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Summary

Recent work on autofocusing with the Marchenko equation has shown how the Green’s function for a
virtual source in the subsurface can be obtained from reflection data. The response to the virtual source
is the Green’s function from the location of the virtual source to the surface. The Green’s function
is retrieved using only the reflection response of the medium and an estimate of the first arrival at
the surface from the virtual source. Current techniques, however, only include primaries and internal
multiples. Therefore, all surface-related multiples must be removed from the reflection response prior to
the Green’s function retrieval. Here, we present a new scheme that includes primaries, internal multiples,
and free-surface multiples. In other words, we retrieve the Green’s function in the presence of the free
surface. The information needed for the retrieval are the reflection response at the acquisition surface
and an estimate of the first arrival at the surface from the virtual source. The reflection response, in this
case, includes the free-surface multiples; this makes it possible to include these multiples in the imaging
operator and it obviates the need for surface-related multiple elimination.
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Introduction

To focus a wavefield at a point in a medium only requires surface reflection data and an estimate of the
first arriving wave at the surface from a point source at the focusing location (Broggini et al. [2012],
Broggini and Snieder [2012], and Wapenaar et al. [2013]). Unlike in seismic interferometry (Bakulin
and Calvert [2006]), no receivers are required at the desired focusing location, i.e. the virtual source
location. Significantly, the detailed medium parameters need not be known to focus the wavefield.
However the travel-time of the direct-arrival of the virtual source to the surface is required. To obtain
this travel time one only needs a macro-model of the velocity.

The focusing scheme of Broggini et al. [2012], Broggini and Snieder [2012], and Wapenaar et al. [2013]
is an extension of the algorithm of Rose [2002a,b] who shows an iterative scheme that solves the
Marchenko equation for wavefield focusing in one dimension. The focused events in the wavefield
for the virtual source consist of primaries and internal multiples (Wapenaar et al. [2013]) but not free-
surface multiples. Importantly, Rose [2002a,b] derived the focusing method (auto-focusing) for single-
sided illumination with sources and receivers on one side of the medium, similar to current geophysical
acquisition methods.

The algorithm of Broggini et al. [2012] requires the removal of free-surface multiples from the reflection
response of the medium to retrieve the Green’s function by autofocusing. The removal of the free-surface
multiples can be achieved by Surface Related Multiple Elimination (SRME) (Verschuur et al. [1992]).

In this paper, we modify the focusing algorithm of Rose [2002b], Broggini et al. [2012] and Wapenaar
et al. [2013] to focus not only primaries and internal multiples but also the free-surface multiples. We
achieve such focusing using reflected waves in the presence of a free surface and an estimate of the first
arrival from the focus location to the surface. Notably, our proposed auto-focusing scheme obviates the
need for SRME. In addition, we show 1D examples of the retrieved Green’s function in a 9 layer model
in comparison to the model Green’s function.

Theory

The theory of focusing the wavefield without a free surface, i.e. retrieving the Green’s function G0, is
discussed by Rose [2002b], Broggini et al. [2012], and Wapenaar et al. [2013]. In our notation, any
wavefield quantity with a subscript 0 (e.g R0) signifies that no free-surface multiples are present. In
the focusing scheme of Broggini et al. [2012], and Wapenaar et al. [2013] they remove the free-surface
multiples from the reflection response R (by SRME) to get R0 and then compute G0, the Green’s function
in the absence of the free surface.

We generalize the formulation of Wapenaar et al. [2013] to include free-surface multiples. In our case,
the reflections from the free surface are included in the focusing scheme similar to the treatment by
Wapenaar et al. [2004] of free-surface multiples; hence no SRME is required.

We begin by defining our spatial vector field by its horizontal coordinates and depth coordinates, for
instance, x0 = (xH,x3,0), where xH are the horizontal coordinates at a depth x3,0. We define a solution
for the waves that focus at a point in a medium, called the focusing solutions. Wapenaar et al. [2013]
define two focusing solutions; f1 and f2. The f1 solution involves waves that focus at x′i at a defined depth
level (∂Di) for incoming and outgoing waves at the acquisition surface (∂D0) at x0. The solution f2 is
somewhat the opposite of f1 as it is a solution for waves that focus just above ∂D0 at x′′0 for incoming and
outgoing waves at ∂Di. The focusing solutions exist in a reference medium that has the same material
properties as the actual inhomogeneous medium between ∂D0 and ∂Di and that is homogeneous above
∂D0 and reflection-free below ∂Di. Therefore, the boundary conditions on ∂D0 and ∂Di in the reference
medium, where the focusing solution exist, are reflection free. Note that this boundary condition need
not be the same as the actual medium. The focusing solutions can be separated into up-going and down-
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going waves; the first focusing solution in the frequency domain reads (Wapenaar et al. [2013])

f1(x,x′i,ω) = f+1 (x,x′i,ω)+ f−1 (x,x′i,ω), (1)

while the second focusing solution reads

f2(x,x′′0,ω) = f+2 (x,x′′0,ω)+ f−2 (x,x′′0,ω). (2)

We find relationships between the focusing solutions by separating these solutions into one-way wave-
fields (Wapenaar et al. [2013]) and applying these wavefields to reciprocity theorems, Wapenaar and
Grimbergen [1996]. For instance, in the frequency domain, the up-going wavefield of f1 at ∂D0 is
f−1 (x0,x′i,ω) while the down-doing wavefield is f+1 (x0,x′i,ω). At or just below ∂Di, the up-going wave-
field of f1 is 0 since in the reference medium below ∂Di is homogeneous, while the down-going wave-
field is f+1 (xi,x′i,ω) = δ (xH−x′H). The solution f2 is separated into one-way wavefields using similar
reasoning, (more details of the relationships between these solutions are given in Wapenaar et al. [2013]).
The relationship between the focusing solutions are (Wapenaar et al. [2013]):

f+1 (x
′′
0,x

′
i,ω) = f−2 (x

′
i,x

′′
0,ω), (3)

and
− f−1 (x

′′
0,x

′
i,ω)

∗
= f+2 (x

′
i,x

′′
0,ω). (4)

The wavefields in our actual medium can also be separated into one-way wavefields at the different depth
levels, i.e. ∂D0 and ∂Di, as shown in Figure 1. Note, that the additional one-way wavefields that are
added to the actual medium, in our case, in the presence of the free surface in comparison to without
the free surface are the reflected waves from the free surface rR. In Figure 1, rR are the reflected waves
from the free surface, where r is the reflection coefficient of the free surface and R are the recorded
reflected waves from the subsurface. Consequently, in our case, the Green’s functions at the different
depth levels all include reflected waves from the free surface.

We use the convolution and cross-correlation reciprocity theorems to find relationships for the one-way
wavefields of f1 and the wavefields in the actual medium:

G−,+(x′i,x
′′
0,ω) =

∫
∂D0

[ f+1 (x0,x
′
i,ω)− r f−1 (x0,x

′
i,ω)] R(x0,x

′′
0,ω)dx0 − f−1 (x′′0,x

′
i,ω), (5)

and

G+,+(x′i,x
′′
0,ω) =

∫
∂D0
−[ f−1 (x0,x

′
i,ω)− r f+1 (x0,x

′
i,ω)]∗ R(x0,x

′′
0,ω)dx0 + f+1 (x′′0,x

′
i,ω)∗, (6)

where ∗ represents the complex conjugate, and ’r’ is the reflection coefficient of the free surface. R is
flux normalized so that the one-way reciprocity equations (Wapenaar and Grimbergen [1996]) holds, it
follows that r = −1. Note the up-going Green’s function (G−,+) in the actual inhomogeneous medium
at ∂D0 is the reflection response R for a downward radiating source.

The two-way Green’s function is obtained by adding equations 5 and 6 as well as using equations 1, 2
and the relationship between f1 and f2 (equation 3 and 4):

G(x′i,x
′′
0,ω) =

∫
∂D0

[ f2(x
′
i,x0,ω)+ r f2(x

′
i,x0,ω)∗] R(x0,x

′′
0,ω)dx0 + f2(x

′
i,x

′′
0,ω)∗. (7)

We retrieve G the same way we retrieve G0 as discussed in Wapenaar et al. [2013], except we use
equation 7 instead of equation 8 for the Green’s function equation.

G0(x
′
i,x
′′
0,ω) = f2(x

′
i,x

′′
0,ω)∗ +

∫
∂D0

f2(x
′
i,x0,ω)R0(x0,x

′′
0,ω)dx0. (8)
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Equation 8 is the expression to retrieve the Green’s function which includes primaries and internal
multiples but not free-surface multiples.

Importantly, equation 7 simplifies to equation 8 in the limiting case when r→ 0 since we will no longer
have reflections from the free surface.

Numerical Examples

We consider a 1D model that has a high impedance layer generic to salt models as shown in Figure
2(a). Receivers were placed 5m below the surface to record the reflected waves. In 1D to retreive the
Green’s function, it is sufficient to use the travel time of the first arriving wave from the virtual source
to the surface. However, in 3D media, a smooth version of the slowness (1/velocity) is needed to get an
estimate of the direct arriving wave from the virtual source to the surface. This estimate can be obtained
using finite-difference modeling of the waveforms.

This Green’s function G is arbitrarily scaled to its maximum amplitude (Figure 2(b)), it is the response
at the surface, ∂D0, to the virtual source (located at 2.25 km [red dot, Figure 2(a)]). We also model the
Green’s function using finite differences to ensure that the Green’s function retrieved from our autofo-
cusing algorithm is accurate, we superimposed this result on Figure 2(b). Figure 2(b) is zoomed in to
better illustrate the model and retrieved Green’s function, for this reason the first arrival at time 0.85s is
clipped. The difference between the modeled and the retrieved Green’s function is negligible relative to
the average amplitude of the Green’s function, as seen in Figure 2(b), and can be attributed to numerical
errors.

Conclusion

We extended the retrieval of the Green’s function to include the presence of a free surface. This method
recovers internal multiples, and now also free-surface multiples. Signicantly, our proposed method does
not require any surface-related multiple removal of the reflection response. In addition, we need an
estimate of the first arrival at the surface from the virtual source in the subsurface. To obtain the first
arrival, we only need a macro model of the velocity, but the small scale details of the velocity and density
need not be known.
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Figure 1 Green’s functions in the actual inhomogeneous medium in the presence of a free surface.
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Figure 2 (a) Velocity model with dot indicating the position of the virtual source, (b) Retrieved Green’s
function (blue) and model Green’s function (red) with normalized amplitudes.
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