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Summary: 
 
We discuss seismic interferometry by multi-dimensional deconvolution for controlled-
source data as well as for passive data and compare both approaches with the 
corresponding correlation-based interferometric methods. For the controlled-source 
situation we derive the virtual source method as an approximation of the multi-
dimensional deconvolution method. For the passive data situation we show that the 
deconvolution method and the cross-correlation method are essentially different, and we 
discuss the merits and drawbacks of both approaches. 
 



Introduction
Seismic interferometry is a cross-correlation based process to generate new seismic responses from ex-
isting ones. It can be applied to passive data as well as to controlled-source data, see the supplement
of the 2006 July-August issue of Geophysics. Recently it has been recognized that in specific cases it
can be advantageous to replace the correlation process by deconvolution. One of the main advantages is
that deconvolution compensates for the properties of the source wavelet; another advantage is that is not
necessary to assume that the medium is lossless. Sniederet al. (2006) deconvolve passive wave fields
observed at different depth levels and show that this changes the boundary conditions of a system. They
applied it to earthquake data recorded at different heights in the Millikan library in Pasadena and obtained
the impulse response of the building. Mehtaet al. (2007) used a somewhat similar approach to estimate
the near-surface properties of the Earth from passive recordings in a vertical borehole. Both approaches
employ a 1-D deconvolution process.

Various authors have shown that multi-dimensional deconvolution processes, applied to controlled-
source data with the receivers at a constant depth level (for example at the ocean bottom or in a hori-
zontal borehole), can also be used to change the boundary conditions of a system. Wapenaar and Ver-
schuur (1996), Amundsen (1999), Wapenaaret al. (2000) and Holvik and Amundsen (2005) use multi-
dimensional deconvolution of down going and up going waves at the ocean bottom to suppress ocean-
bottom and surface-related multiples. Berkhout’s data processing in the inverse data space (Berkhout,
2006) is another form of multi-dimensional deconvolution. Schuster and Zhou (2006) and Wapenaar
et al. (2008) discuss multi-dimensional deconvolution in the context of seismic interferometry. Slob
et al. (2007) apply interferometry-by-deconvolution to modelled CSEM data and demonstrate the insen-
sitivity to dissipation as well as the potential of changing the boundary conditions: the effect of the air
wave, a notorious problem in CSEM prospecting, is largely suppressed. In the following we review inter-
ferometry by multi-dimensional deconvolution of controlled-source data and we discuss a modification
for passive data. We compare both approaches with correlation-based interferometric methods.

Interferometry by multi-dimensional deconvolution of controlled-source data
Consider the situation depicted in Figure 1. StateB represents a configuration with sources atxS at or
below the Earth’s surface∂D0, and receivers at a constant depth level (the solid line just above∂D1).
This receiver depth level can be for example the ocean bottom or a horizontal borehole. The wave field
at the receiver level is decomposed into down going and up going fieldsp̂+ and p̂−, respectively (the
circumflex denotes the frequency domain; the angular frequency will be denoted byω). R̂+

0 (x,xA, ω) in
stateA represents the reflection response of the medium below∂D1 for a source atxA and a receiver at
x. StateA is defined such that the half-space aboveD1 is reflection free, hence,̂R+

0 (x,xA, ω) does not
contain any multiple reflections related to the medium above∂D1, including the ocean bottom and/or the
Earth’s free surface. The subscript0 in R̂+

0 (x,xA, ω) denotes the absence of these multiples.
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Figure 1: Configuration for controlled-source data.

The fields in statesA andB are related according to

p̂−(xA,xS , ω) =
∫

∂D1

R̂+
0 (xA,x, ω)p̂+(x,xS , ω)d2x. (1)

This is an integral equation of the first kind forR̂+
0 (xA,x, ω) [due to source-receiver reciprocity we have

R̂+
0 (xA,x, ω) = R̂+

0 (x,xA, ω)]. Note thatR̂+
0 is the Fourier transform of an impulse response, whereas

p̂+ andp̂− are proportional to the source spectrumŝ(ω) of the source atxS . For laterally invariant media
equation (1) can easily be solved via a scalar division in the wavenumber-frequency domain. For 3-D
inhomogeneous media it can only be solved when the down going and up going fieldsp̂+(x,xS , ω) and
p̂−(xA,xS , ω) are available for a sufficient range of source positionsxS . In matrix notation (Berkhout,
1982), equation (1) can be written as

P̂
−

= R̂+
0 P̂+. (2)
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For example, the columns of matrix̂P+ containp̂+(x,xS , ω) for fixedxS and variablex at∂D1, whereas
the rows of this matrix contain̂p+(x,xS , ω) for fixed x and variablexS . Inversion of equation (2)
involves matrix inversion, according to

R̂+
0 = P̂−(P̂+)−1 (3)

(Wapenaar and Verschuur, 1996). The matrix inversion in equation (3) can be stabilized by least-squares
inversion, according to

R̂+
0 = P̂−(P̂+)†[(P̂+)(P̂+)† + ε2I]−1, (4)

where the superscript† denotes transposition and complex conjugation,I is the identity matrix andε is a
small constant. Berkhout and Verschuur (2003) used a similar inversion for transforming surface-related
multiples into primaries. Equations (3) and (4) describe 3-D interferometry-by-deconvolution. Note that
the medium need not be lossless. Moreover, this least-squares inversion compensates for irregularities
in the source distribution and for variations in the source spectra. Schuster and Zhou (2006) derived an
expression equivalent with equation (4) and called this least-squares redatuming. Wapenaaret al. (2008)
generalize equations (1)− (4) for general vector fields. Van der Neutet al. (2008) discuss numerical
examples.

We conclude this section by comparing 3-D interferometry-by-deconvolution with the virtual source
method of Bakulin and Calvert (2006). To this end we ignore the inverse matrix in equation (4), according
to R̂+

0 ≈ P̂−(P̂+)†. If we rewrite this equation again in integral form we obtain

R̂+
0 (xA,x, ω) ≈

∫

∂DS

p̂−(xA,xS , ω){p̂+(x,xS , ω)}∗d2xS , (5)

where the superscript∗ denotes complex conjugation and∂DS represents the depth level of the sources.
Note thatR̂+

0 is now proportional to the power spectrum|ŝ(ω)|2 of the sources at∂DS . Equation (5)
corresponds to the virtual source method of Bakulin and Calvert (2006).

Interferometry by multi-dimensional deconvolution of passive data
Since the underlying assumption of equation (1) is that the medium below∂D1 is source-free, it is not a
suited starting point for deriving interferometry for passive data with sources in the subsurface. In Wape-
naaret al. (2004) we derived several relations between reflection and transmission responses. Consider
equations (22) and (23) in that paper:

T̂+
0 (x′A,xB , ω)− T̂+(x′A,xB , ω) =

∫

∂D0

T̂+
0 (x′A,x, ω)R̂+(x,xB , ω)d2x, (6)

T̂+
0 (x′A,xB , ω)− T̂+(x′A,xB , ω) =

∫

∂D0

T̂+(x′A,x, ω)R̂+
0 (x,xB , ω)d2x. (7)

Here T̂+
0 (x′A,xB , ω) is the transmission response of a source atxB at the Earth’s surface∂D0, ob-

served atx′A in the subsurface. The subscript0 denotes again that no free-surface multiples are included.
T̂+(x′A,xB , ω) is the transmission response with free-surface multiples. Via source-receiver reciprocity
these responses are identical withT̂−0 (xB ,x′A, ω) andT̂−(xB ,x′A, ω), respectively, each of which rep-
resents an up going response at the surface∂D0 due to a source in the subsurface.R̂+

0 (x,xB , ω) and
R̂+(x,xB , ω) represent the reflection responses observed at the surface∂D0, without and with free sur-
face multiples, respectively. Given the transmission responseT̂−(xB ,x′A, ω), the aim is to find the
reflection response. In matrix notation, equations (6) and (7) become

T̂+
0 − T̂+ = T̂+

0 R̂+ ⇒ R̂+ = I− {T̂+
0 }−1T̂+, (8)

T̂+
0 − T̂+ = T̂+R̂+

0 ⇒ R̂+
0 = {T̂+}−1T̂+

0 − I, (9)

with T̂+
0 = {T̂−0 }t andT̂+ = {T̂−}t, where superscriptt denotes matrix transposition. Given̂T−, the

aim is to findR̂+ or R̂+
0 . Note that we have two equations with three unknowns (R̂+, R̂+

0 andT̂+
0 ). A third

equation is Berkhout’s relation between the reflection responses with and without free surface multiples,
i.e.,

R̂+
0 − R̂+ = R̂+

0 R̂+ ⇒ R̂+
0 = R̂+(I− R̂+)−1. (10)

Unfortunately equations (8)− (10) are not independent, which is most easily seen by substituting the
right-hand side versions of equations (8) and (9) into the left-hand side version of equation (10). Hence,



the system of equations is underdetermined, so we have to make an additional assumption if we want
to resolve the reflection response from̂T−. In the following we assume that the subsurface consists of
an inhomogeneous target below a relatively weak inhomogeneous overburden. The buried sources are
located below the target. For this situation the transmission response without surface-related multiples,
i.e.,T̂−0 , can be estimated from the transmission response with surface-related multiples,T̂−, by applying
a time window in the time domain. Now, given̂T−0 = {T̂+

0 }t andT̂− = {T̂+}t, the reflection response
R̂+ or R̂+

0 can be resolved from equation (8) or (9), respectively. Since the inverse ofT̂+ is more difficult
to determine than that of̂T+

0 , we propose to resolvêR+ from equation (8). UsinĝR+ = {R̂+}t and the
symmetries of the transmission matrices, we rewrite equation (8) asR̂+ = I − {T̂−Ŝ}{T̂−0 Ŝ}−1, where
Ŝ is a diagonal matrix containing the spectra of the sources below the target zone. The stabilized version
reads

R̂+ = I− P̂−(P̂−0 )†[(P̂−0 )(P̂−0 )† + ε2I]−1, (11)

whereP̂− = T̂−Ŝ andP̂−0 = T̂−0 Ŝ represent the observed up going transmission responses at the surface,
with and without surface-related multiples. The process described by equation (11) can be followed by
surface-related multiple elimination (equation 10) to obtainR̂+

0 . The generalization for vector fields is
similar to that described by Wapenaaret al. (2008) for controlled source data. Although equation (11)
is primarily meant for multi-dimensional deconvolution, we illustrate it for a 1-D medium. The medium
consists of a homogeneous overburden with a propagation velocity of 2000 m/s, and a horizontally lay-
ered target betweenz = 1600 m andz = 2300 m. Figure 2a shows the transmission response observed
at the free surface of a source atzS = 2400 m. Figure 2b is a time-windowed version, without the
surface-related multiples (this separation is possible due to the homogeneous overburden). Applying the
1-D version of equation (11) gives the reflection response at the free surface, including the surface-related
multiples, see Figure 2c. Figure 2d shows the difference with the directly modelled reflection response.
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Figure 2: 1-D example of interferometry by deconvolution of passive data (see text for details).

We conclude this section by comparing equation (11) with interferometry by cross-correlation of
passive data. To this end we ignore the inverse matrix on the right-hand side of equation (11) and we
correct the remaining part for the source spectra, henceR̂+ ≈ I− T̂−(T̂−0 )†. If we rewrite this equation
again in integral form we obtain

R̂+(xB ,xA, ω) ≈ δ(xB − xA)−
∫

∂Dm

T̂−(xB ,xS , ω){T̂−0 (xA,xS , ω)}∗d2xS . (12)

Compare this with our expression for interferometry by cross-correlation (Wapenaaret al. , 2004),

2<[
R̂+(xB ,xA, ω)

]
= δ(xB − xA)−

∫

∂Dm

T̂−(xB ,xS , ω){T̂−(xA,xS , ω)}∗d2xS . (13)
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Although there is resemblance, there are some important differences. Apart from the difference in the
left-hand sides (< in equation (13) denotes the real part), in the right-hand sides we haveT̂−0 (xA,xS , ω)
in equation (12) versuŝT−(xA,xS , ω) in equation (13). Hence, interferometry by cross-correlation
of passive data (equation 13) isnot a special case of interferometry by multi-dimensional deconvolution
(equation 11). Both approaches have their own merits and drawbacks. Interferometry by cross-correlation
(equation 13) has the advantage that it is applied to the full transmission responses (no need for time-
windowing), and that all multiple reflections (internal and surface-related) are properly included in the
reconstructed reflection response, no matter the complexity of the overburden. Moreover, for the situation
of uncorrelated noise sources, the integral collapses to a single cross-correlation of observations atxA

andxB , according to

2<[
R̂+(xB ,xA, ω)

]
= δ(xB − xA)− T̂−obs(xB , ω){T̂−obs(xA, ω)}∗. (14)

A drawback is that the medium is assumed to be lossless and that the transmission responses in equation
(13) are assumed to be regularly sampled impulse responses, although this assumption can be relaxed.
Draganovet al. (2007) obtained good results by applying equation (14) to real data. The main advantage
of equation (11) is that it accounts more accurately for irregular sampling and variations in the source
spectrum. Moreover, equation (11) is valid for dissipative media. A drawback is that it requires the
transmission response without surface-related multiples, which should be estimated in one way or another
from the full transmission response. Another drawback is the more complex processing (large matrix
inversion) and the fact that it can not be applied in the situation of simultaneously acting uncorrelated
noise sources (the sources should be transients and their responses should be measured sequentially in
time, similar as in equation (13), but opposed to equation (14)).

Conclusions
We discussed seismic interferometry by multi-dimensional deconvolution for controlled-source data as
well as for passive data and compared both approaches with correlation-based interferometric methods.
For the controlled-source situation the virtual source method was derived as an approximation of the
deconvolution method. For the passive data situation it was shown that the deconvolution method and the
correlation method are essentially different, each of them having their own merits and drawbacks.
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