
Elastodynamic single-sided homogeneous Green’s function 
representation: Theory and examples 

Christian Reinicke Urruticoechea and Kees Wapenaar 

Summary 

The homogeneous Green’s function is the Green’s function minus its time-
reversal. Many wavefield imaging applications make use of the homogeneous 
Green’s function in form of a closed boundary integral. Wapenaar et al. 
(2016a) derived an accurate single-sided homogeneous Green’s function 
representation that only requires sources/receivers on an open boundary. In 
this abstract we will present a numerical example of elastodynamic single-
sided homogeneous Green’s function representation using a 2D laterally 
invariant medium. First, we will outline the theory of the single-sided 
homogeneous Green’s function representation. Second, we will show 
numerical results for the elastodynamic case. 

 

	



Introduction

The homogeneous Green’s function is the superposition of the Green’s function and its time-reversal.
For lossless media the Green’s function and its time-reversal obey the same wave equation with a delta
source. Consequently, the homogenous Green’s function obeys the wave equation with a source term
equal to zero. Many wavefield imaging applications make use of the homogeneous Green’s function in
form of a closed boundary integral. In previous work an accurate single-sided homogeneous Green’s
function representation was derived that only requires sources/receivers on an open boundary (Wape-
naar et al., 2016b). This representation is valid for a scalar wavefield and accounts for internal multi-
ple scattering. Subsequently, the theory of single-sided homogeneous Green’s function representation
was extended to a unified matrix-vector notation for acoustic, quantum-mechanical, electromagnetic
and elastodynamic waves (Wapenaar et al., 2016a). We present a numerical example of elastodynamic
single-sided homogeneous Green’s function representation using a 2D laterally invariant medium. First,
we outline the theory of the single-sided homogeneous Green’s function representation. Second, we
show numerical results for the elastodynamic case.

Elastodynamic single-sided homogeneous Greens function representation: Theory

We consider power-flux normalised one-way wavefields, i.e. a wavefield quantity p is organised in a
block matrix;

p =

(
p++ p+−

p−+ p−−

)
; pXY =

(
pXY

pp pXY
ps

pXY
sp pXY

ss

)
; (1)

where the superscripts "+" and "-" denote downgoing and upgoing wavefields respectively. In the elastic
case each one-way block matrix pXY is a two by two matrix with four P- and S-wave components.

Consider a medium which is bounded by an infinite, horizontal, reflection-free boundary ∂D0 at the top.
The x3 coordinate is defined as downward pointing. We refer to this medium as the actual medium. Let
xA and xB be two points inside the medium. A representation of the homogeneous Green’s function
Gh(xA,xB,ω) using reflection data R(x,x′,ω) recorded at the surface and a so-called focusing function
F(x,xA,ω) is given by (Wapenaar et al., 2016a) ;

G1(x,xB,ω) =
∫

∂D′
0

Gh(x,x′,ω)F(x′,xB,ω)It
1d2x′; (2)

Gh(x,xB,ω) = G1(x,xB,ω)−KG∗
1(x,xB,ω)K; (3)

G2(xA,xB,ω) =
∫

∂D0

I2Ft(x,xA,ω)NGh(x,xB,ω)d2x; (4)

Gh(xA,xB,ω) = G2(xA,xB,ω)−KG∗
2(xA,xB,ω)K. (5)

Here the surface ∂D′
0 is defined just below ∂D0. The matrices K, N, I1, and I2 are defined as;

K =

(
O I
I O

)
; N =

(
O I
−I O

)
; I1 =

(
I
O

)
; I2 =

(
O
I

)
; (6)
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where I is an identity matrix and O is a zero matrix. The quantities in brackets represent the receiver
and source coordinates respectively, the third quantity is the temporal frequency. The homogeneous
reflection data Gh(x,x′,ω) can be built from reflection data R(x,x′,ω);

Gh(x,x′,ω) = G(x,x′,ω)−KG∗(x,x′,ω)K =

(
I −R∗(x,x′,ω)

R(x,x′,ω) −I

)
. (7)

The focusing function F(x,xA,ω) is defined in a reference medium which is bounded by the reflection-
free surface ∂D0 at the top and x3 = x3,A at the bottom. For x3 ∈ [0,x3,A] the reference medium is
identical to the actual medium. The source-term of the focusing function equals zero. The focusing
function consists of a downgoing part F+(x,xA,ω) and an upgoing part F−(x,xA,ω). The downgoing
focusing function is defined as the inverse of the transmission response, T+(xA,x,ω), in the reference
medium which is the response of point sources distributed along the surface ∂D0 recorded at a receiver
placed at xA;

∫
∂D0

T+(x,x′,ω)F+(x′,xA,ω)d2x′ = Iδ (xH −xH,A); (8)

for x3 = x3,A. The coordinate xH represents the horizontal spatial coordinates (x1,x2). The upgoing
focusing function F−(x,xA,ω) is defined as the reflection response of the downgoing focusing function
in the reference medium. Following the definition of the focusing function one can see that the focusing
function obeys a so-called focusing condition;

F(x,xA,ω) |x3=x3,A=

(
F+

F−

)
(x,xA,ω) =

(
Iδ (xH −xH,A)

O

)
. (9)

The physical interpretation of this condition is that when the focusing function is injected into the
medium at the surface ∂D0 it focuses at the point xA. By applying an inverse Fourier transform to
equation 9 one can see that in the time domain the focusing function also focuses in time at t = 0s.
Figure 1a illustrates the focusing function.

Equations 2 - 5 consist of two steps. First, the source of the reflection data is redatumed to xB, i.e.
a virtual source is created inside the medium. The causal part of the resulting homogeneous Green’s
function Gh(x,xB,ω) is sketched in Figure 1b. Second, the receivers are redatumed from the surface to
xA, i.e. a virtual receiver is created inside the medium resulting in the homogeneous Green’s function
Gh(xA,xB,ω) (see Figure 1b).

(a) (b)

Figure 1: Sketch of (a) the downgoing and upgoing focusing functions F±(x,xA,ω), (b) the Green’s
functions G(x,xB,ω) and G(xA,xB,ω).
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Elastodynamic single-sided homogeneous Greens function representation: Examples

We present a numerical example of elastodynamic single-sided homogeneous Green’s function repre-
sentation following the theory shown above. This example is a feasibility test using the 2D lossless
model shown in Figure 2a. The model has three density contrasts and constant P- and S-wave velocities,
cP = 2500ms−1, cS = 2000ms−1. Note that the example works equally well with non-constant veloci-
ties. The spatial coordinates are denoted by (x1,x3). Since the model is laterally invariant all of the above
equations can be transformed to the horizontal wavenumber (k1) domain using Plancherel’s theorem;

∫ ∞

−∞
g∗(x1) f (x1)dx1 =

1
2π

∫ ∞

−∞
g̃∗(k1) f̃ (k1)dk1. (10)

Therefore, we use a wavefield extrapolation code which models each horizontal wavenumber k1 sepa-
rately. First, the focusing function is convolved with the homogeneous reflection data to create a virtual
source inside the medium. Bear in mind that in the horizontal wavenumber domain the convolution
is a multiplication. Here we created a virtual source at xB = (x1 = 0m,x3 = 2000m). The resulting
wavefield, Gh(x,xB, t), is the impulse response of a point source located at the virtual source position
xB and recorded at the surface ∂D0 combined with its time-reversal. Figure 2b shows the homogeneous
Green’s function Gh(x,xB, t) after applying a 2D inverse Fourier transform. To illustrate that the pre-
sented method accounts for converted as well as multiply scattered waves we highlighted three reflection
events in Figure 2b and sketched their corresponding raypaths as a cartoon in Figure 2a. Note that all
one-way and P- and S- components of the wavefield are still power-flux normalised.

(a) (b)

Figure 2: (a) Model: Densities of 1000 kgm−3 and 2000 kgm−3 are displayed in dark and light grey
respectively. P- and S-wave velocities are constant, cP = 2500ms−1, cS = 2000ms−1. (b) Causal part of
the elastic homogeneous Green’s function Gh(x,xB, t) with a virtual source at xB. The events highlighted
in colours are sketched as a cartoon in the density model.

Second, the focusing function is used to redatum the receivers from the surface ∂D0 to a desired depth
level, i.e. virtual receivers are created inside the medium. In this example, a grid of virtual receivers with
a horizontal spacing of 12.5 m and a vertical spacing of 20 m is created inside the medium. Since the
homogeneous Green’s function is an impulse response combined with its time-reversal the represented
wavefield is propagating inward at negative times, zero at time zero, and propagating outward from the
virtual source location at positive times. Figure 3 shows snapshots of the homogeneous Green’s function
Gh(xA,xB, t) at positive times. To illustrate that the wavefield in Figure 3 contains P- and S-waves we
indicated an upgoing P-wave by a blue line and an upgoing S-wave by a red line. As expected the two
indicated waves propagate with different velocities.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Snapshots of the represented homogeneous Green’s function Gh(xA,xB, t)
as it propagates from the virtual source xB through the medium. The blue and red lines mark an

upgoing P-wave and an upgoing S-wave respectively.

Discussion and conclusions

We presented a numerical example that demonstrates single-sided homogeneous Green’s function rep-
resentation for elastic waves. Note that the representation accounts for converted as well as multiply
scattered waves. We considered a laterally invariant model but we would like to emphasise that the the-
ory is valid for laterally varying media. For the near future we plan to extend the presented numerical
example to laterally variant media using a finite difference code. Here, we modelled the focusing func-
tions which is not practical because the modelling requires full knowledge of the medium. In practice,
the focusing function should be retrieved using limited knowledge of the medium which is possible us-
ing the Marchenko method - Wapenaar (2014) and da Costa Filho et al. (2014). We plan to develop the
elastic Marchenko method further to minimise the required knowledge of the medium.
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