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Summary
The question whether multiples are signal or noise is subject of ongoing debate. In this paper we con-
sider correlation and deconvolution imaging methods and analyse to what extent multiples contribute
to the image in these methods. Our starting point is the assumption that at a specific depth level the
full downgoing and upgoing fields (both including all multiples) are available. First we show that by
cross correlating the full downgoing and upgoing wave fields, primaries and multiples contribute to the
image. This image is not true-amplitude and is contaminated by cross-talk artefacts. Next we show that
by deconvolving the full upgoing field by the full downgoing field, multiples do not contribute to the
image. We use minimum-phase arguments to explain this somewhat counterintuitive conclusion. The
deconvolution image is true-amplitude and not contaminated by cross-talk artefacts.
The conclusion that multiples do not contribute to the image applies to the type of deconvolution imaging
analysed in this paper, but should not be extrapolated to other imaging methods. On the contrary, much
research is dedicated to using multiples for imaging, for example in full wavefield migration, resonant
migration and Marchenko imaging.
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Introduction

The question whether multiples are signal or noise is subject of an ongoing debate (Valenciano and
Chemingui, 2015; Weglein, 2015; Verschuur and Berkhout, 2015). The aim of this paper is not to
address this question in general, but to analyse how one specific imaging method deals with multiples. In
particular, we analyse imaging based on deconvolving the full upgoing wave field by the full downgoing
field (both including all multiples) at each depth level. Using minimum-phase arguments, we explain
the somewhat counterintuitive conclusion that in this imaging method the multiples in the downgoing
and upgoing fields do not contribute to the image.

Correlation and deconvolution imaging conditions

Consider downgoing and upgoing wave fields at a specific horizontal boundary ∂Dn in an inhomoge-
neous subsurface, related to sources at the acquisition surface ∂D0. We denote the downgoing and
upgoing fields as p+(x,xS, t) and p−(x,xS, t), respectively, where x denotes the receiver position at ∂Dn,
xS the source position at ∂D0, and where t denotes time. We assume that these fields properly contain all
multiple reflections (i.e., all internal multiples, and, in case the upper surface is a free boundary, also the
surface-related multiples). For the following discussion it is not important how these fields have been
obtained. They can be decomposed measured wave fields [for example at the ocean bottom (Amund-
sen, 2001) or in a horizontal borehole (Bakulin and Calvert, 2006; Mehta et al., 2007)], or they can have
been obtained with an advanced wave field extrapolation method [for example by model-driven two-way
wavefield extrapolation and decomposition (Wapenaar and Berkhout, 1986), by applying a model-driven
Bremmer series approach (Davydenko and Verschuur, 2017), or by data-driven Marchenko redatuming
(Wapenaar et al., 2014)]. We obtain a correlation image from

R̂(x,x′, t) =
∫

∂D0

dxS

∫
∞

0
p−(x,xS, t + t ′)p+(x′,xS, t ′)dt ′, followed by Icorr(x) = R̂(x,x, t = 0), (1)

where R̂(x,x′, t), with x and x′ both at ∂Dn, stands for an estimate of the (redatumed) reflection response
of the half-space below ∂Dn. This standard imaging method works well for primary data, but for data
with multiples it gives rise to cross-talk, as we illustrate below with an example. This cross-talk can be
avoided by replacing the total downgoing field p+(x′,xS, t ′) by the direct arriving wave p+d (x

′,xS, t ′). In
that case a multiple-free image is obtained (Wapenaar and Berkhout, 1986). The most general method
that accounts for the multiples in p+(x,xS, t) and p−(x,xS, t) is the deconvolution imaging method. In
this case, solve

p−(x,xS, t) =
∫

∂Dn

dx′
∫

∞

0
R(x,x′, t− t ′)p+(x′,xS, t ′)dt ′, followed by Idecon(x) = R(x,x, t = 0). (2)

Here R(x,x′, t), with x and x′ both at ∂Dn, stands for the exact reflection response of the inhomogeneous
half-space below ∂Dn (assuming a homogeneous half-space above ∂Dn). It needs to be resolved from the
integral representation by multi-dimensional deconvolution (Wapenaar et al., 2000; Amundsen, 2001),
after which the image is obtained by extracting the t = 0 component for x′ = x.

The main aspect we want to illustrate in this paper is that, although p+(x,xS, t) and p−(x,xS, t) contain
all multiple reflections, only the direct wave in p+(x,xS, t) and the primary reflection in p−(x,xS, t)
contribute to the deconvolution image Idecon(x). For the sake of the discussion it is sufficient to analyse
the 1D situation. To this end, we replace the downgoing and upgoing fields by p+(z,z0, t) and p−(z,z0, t),
respectively, where z denotes depth. Moreover, the imaging methods, formulated by equations (1) and
(2), simplify to

R̂(zn, t) =
∫

∞

0
p−(zn,z0, t + t ′)p+(zn,z0, t ′)dt ′, followed by Icorr(zn) = R̂(zn, t = 0) (3)

for the correlation method, and, for the deconvolution method, solve

p−(zn,z0, t) =
∫

∞

0
R(zn, t− t ′)p+(zn,z0, t ′)dt ′, followed by Idecon(zn) = R(zn, t = 0). (4)
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Figure 1 (a) Downgoing field p+(z,z0, t). (b) Upgoing field p−(z,z0, t). (c) Time-reversed inverse down-
going field p+inv(z,z0,−t).

Downgoing and upgoing fields in a horizontally layered medium

Consider a horizontally layered medium, consisting of four layers, enclosed between two homogeneous
half-spaces. The propagation velocities of the four layers are c1 = 2000, c2 = 4000, c3 = 2000, c4 =
4000, all expressed in m/s, and the mass densities are ρ1 = 1000, ρ2 = 2000, ρ3 = 1000, ρ4 = 2000,
expressed in kg/m3. The depths of the layer boundaries are z0 = 0, z1 = 400, z2 = 850, z3 = 1450,
z4 = 2200, all expressed in m. The half-spaces above z0 and below z4 have a propagation velocity of
2000 m/s and a mass density of 1000 kg/m3. The reflection coefficients of the four interfaces are r1 = 0.6,
r2 = −0.6, r3 = 0.6, r4 = −0.6. Given a source for downgoing plane waves at the upper boundary z0,
the downgoing and upgoing fields p+(z,z0, t) and p−(z,z0, t) are shown in a VSP-like display in Figures
1(a) and (b). In this particular example these fields have been obtained from the reflection response
R(z0, t), using the data-driven Marchenko method, but that is irrelevant for the remainder of this paper.

Correlation imaging

We consider correlation imaging, which we first illustrate for the fourth reflector, at z = z4. From equa-
tion (3) we obtain (setting t = 0 and subsequently replacing t ′ by t)

Icorr(z4) = R̂(z4,0) =
∫

∞

0
p−(z4,z0, t)p+(z4,z0, t)dt, (5)

where depth level z4 is considered to be approached from above. The traces p+(z4,z0, t) and p−(z4,z0, t),
taken from Figures 1(a) and (b) just above z = z4, are shown in Figures 2(a) and (b). The first events
in these traces are the primary direct downgoing and the primary reflected wave, respectively (indicated
by the green arrows in Figure 1). The other events are multiples. Equation (5) describes the zero-shift
correlation of these traces. Figure 2 clearly shows that not only the primaries but also the multiples
correlate (which is indicated by blue arrows). Hence, the multiples contribute to the correlation image
Icorr(z4) (Behura et al., 2014). This may improve the signal-to-noise ratio, but the image is not a true-
amplitude image. Moreover, evaluating equation (5) at other depth levels, the correlated multiples may
give rise to ghost images. This is confirmed by Figure 3(a), which shows the correlation image Icorr(z),
obtained by evaluating the zero-shift correlation of the traces in Figures 1(a) and (b) for all z. The red
arrow indicates a cross-talk artefact.
Artefacts such as those in Figure 3(a) do not occur when in the correlation process p+(z,z0, t) is replaced
by the direct downgoing field p+d (z,z0, t) (Wapenaar and Berkhout, 1986). This is not further discussed
here.
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Figure 2 (a) Downgoing field p+(z4,z0, t). (b) Upgoing field p−(z4,z0, t). The zero-shift correlation
of these traces, expressed by equation (5), involves a sample-by-sample multiplication, followed by a
summation over all samples, yielding the correlation image Icorr(z4). Note that the primary as well as
all multiples contribute to this image. (c) Time-reversed inverse downgoing field p+inv(z4,z0,−t). (d)
Upgoing field p−(z4,z0, t). The zero-shift correlation of these traces, expressed by equation (7), yields
the deconvolution image Idecon(z4). Only the primary contributes to this image.
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Figure 3 (a) Correlation image Icorr(z) for all z. The green arrow indicates the image of the reflector at
z4, obtained from the zero-shift correlation of the traces in Figures 2(a) and (b). The red arrow indicates
an artefact due to cross-talk. (b) Deconvolution image Idecon(z) for all z. The green arrow indicates the
image of the reflector at z4, obtained from the zero-shift correlation of the traces in Figures 2(c) and (d).

Deconvolution imaging

Deconvolution imaging involves the inversion of the convolution integral in equation (4), followed by
evaluating the t = 0 component. The inversion of the convolution integral could be carried out as a
two-step process: (1) evaluating the correlation, as described by equation (3), followed by (2) deconvo-
lution for the autocorrelation of the downgoing wavefield. In the previous section we have seen that in
step (1) the multiples give a contribution. Hence, intuitively one might think that they also contribute
in this two-step process, particularly because the deconvolution in step (2) is done with a zero-phase
signal. However, as we show now, the multiples do not contribute in deconvolution imaging. Defining
p+inv(zn,z0, t) as the convolutional inverse of p+(zn,z0, t), we rewrite equation (4) as an explicit deconvo-
lution process, according to

R(zn, t) =
∫

∞

−∞

p−(zn,z0, t− t ′)p+inv(zn,z0, t ′)dt ′, followed by Idecon(zn) = R(zn, t = 0). (6)

We illustrate this for the fourth reflector at z = z4. From equation (6) we obtain (setting t = 0 and
subsequently replacing t ′ by −t)

Idecon(z4) = R(z4,0) =
∫

∞

−∞

p−(z4,z0, t)p+inv(z4,z0,−t)dt. (7)

Note that p+(z4,z0, t) is (apart from the transmission coefficient of the last interface), equal to the trans-
mission response of the layered medium; hence, it is a causal minimum-phase signal, delayed by the
direct arrival time td (Anstey and O’Doherty, 1971). The inverse of a minimum-phase signal is causal
and minimum-phase as well (Robinson, 1954; Berkhout, 1974). Hence, p+inv(z4,z0, t) is a causal sig-
nal, advanced by td. Equation (7) can be interpreted as a zero-shift correlation of the time-reversal of
p+inv(z4,z0, t) and p−(z4,z0, t). These signals are shown in Figures 2(c) and (d). Note that only the pri-
maries correlate (indicated by the blue arrow), and thus contribute to the deconvolution image Idecon(z4).
Clearly the multiples do not correlate and hence do not contribute to Idecon(z4). The deconvolution image
is a true-amplitude image (r4 =−0.6), see the event indicated by the green arrow in Figure 3(b).

79th EAGE Conference & Exhibition 2017
Paris, France, 12 – 15 June 2017



For other depth levels, the downgoing field p+(z,z0, t) can be written as a convolution of two minimum-
phase functions (Wapenaar et al. (2013), equation 7). Hence, p+inv(z,z0, t) is causal, advanced by td(z),
and p+inv(z,z0,−t) is acausal, delayed by td(z), for all z, which is confirmed by Figure 1(c). Figure 3(b)
shows the deconvolution image Idecon(z), obtained by evaluating the zero-shift correlation of the traces
in Figures 1(b) and (c) for all z. Note that this true-amplitude image contains no cross-talk artefacts.

Conclusions

Assuming the total downgoing and upgoing wave fields are available at a specific depth level, the mul-
tiples in these fields contribute to the image when applying correlation imaging, but the image is not
true-amplitude and artefacts at other depth levels occur due to cross-talk. When applying deconvolution
imaging, the multiples do not contribute, the image is true-amplitude and no cross-talk artefacts occur.
We have used minimum-phase arguments to explain why only the primaries contribute to the deconvo-
lution image.
This conclusion applies to the type of deconvolution imaging analysed in this paper, but should not be
extrapolated to other imaging methods. For example, Verschuur and Berkhout (2015) and Davydenko
and Verschuur (2017) show that multiples can be used in full wavefield migration. Guo et al. (2015)
develop interferometric and resonant migration methods which employ information contained in multi-
ples. Also in Marchenko imaging first results indicate that the deconvolution imaging condition can be
modified such that multiples contribute to the image (Minato and Ghose, 2016; Wapenaar et al., 2017).
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