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Summary

Focusing functions are defined as wavefields that focus at a specified
location in a heterogeneous subsurface. These functions can be directly
related to Green's functions and hence they can be used for seismic
imaging of complete wavefields, including not only primary reflections but
all orders of internal multiples. Recently, it has been shown that focusing
functions can be retrieved from single-sided reflection data and an initial
operator (which can be computed in a smooth background velocity model
of the subsurface) by iterative substitution of the multidimensional
Marchenko equation. In this work, we show that the Marchenko equation
can also be inverted directly for the focusing functions. Although this
approach is computationally more expensive than iterative substitution,
additional constraints can easily be imposed. Such a flexibility might be
beneficial in specific cases, for instance when the recorded data are
incomplete or when additional measurements (e.g. from downhole
receivers) are available.
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Introduction

The pioneering work of Broggini and Snieder (2012) revealed thaefss functions in an unknown
acoustic medium can be retrieved from a single-sided reflection respgraseiterative scheme that is
derived from the 1D Marchenko equation. This idea was extended Ipeidar et al. (2014) for the
retrieval of Green’s functions in multidimensional media. The retrieved i@&denctions find valuable
applications in modern seismic imaging schemes, where not only primary reflettin also internal
multiples are correctly migrated (Slob et al., 2014; Broggini et al., 2014}erisions of the scheme
have been presented for elastic media (da Costa Filho et al., 2014; Viap@aaSlob, 2014) and it has
been shown how free-surface multiples can also be included (Singh 20h4). In all these cases, the
multidimensional Marchenko equation is solved by iterative substitution. In thik,wve will show
that this equation can also be directly inverted.

Theory

To invert the multidimensional Marchenko equation, that was derived byeWaar et al. (2014), it is
useful to cast the relevant representations in a discrete frameworktok+wactor multiplications. In
this framework, that is discussed extensively by Van der Neut et al5j2@reen’s functions in the
subsurface are represented as vectors, in which all relevant tnacesncatenated in the time-space do-
main. Vectorg~ contains the upgoing Green'’s functions with multiple sources located atiiaesand

a receiver positioned at a specified focal point. Vegtor contains the equivalent downgoing Green'’s
function, but its traces are time-reversed, which is indicated by the sujpérs In the representations
of Wapenaar et al. (2014), these Green’s functions are relateddalled- focusing functions that, when
injected into the subsurface from the acquisition level at the Earth’scgyrfiacus at the focal point. We
distinguish the downgoing part of the focusing functfgrand the upgoing paff . The downgoing part
can be partitioned & = ], +f],,, wheref], is related to the direct wavefield afif}, is a scattering
coda. In Marchenko imaging, it is assumed tfﬂ@tis known. This wavefield is generally estimated
by modeling the direct wavefield in a macro velocity model and reversing it in tBnegg@ini et al.,
2014). The focusing functions and Green’s functions are relatedghrtwo representations that can be

concatenated as
-0\ _ ' 0y (0 R 1 (1)
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In this equation, matricesandO are the identity matrix and a matrix with zeros, respectively. Marix
applies multidimensional convolution with the reflection response, viilapplies multidimensional
crosscorrelation. Since equation 1 has four unknowns ¢**, f; andf] ), it does not have a unique
solution. Fortunately, the Green'’s functions and focusing functions rifegrehtly in the time-space
domain and therefore they can be separated by a window function. Weuogdhis window as a matrix
© that removes all data after the direct wavefield, including the direct vedsigfself. This window is
symmetric in time, such that all data before the time-reversed direct wavefakbisemoved. Because
of causality, the Green'’s functions are assumed to be zero before ¢loewlavefield. Hence they vanish
when® is applied, i.e@g~ = 0 and®g*™ = 0. The direct part of the focusing function is also removed
by the window:©f], = 0. The coda and the upgoing part, however, contain data only beforéréue d
wavefield (and after the time-reversed direct wavefield) (Wapenaal:,e2014; Van der Neut et al.,
2015). Hence they are preserved by the window funct®fy;,, = f; and©f; = f;. Based on these

_ ©
observations, we can app(y 0 O

(or T )()=1(07) (or T)I(iE) @
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Equation 2 can be recognized as a (discretized) Fredholm integraficgoé the second kindy(=
[I — A]x), which can be expanded as a Neumann sexiesX_,AXy given that/Aky|, — 0 ask — ),

yielding
f- ©=/ 0 orR\/ o
)= . : (3)
(i )=2(ex T) ()

Equation 3 is a concise representation of the iterative scheme that wassedolpy Slob et al. (2014)
and several others. Alternatively, we can invert equation 2 directlypg.tpast-squares inversion. From
practical experience, we have learned that straightforward inveosithis equation yields unphysical
solutions, containing data after the direct wave (and before the timesezVelirect wave). To avoid

these solutions, we replage fj in this equation b © 0 fi , leading to
fim 0 © fim

(o TIE)-1000) (o T EN(E)

In the following example, we will show that this equation can be successfuiytied for the unknowns
f; andfj,. Having retrieved these focusing functions, the Green’s functionsbeatomputed with
equation 1.

Example

We illustrate Marchenko redatuming by inversion with a numerical exampleiguré 1a, we show a
velocity model. We place 301 sources and 301 receivers on a fixedtghd surface with 10m spacing
(laid out betweenx = —1500m andx = +1500m). A focal point is selected dk, z) = (Om,1100m). We
compute the wavefield from the surface to the focal point in the true modeteanove the scattered
coda. The direct part of the focusing function is constructed by sewgithis truncated wavefield in
time. Our aim is to reconstruct the scattering coda of the Green'’s funcydimsbretrieving the focusing
function and subsequently applying equation 1. We investigate two optiorchieva this. First, the
focusing functions are retrieved by iterative substitution as in equatiorne2orfdl, they are retrieved
by direct inversion of equation 4, for which we make use of the leastregualgorithm LSQR that
was introduced by Pauge and Saunders (1982). In Figures 1b angelshow the retrieved down-
and upgoing parts of the focusing functions, using both methods. A gotzhrizafound, confirming
that the Marchenko equation can indeed be directly inverted, using thevrark that we derived. We
compute the up- and downgoing Green'’s functions with equation 1 andtsieowin Figures 2a and 2b.
To confirm these results, the down- and upgoing parts are added anghed with the exact Green’s
function that was obtained by placing a source at the focal point, seeeF2gu The responses match
well, demonstrating that we indeed have managed to retrieve the scatterangfadbd Green'’s function
from the reflection response at the surface.

Discussion

Now that the Marchenko equation can be solved by inversion, additiemst@ints can easily be im-
posed. For example, it is possible to include the recordings from a Ve8miamic Profiling (VSP)
experiment as an additional equation. In this way, the recorded Gregwson from a surface loca-
tion to a downhole receiver can be combined with surface seismic data tictpiresl wavefield from
another surface location to that same receiver. In this way, VSP g&/eem be effectively extended or
interpolated by utilizing additional surface seismic data.
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Figure 1 a) Velocity model (in m/s) of the subsurface with the focal point indicated éoltck dot.
b) Retrieved downgoing focusing functibn= ], + f;,, obtained by inversion (in red) and iterative
substitution (in black). ¢) Same for the upgoing focusmg fundton

Note that for the inversion of equation 4, we do not necessarily reqoirglete data, as we do for
iterative substitution (Van der Neut et al., 2015). Even if a system oftasis underdetermined,
irregularly sampled and corrupted with noise, satisfying solutions can sonsesitiiebe obtained by
posing additional constraints on the solution (Aravkin et al., 2014). With\aersion-based Marchenko
methodology, we might benefit from similar advantages.

Singh et al. (2014) have shown how free-surface multiples can be gxtlidthe multidimensional
Marchenko equation. From their forward model, the following representaan be derived, using a
derivation akin to that of equation 4:

(& )16 BN

Here,R andR™ are matrices that apply multidimensional convolution and crosscorrelation eittetia
with free-surface multiples (indicated by the bar) and the reflectivity of the surface. This equation
can also be inverted for the desired focusing functions. In both eqsatiand 5, the source signature
should be deconvolved from the data prior to inversion. Alternativelycareinclude this signature

in the representation. L& andQ* be matrices that apply convolution and crosscorrelation with the
source signature. Now, = QR andP” = Q*R" can be defined as matrices that apply multidimensional
convolution and crosscorrelation with the recorded data (including saignature and free-surface
Q 0 > to equation 5, we find the following inverse problem:

0 Q

(& D))-(38) (& Z(3)(k) o

The structure of this equation bears much similarity to the forward modelderdurface multiple elim-
ination (Lin and Herrmann, 2013). The solutions of both problems relyilysav the source signature,
which is generally not sufficiently known. However, it has been shawritfe free-surface demultiple
problem that the source signature can be estimated during inversion,yeajteimating optimization
(Lin and Herrmann, 2013). Building on the mathematical similarity between bothigms, we are cur-
rently investigating whether the focusing function and the (unknown)sosignature can be estimated
simultaneously by applying a similar type of algorithm for the inversion of equétio

multiples). After applying(
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Figure 2 a) Retrieved downgoing Green'’s functigh (after time-reversal of™*) obtained by inversion
(in red) and iterative substitution (in black). Same for the upgoing Greemistiobng~—. c) Green’s

function with a source at the focal point obtained by finite-difference magl€imblue) versus the
retrieved Green'’s function by inversion (obtained by addifigandg™).

Conclusion

We have demonstrated that the multidimensional Marchenko equation caived by inversion. If
no additional constraints are imposed, this yields a solution that is similar to theosadfian iterative
scheme that has recently been developed. Although retrieving Greectsdns by inversion is compu-
tationally expensive, this strategy allows for imposing additional constraiutst @oes not necessarily
require complete reflection data.
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