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Summary

The Marchenko method retrieves the responses to virtual sources in the subsurface, accounting for all
orders of multiples. The method is based on two integral representations for focusing and Green’s
functions. In discretized form these integrals are represented by finite summations over the acquisi-
tion geometry. Consequently, the method requires ideal geometries of regularly sampled and co-located
sources and receivers. However, a recent study showed that this restriction can, in theory, be relaxed
by deconvolving the irregularly-sampled results with certain point spread functions (PSFs).The results
are then reconstructed as if they were acquired using a perfect geometry. Here, the iterative Marchenko
scheme is adapted in order to include these PSFs; thus, showing how imperfect sampling can be ac-
counted for in practical situations. Next, the new methodology is tested on a 2D numerical example.
The results show clear improvement between the proposed scheme and the standard iterative scheme.
By removing the requirement for perfect geometries the Marchenko method can be more widely applied
to field data.
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Introduction

Deep seismic targets are often obstructed by shallower structures in the subsurface. These shallow re-
flections and their multiples should ideally be removed from the data to retrieve a better image from
the deep target. This can be achieved by virtually moving the wavefield recorded at the surface to a
new acquisition level in the subsurface using the Marchenko method. This data-driven method reda-
tums sources and receivers as if they were located at an arbitrary position inside the subsurface, while
accounting for all orders of multiples (Broggini et al., 2012; Wapenaar et al., 2014; Slob et al., 2014).
Recent applications of the Marchenko method to field data show great potential (e.g. Ravasi et al., 2016;
Staring et al., 2018; Brackenhoff et al., 2019). However, strict requirements on the acquisition geome-
try obstruct more wide-spread use of the method. Non-perfect geometries can significantly distort the
results (Peng et al., 2019; Staring and Wapenaar, 2019). Therefore, most authors tacitly assume regu-
larly sampled and collocated sources and receivers. Ideally, this restriction should be relaxed or even
removed, allowing for broader application of the method on field data.
Irregular sampling over the receiver dimension can be corrected for using sparse inversion (Ravasi, 2017;
Haindl et al., 2018), while irregular sampling over the source dimensions can, in theory, be corrected for
using point-spread functions (PSFs, Wapenaar and van IJsseldijk, 2019). Here, we explore how these
PSFs can be integrated into the iterative Marchenko scheme (Thorbecke et al., 2017) in order to handle
irregular source sampling in practical applications.

Theory

Imagine an inhomogeneous lossless subsurface bounded by transparent acquisition surface S0. The
reflection response at this surface is given by R(xR,xS,ω), where xR and xS are the receiver and source
positions, respectively, and ω denotes the angular frequency. We define the virtual acquisition depth at
SA, on which the virtual receivers are located. These receivers are used to measure the up- and down-
going Green’s functions: G−(xA,xR,ω) and G+(xA,xR,ω), respectively. Here, xA is the location of the
virtual receivers at the virtual acquisition depth. Next, the medium is truncated below SA, resulting in a
medium that is inhomogeneous between S0 and SA, and homogeneous above and below these surfaces.
In this medium we define a downgoing focusing function f+1 (xS,xA,ω), which, when injected from the
surface, focuses at the focal depth SA. Moreover, f−1 (xR,xA,ω) is the upgoing response of the medium
as measured on the surface, known as the upgoing focusing function. These ideas can be combined in
two integral equations, as follows (Wapenaar et al., 2014; Slob et al., 2014):

G−(xA,xR,ω)+ f−1 (xR,xA,ω) =
∫
S0

R(xR,xS,ω) f+1 (xS,xA,ω)dxS, (1)

G+(xA,xR,ω)−{ f+1 (xR,xA,ω)}∗ =−
∫
S0

R(xR,xS,ω){ f−1 (xS,xA,ω)}∗dxS. (2)

The asterisk ∗ denotes complex conjugation. For acoustic media, the focusing and Green’s functions
on the left-hand side are separable in time by a windowing function. In practice, the infinite integrals
on the right-hand side are approximated by a finite sum over the available sources. When the reflection
response is not well sampled, these summations cause distortions in the responses on the left-hand sides
of Eq. 1 and 2.
Wapenaar and van IJsseldijk (2019) introduce point-spread functions (PSFs) to correct for imperfect
sampling. These PSFs exploit the fact that the downgoing focusing function is the inverse of the trans-
mission response. A convolution of the focusing function with the transmission response should, there-
fore, give a delta pulse. However, for imperfectly sampled data this delta pulse gets blurred. This
blurring caused by the imperfect sampling is quantified as follows:

Γ
+(x′A,xA,ω) = ∑

i
T (x′A,x

(i)
S ,ω) f+1 (x(i)S ,xA,ω)S(ω), (3)

where Γ+ and T are the PSF and transmission response, respectively. Similarly, a quantity Y is defined
as the inverse of the conjugated, upgoing focusing function. Note that this inverse is not necessarily
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Figure 1 On the left, the flowchart of the proposed iterative Marchenko scheme, steps 3 to 5 account
for imperfectly sampled data. The summation and integral denote convolution or correlation over the
imperfectly sampled and well-sampled data, respectively. The right panel shows the velocity and density
models for the numerical experiment, the virtual acquisition level is illustrated with the dashed red line.

stable. Again, the convolution of { f−1 }∗ with Y results in a delta pulse for well-sampled data, but gets
blurred for imperfectly sampled data. The second PSF (Γ−) then becomes:

Γ
−(x′A,xA,ω) = ∑

i
Y (x′A,x

(i)
S ,ω){ f−1 (x(i)S ,xA,ω)}∗S(ω). (4)

Next, these newly acquired PSFs are applied to Eq. 1 and 2, respectively:

“G−(xA,xR,ω)+ “f−1 (xR,xA,ω) = ∑
i

R(xR,x
(i)
S ,ω) f+1 (x(i)S ,xA,ω)S(ω), (5)

“G+(xA,xR,ω)−{ “f+1 (xR,xA,ω)}∗ =−∑
i

R(xR,x
(i)
S ,ω){ f−1 (x(i)S ,xA,ω)}∗S(ω). (6)

These equations have two interesting features. First, the right-hand sides now contain the desired sum-
mations. Second, the responses on the left-hand side now contain the PSFs, which apply a blurring effect
to each response. In Eq. 5 the hat denotes a convolution with the downgoing PSF (Γ+), whereas in Eq. 6
the responses with a hat are convolved with the upgoing PSF (Γ−). Note that the imperfectly sampled
Green’s and focusing functions can now be deblurred by a multidimensional deconvolution (MDD) us-
ing the PSFs.
However, since the PSFs are not known beforehand, their estimation will be incorporated into the iter-
ative Marchenko scheme (Thorbecke et al., 2017), as shown in Fig. 1. The first 2 steps are similar to
the old scheme, with the only difference being that the inverse of the direct Green’s function is used
as opposed to a time-reversed version. Steps 3 to 5 are then introduced to reconstruct well-sampled
responses from their blurred versions retrieved in step 2. First, the transmission response T or quantity
Y are approximated, by inverting the focusing functions. Second, the PSFs are computed using these
approximations and the irregular sampling of the sources. Finally, the PSFs are used to reconstruct the
responses in step 2 as if they were regularly sampled. These deblurred responses can be separated in
time, just like the standard Marchenko method. Each iteration of the scheme then starts with a deblurred
response, which is computed in the previous iteration.

Results

The performance of the proposed scheme is tested on synthetic data for the model in Fig. 1. For conve-
nience, the densitiy and velocity contrasts are chosen to be the same in each layer. In total 601 sources
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and receivers were used with an initial spacing of 10 meters, and subsequently 50% of the sources were
randomly removed to simulate irregular sampling. The reflection response is modeled with a flat source
spectrum between 5 and 80 Hz, and the direct arrival of the Green’s function is modeled in a smooth
version of the model.
We compute the results of both the proposed and standard scheme with irregularly sampled data, and
a reference result of the standard scheme using well-sampled data. Each of these scenarios terminates
after 12 iterations. The first column in Fig. 2 shows the effect of irregular sampling on the standard
scheme, three different distortions are observed: sampling artifacts/distortions (e.g. top panel around
0.8 s), incorrect amplitudes (e.g. top panel at 0 to 0.4 s), and missing events (e.g. bottom panel around 0
s). While the results of the proposed scheme in the second column still show some signs of these distor-
tions, the artifacts are largely suppressed in these results. Some edge effects in the results are introduced
by the MDD. Note the resemblance between the second and third column, the latter displays the results
of regular sampled data in the standard scheme. While not all artifacts are successfully removed from the
data, the proposed scheme clearly matches the results of the regular data more closely than the standard
scheme.
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Figure 2 The top row shows the time-reversed downgoing focusing function ({ f+1 }∗) and upgoing
Green’s function (G+), and the bottom row shows the upgoing focusing function ( f−1 ) and upgoing
Green’s function (G−). The dashed, red line denotes the time gate. The left columns show the result
of irregularly sampled data after 12 iterations of the standard scheme. The middle columns show the
results when using our scheme on the same data (Fig. 1), again 12 iterations were used. Finally, the 3rd
column shows the reference result, obtained after 12 iterations of the standard scheme with well-sampled
data. Each panel is scaled with respect to it’s own maximum value.
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Conclusions

The Marchenko method requires regularly sampled and collocated sources and receivers. Recently, it
was shown that point-spread functions (PSFs) can, theoretically, correct for irregularly sampled sources.
Here, we integrate these PSFs in the iterative Marchenko scheme, allowing for their application in more
practical situations. This requires a few adaptations to the iterative scheme. Three additional steps are
introduced to each iteration. First, an estimate of the inverse of the focusing function is calculated, for
f+1 this inverse equals the transmission response, and for f−1 it is equal to quantity Y . Next, the PSF can
be approximated with the aid of these inverses, the PSF describes the effects of the irregular sampling on
the data. The third step is applying the PSF on the blurred responses using a MDD, resulting in regularly
sampled Green’s and focusing functions. Next, a time-gate can again be used to separate the focusing
functions from the Green’s functions. A numerical example shows clear improvement of the proposed
scheme compared to the regular scheme; the results of the proposed scheme more closely resemble
the regularly sampled reference. The newly proposed scheme alleviates the requirement for regularly
sampled sources when using the Marchenko method. Ideally, the need for well-sampled receivers should
be removed as well, this is subject to further research. By relaxing the need for perfectly sampled data,
the Marchenko method is more easily applied to field data.
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