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Summary 

The Marchenko method is capable to create virtual sources inside a medium 
that is only accessible from an open-boundary (Broggini et al., 2012; Van der 
Neut et al., 2015). The resulting virtual data can be used to retrieve images 
free of artefacts caused by internal multiples.  Conventionally, the 
Marchenko method retrieves a so-called focusing wavefield that focuses the 
data from the recording surface to a point inside the medium. Recently, 
Meles et al. (2017) suggested to modify the focusing condition such that the 
new focusing wavefield creates a virtual plane wave source inside the 
medium, instead of a virtual point source. The virtual plane wave data can be 
used to image an entire surface inside the medium in a single step rather than 
imaging individual points on the surface. Consequently, the imaging process 
is accelerated significantly. We provide an extension of plane wave 
Marchenko redatuming for elastodynamic waves and demonstrate its 
performance numerically. 

	



Introduction

In many imaging applications the medium of interest is observed using reflection measurements ac-
quired on an open-boundary. Recently, a novel imaging technique, the Marchenko method, has been
developed with the aim to retrieve images free of artefacts caused by internal multiples. The conven-
tional Marchenko method creates a virtual point source inside the medium, accounting for primary as
well as multiply scattered waves (Broggini et al., 2012; Van der Neut et al., 2015). From the virtual
response an image at the virtual source location is computed (e.g. Behura et al., 2014). Hence, the
imaging process is performed point-wise. Meles et al. (2017) combine the areal-source methods for pri-
maries by Rietveld et al. (1992) with the spatially-extended virtual source Marchenko method presented
by Broggini et al. (2012) to create a virtual plane wave source at an arbitrary surface inside the medium.
Using the virtual plane wave response the entire surface can be imaged in one step rather than imaging
each point on the surface individually. We extend plane wave Marchenko redatuming for elastodynamic
waves, analogous to the elastodynamic extension of conventional Marchenko redatuming by Wapenaar
(2014).

Elastodynamic plane wave Marchenko redatuming: Theory

First, we will introduce the conventional elastodynamic single-sided Green’s function representations
that allow to create virtual point sources inside a medium. For a detailed derivation we refer to Wape-
naar (2014). Second, we will modify these equations such that they create virtual plane wave sources
instead of virtual point sources. Consider an elastic medium without losses. Suppose the medium has
infinite lateral extent and is bounded by a reflection-free surface ∂D0 at the top. Moreover, we consider
elastodynamic power-flux normalised wavefield potentials. The single-sided Green’s function represen-
tations can be written as,

G−,+(x′,x f ,ω) =
∫

∂D0

R(x′,x,ω)F+(x,x f ,ω)d2x−F−(x′,x f ,ω), (1)

{G−,−(x′,x f ,ω)}∗ =
∫

∂D0

R∗(x′,x,ω)F−(x,x f ,ω)d2x−F+(x′,x f ,ω). (2)

Here, the one-way Green’s functions G−,±(x′,x f ,ω) are 3×3 matrices,

G−,±(x′,x f ,ω) =

G−,±
Φ,Φ G−,±

Φ,Ψ G−,±
Φ,ϒ

G−,±
Ψ,Φ G−,±

Ψ,Ψ G−,±
Ψ,ϒ

G−,±
ϒ,Φ G−,±

ϒ,Ψ G−,±
ϒ,ϒ

(x′,x f ,ω), (3)

where the superscript "+" describes downgoing waves, the superscript "−" describes upgoing waves.
The subscripts Φ, Ψ and ϒ represent P-, S1- and S2-wavefield potentials, respectively. The first super-
and subscripts refer to the wavefield at the receiver position x′ on ∂D0, the second super- and subscripts
refer to the wavefield at the source position x f inside the medium. The spatial coordinates and the
frequency are denoted as x = (x1,x2,x3)

T and ω , respectively. The superscript "T " denotes a transpose
and the superscript "∗" denotes a complex-conjugate. The quantity R(x′,x,ω) is the reflection response
of the medium recorded on ∂D0. The focusing function F±(x,x f ,ω) is defined in a truncated medium
which is identical to the physical medium between ∂D0 and ∂D f (x3 = x3, f ) but reflection-free above
∂D0 and below ∂D f . We formulate the focusing functions in the space-time domain to emphasise its
spatial and temporal behaviour. The downgoing part of the focusing function F+(x′,x f , t) is the inverse
of the transmission response T+(x,x′, t) of the truncated medium (Wapenaar et al., 2016b),∫ t

−∞

∫
∂D0

T+(x,x′, t− t ′)F+(x′,x f , t ′) d2x′Hdt ′
∣∣∣∣
x3=x3, f

= δ (t) δ (xH −xH, f ) I. (4)

The subscript "H" refers to the horizontal coordinates xH = (x1,x2)
T and I is an identity matrix of appro-

priate size. From Eq. 4 follows that the downgoing focusing function satisfies the focusing condition,

F+(x,x f , t)
∣∣
x3=x3, f

= δ (t) δ (xH −xH, f ) I. (5)
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Thus, the focusing function F(x,x f , t) focuses in time and in space. The upgoing part of the focus-
ing function F−(x,x f , t) is the reflection response of the downgoing focusing function in the truncated
medium. In physical interpretation the single-sided Green’s function representations (Eqs. 1 and 2)
can be understood as follows. The focusing function focuses, or inverse propagates, the source-side of
the reflection response R(x′,x,ω) from the recording surface ∂D0 to the focusing point x f inside the
medium. Hence, a virtual source is created inside the medium at x f .
Following the acoustic plane wave Marchenko redatuming by Meles et al. (2017), we suggest to define
a modified focusing function F̄±(x,pH ,x3. f , t) that focuses as a plane wave in time but not in space.
Therefore, the modified downgoing focusing function obeys the modified focusing condition,

F̄+(x,pH ,x3, f , t)
∣∣
x3=x3, f

= δ (t−pH ·xH) I, (6)

where pH = (p1, p2)
T denotes the horizontal ray-parameter. The conventional and the modified focusing

conditions in Eqs. 5 and 6 are very similar but the temporal focus δ (t) is replaced by an offset-dependent
focus in time δ (t − pH · xH) and the spatial focus δ (xH − xH, f ) is removed. In the space-frequency
domain, we obtain the modified focusing function F̄±(x,pH ,x3. f , t) by multiplying the focusing function
F±(x,x f ,ω) by the plane wave ejωpH ·xH, f and by integrating the result over the focusing surface ∂D f ,

F̄±(x,pH ,x3, f ,ω) =
∫

∂D f

F±(x,xH, f ,x3, f ,ω) ejωpH ·xH, f d2xH, f . (7)

Further, we define the plane wave responses Ḡ−,±(x,pH ,x3, f ,ω) that are associated to a plane wave
source δ (t−pH ·xH, f ) at ∂D f and recorded at x on ∂D0,

Ḡ−,±(x,pH ,x3, f ,ω) =
∫

∂D f

G−,±(x,xH, f ,x3, f ,ω) ejωpH ·xH, f d2xH, f . (8)

Next, we multiply Eqs. 1 and 2 by ejωpH ·xH, f , integrate the result over the focusing surface ∂D f , use Eqs.
7 and 8 and find the modified single-sided Green’s function representations,

Ḡ−,+(x′,pH ,x3, f ,ω) =
∫

∂D0

R(x′,x,ω)F̄+(x,pH ,x3, f ,ω)d2x− F̄−(x′,pH ,x3, f ,ω), (9)

{Ḡ−,−(x′,−pH ,x3, f ,ω)}∗ =
∫

∂D0

R∗(x′,x,ω)F̄−(x,pH ,x3, f ,ω)d2x− F̄+(x′,pH ,x3, f ,ω). (10)

Eqs. 9 and 10 are nearly equivalent to the conventional single-sided Green’s function representations
(Wapenaar, 2014). However, the focusing function F is replaced by a modified version F̄ that focuses
in time but not in space. Besides, the Green’s functions G−,± are replaced by the virtual plane wave
responses Ḡ−,± which are associated to a virtual plane wave source δ (t−pH · xH) at x3, f instead of a
virtual point source at x f .
The modified single-sided Green’s function representations (Eqs. 9 and 10) are an underdetermined
system that can only be solved if a separation operator exists. For the acoustic case, Meles et al. (2017)
postulate that such an operator exists, and demonstrate its performance numerically. The (acoustic)
separation operator is based on the kinematics of a direct transmission associated to plane wave source
at the focusing depth and recorded at the surface ∂D0. Correspondingly, we hypothesise that in the
elastodynamic case a separation operator W̄ exists. The separation operator W̄ is based on the kinematics
of a forward-scattered transmission T̄−f s(x

′,pH ,x3, f ,ω) associated to a plane wave source defined by the
horizontal ray-parameter pH at ∂D f and recorded at ∂D0. Now we define the modified operator W̄,

W̄Φ,Φ(x′,pH ,x3, f , t) = H(td
Φ,Φ− ε− t +pH ·x′H)−H(−td

Φ,Φ + ε− t +pH ·x′H). (11)

For better readability we only defined one component of the modified operator W̄. The remaining ele-
ments are defined analogously. The function H() is the Heaviside function. The variable td

Φ,Φ is the travel
time of the first event of the plane wave response Ḡ−,−

Φ,Φ(x
′,pH = 0,x3, f , t). In addition, we introduced a

small positive constant ε to account for the finite width of the wavelet. Note that the modified operator W̄
is applied to the modified single-sided Green’s function representations in form of a Hadamard product.
Under the assumption that the operator W̄(x′,pH ,x3, f , t) exists the modified single-sided Green’s func-
tion representations can be solved analogous to the conventional Marchenko scheme (Wapenaar, 2014)
by replacing G−,±(x′,x f ,ω) by Ḡ−,±(x′,pH ,x3, f ,ω), F(x′,x f ,ω) by F̄(x′,pH ,x3, f ,ω), and W(x′,x f , t)
by W̄(x′,pH ,x3, f , t).
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Elastodynamic plane wave Marchenko redatuming: Numerical example

We evaluate the performance of the presented plane wave Marchenko redatuming for an elastic 1.5D
model shown in Fig. 1a, where we use the coordinates x = (x1,x3)

T . We model reflection data R(x′,x, t)

1000 2000 3000

0

1000

2000

(a)

cp (ms−1) / cs (ms−1) / ρ (kgm−3)

x 3
(m

)

-3 0 3

0

1

2

3

4

(b)

x1 (km)

t(
s)

Figure 1: (a) Layered model (1.5D)
with a lateral distance range from
−12812.5 m to 12800 m. The model
parameters are P-wave velocity cp (red
solid line), S-wave velocity cs (black
solid line) and density ρ (blue dashed
line). The red dashed line indicates the
focusing depth x3, f = 1200m. (b) Re-
flection response R(x′,x, t). To visu-
alise the late arrivals we applied a tem-
poral gain e0.5t .

for a point source (see Fig. 1b). We choose a focusing depth x3, f = 1200m. For better visualisation, in
all figures we only show wavefields related to a P-wave source and a P-wave focus. The initial down-
going focusing function F̄+

0 (see Fig. 2a) is computed by inverting the forward-scattered transmission
response T̄−f s(x

′, p1,x3, f , t) related to an incident plane wave defined by the horizontal ray-parameter
p1 = 5×10−5 sm−1. When we inject the initial downgoing focusing function F̄+

0 on the surface ∂D0
in the truncated medium and record it on ∂D f we observe a plane wave δ (t − p1x1) plus a coda (see
Fig. 2b), i.e. the initial downgoing focusing function does not focus in time on ∂D f . Next, we evaluate
five iterations of the modified Marchenko series and use the resulting downgoing focusing function F̄+

(see Fig. 2c) to repeat the experiment. Now we observe a temporal focus δ (t− p1x1) on ∂D f without
a coda (see Fig. 2d), indicating that we retrieved the correct downgoing focusing function. We evaluate
Eqs. 9 and 10 using the retrieved modified focusing functions to obtain the virtual plane wave responses
Ḡ−,±(x′, p1,x3, f , t). Fig. 2e shows a superposition of Ḡ−,+(x′, p1,x3, f , t) and Ḡ−,−(x′, p1,x3, f , t). The
retrieved virtual plane wave responses include primary, multiply-scattered as well as converted waves.
To illustrate that the choice of the ray-parameter p1 is arbitrary we repeat the above experiments using
a different ray-parameter p1 = 0sm−1 (see Figs. 2f-j). In this case we observe less events because at
zero-incidence there are no conversions between P- and S-waves.

Conclusions

We extended the modified Marchenko redatuming by Meles et al. (2017) for elastodynamic waves. By
modifying the focusing condition we obtained modified single-sided Green’s function representations
that allowed to create virtual plane wave sources (and receivers) inside the medium, only using the
medium’s reflection response recorded at an open-boundary and the forward-scattered transmission re-
sponse between the recording and the focusing surfaces. The virtual plane wave responses are retrieved
for single ray-parameters, i.e. they might be used for AVA inversion. Further, the virtual plane wave
responses can be used to image the focusing surface ∂D f in a single step. By imaging an entire surface,
instead of a single point, the imaging process is accelerated significantly.
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Figure 2: Initial modified focusing function F̄+
0 (x, p1,x3, f , t) for a ray-parameter p1 = 5×10−5 sm−1

at the surfaces (a) ∂D0 and (b) ∂D f . Modified focusing function F̄+(x, p1,x3, f , t) at the surfaces
(c) ∂D0 and (d) ∂D f . (e) Superposition of the up- and downgoing virtual plane wave responses
Ḡ−,±(x′, p1,x3, f , t). (f-j) Repetition of (a-e) for a different ray-parameter p1 = 0sm−1.
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