

Comparing this with the right-hand side of equation (6) (with vanishing boundary integral), we obtain

{Ĝ(xB ,xA, ω) + Ĝ†(xA,xB , ω)}Ŝ(ω) = 〈ûobs(xB , ω){ûobs(xA, ω)}†〉, (9)

assuminĝλ(x, ω) = M̂6(x, ω). Hence, for those situations in whicĥM6 is a diagonal matrix with one or
more non-zero elements (e.g. for scalar diffusion or acoustic wave propagation in an attenuating medium
with either real-valued̂A or zero flow velocityv0, for electromagnetic diffusion and/or wave propagation
in a non-moving isotropic attenuating medium and, under particular conditions, for electroseismic wave
propagation in an isotropic porous medium), the Green’s matrix betweenxA andxB can be obtained from
the cross-correlation of observations at those points, assuming that a distribution of uncorrelated noise
sources is present throughoutD, with excitation function(s) proportional to the local loss function(s)
on the diagonal ofM̂6. The continuous injection of energy throughoutD is needed to overcome the
dissipation (Sniederet al. , 2006).
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Figure 2: Interferometry with uncorrelated noise sources throughout space in a dissipative, possibly flowing,
medium (Application 2). The volume distribution of sources compensates for the dissipation (Sniederet al., 2006).
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Application 3. Uncorrelated sources on∂D
WhenD is finite and no homogeneous boundary conditions apply at∂D, the boundary integral in equation
(6) does not vanish. Assuming the losses inD are small, the last integral can be ignored (see Slobet al.
(2006) for a discussion of the effects of ignoring this integral). Hence, under this condition equation (6)
implies that the Green’s matrix betweenxA andxB can be retrieved from cross-correlations of responses
of independent impulsive sources on∂D only. To make equation (6) suited for uncorrelated noise sources
on∂D, matrixM̂5 must be ‘diagonalized’ so that we can follow the same procedure as above. The term
Â†(v0 ·n) in M̂5 is diagonal for scalar diffusion and for acoustic wave propagation in a flowing medium,
whereas it vanishes in non-moving media. However,Nx is not diagonal for any of the discussed applica-
tions. Diagonalization of the integral− ∮

∂D Ĝ(xB ,x, ω)NxĜ†(xA,x, ω) d2x involves decomposition
of the sources at∂D into sources for inward and outward propagating waves. Following the approach
discussed by Wapenaar and Fokkema (2006), assuming∂D is far away fromxA andxB , we may approx-
imate the integral (including the minus sign) by

∮
∂D Ĝφ(xB ,x, ω)λ(x){Ĝφ(xA,x, ω)}† d2x + ‘ghost’,

where ‘ghost’ refers to spurious events due to cross products of inward and outward propagating waves.
When∂D is irregular (which is the case when the sources are randomly distributed, as in Figure 1c) these
cross products do not integrate coherently and hence the spurious events are suppressed (Draganovet al.,
2006). When the medium at and outside∂D is homogeneous and isotropic the spurious events are absent.
Superscriptφ refers to new source types atx ∈ ∂D andλ(x) is a diagonal matrix containing normal-
ization factors. Hence, assuming a distribution of uncorrelated noise sourcesŝφ(x, ω) on ∂D, we arrive
in a similar way as above at equation (9), but this time with the observed field vector atxA expressed as
ûobs(xA, ω) =

∮
∂D Ĝφ(xA,x, ω)ŝφ(x, ω) d2x [and a similar expression for̂uobs(xB , ω)].

Conclusion
We have developed a unified representation for interferometry, which applies to diffusion phenomena,
acoustic waves in flowing attenuating media, electromagnetic diffusion and wave phenomena, elastody-
namic waves in anisotropic solids and electroseismic waves in poro-elastic media. This unified repre-
sentation has applications for controlled source experiments (as in seismic exploration) as well as for
passive noise recordings of uncorrelated sources in the subsurface. Numerical and real data examples
will be discussed in the presentation.
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