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Abstract 

 

Green's functions in an unknown medium can be retrieved from single-

sided reflection data by solving a multidimensional Marchenko equation. 

This methodology requires knowledge of the direct wavefield throughout 

the medium, which should include forward-scattered waveforms. In 

practice, the direct field is often computed in a smooth background model, 

where such subtleties are not included. As a result, Marchenko-based 

Green's function retrieval can be inaccurate, especially in severely 

complex media. In some cases, auxiliary transmission data may be 

available. In this extended abstract, we show how these data can be used to 

modify the Marchenko equation so that forward-scattered waveforms can 

be retrieved without additional knowledge of the medium. 
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Introduction 

It is well established that a Green's function at an arbitrary location 𝒙  inside an unknown medium can 

be retrieved by solving a multidimensional Marchenko equation (Wapenaar et al., 2017). This 

methodology requires the single-sided reflection response at an acquisition surface and knowledge of 

the direct wavefield as it has propagated from this surface towards 𝒙. For accurate results in complex 

media, forward-scattered waveforms should be included in the direct field (Vargas and Vasconcelos, 

2020). In practice, these waveforms are typically not accounted for, resulting in incomplete retrieval of 

the Green's function (van der Neut et al., 2015). Recently, some novel applications of the Marchenko 

methodology have emerged in which auxiliary transmission data are available. We mention for instance: 

Marchenko imaging of joint VSP and reflection data (Liu et al, 2016; Lomas et al., 2020), laboratory 

experiments (Cui et al., 2018) and transcranial wavefield focusing (Meles et al., 2019). Since 

transmission data include the desired forward-scattered waveforms, we reason that these data might be 

used to improve Marchenko-based Green's function retrieval. In this extended abstract, we report on an 

initial attempt to do so. 

 

 
 

 

A Marchenko equation for double-sided reflection data 

Over the last year, several novel representations for the Marchenko equation have been presented that 

do not rely on up/down-decomposition inside the medium (Kiraz et al., 2020; Diekmann and 

Vasconcelos, 2021; Wapenaar et al, 2021). Here, we modify the derivation of Wapenaar et al. (2021) 

for a configuration with double-sided illumination, as shown in Figure 1. For any 𝒙 ∈ 𝔻, the wavefield 

 𝑝(𝒙) at frequency 𝜔 (which we omitted from the representation for notational convenience) can be 

expressed as (Wapenaar et al., 2021) 

 

𝑝(𝒙) = ∫  𝐹𝑈(𝒙, 𝒙𝑈)𝑝−(𝒙𝑈)
 

𝜕𝔻𝑈
𝑑𝒙𝑈 + ∫  𝐹𝑈

⋆(𝒙, 𝒙𝑈)𝑝+(𝒙𝑈)
 

𝜕𝔻𝑈
𝑑𝒙𝑈.    (1) 

 

In this representation, 𝑝+ and 𝑝− are the down- and upgoing constituents of  𝑝  at the upper boundary 

𝜕𝔻𝑈  and superscript  ⋆  denotes complex conjugation. Further, 𝐹𝑈 is a focusing function, which obeys 

the focusing condition  𝐹𝑈(𝒙, 𝒙𝑈)|𝑥3=𝑥3,𝑈
= 𝛿(𝒙𝐻 − 𝒙𝐻,𝑈), where 𝛿 denotes a 2D Dirac delta function 

and  𝒙𝐻 = (x1, x2). An equivalent equation can be derived for the lower boundary 𝜕𝔻𝐿; that is 

 

𝑝(𝒙) = ∫  𝐹𝐿(𝒙, 𝒙𝐿)𝑝+(𝒙𝐿)
 

𝜕𝔻𝐿
𝑑𝒙𝐿 + ∫  𝐹𝐿

⋆(𝒙, 𝒙𝐿)𝑝−(𝒙𝐿)
 

𝜕𝔻𝐿
𝑑𝒙𝐿,    (2) 

 

where 𝐹𝐿 is a focusing function that obeys 𝐹𝐿(𝒙, 𝒙𝐿)|𝑥3=𝑥3,𝐿
= 𝛿(𝒙𝐻 − 𝒙𝐻,𝐿). We define a dipole 

Green’s function as  Γ𝑈(𝒙, 𝒙𝑈
′ ) =

−2

𝑖𝜔𝜌(𝒙𝑈
′ )

𝜕3
′ 𝐺(𝒙, 𝒙𝑈

′ ), where 𝐺(𝒙, 𝒙𝑈
′ )  is a monopole Green's function 

with a source at 𝒙𝑈
′  and 𝜕3

′  denotes the vertical partial derivative at 𝒙𝑈
′ . From these definitions, we find 

 Γ𝑈
+(𝒙, 𝒙𝑈

′ )|𝑥3=𝑥3,𝑈
= 𝛿(𝒙𝐻 − 𝒙𝐻,𝑈

′ ). When we substitute 𝑝 = Γ𝑈 into equation (1), it follows that 

  

 Γ𝑈(𝒙, 𝒙𝑈
′ ) = ℛ𝑈𝑈𝐹𝑈(𝒙, 𝒙𝑈

′ ) + 𝐹𝑈
⋆(𝒙, 𝒙𝑈

′ ).       (3) 

 

In this result, we have defined ℛ𝑈𝑈𝐹𝑈(𝒙, 𝒙𝑈
′ ) = ∫  𝐹𝑈(𝒙, 𝒙𝑈)Γ𝑈

−(𝒙𝑈, 𝒙𝑈
′ )

 

𝜕𝔻𝑈
𝑑𝒙𝑈, where ℛ𝑈𝑈 can be 

interpreted as a reflection operator at the upper boundary. We can substitute another dipole Green's 

function Γ𝐿(𝒙, 𝒙𝐿
′ ) =

2

𝑖𝜔𝜌(𝒙𝐿
′ )

𝜕3
′ 𝐺(𝒙, 𝒙𝐿

′ )  into equation (2), yielding 

Figure 1 Configuration in 3D space with 𝒙 = (𝑥1, 𝑥2, 𝑥3). An 

acoustic medium is characterized by the wave velocity 𝑐(𝒙) and 

mass density 𝜌(𝒙). A heterogeneous volume 𝔻 is enclosed by an 

(infinite) upper boundary 𝜕𝔻𝑈 and an (infinite) lower boundary 

𝜕𝔻𝐿. Outside 𝔻, the medium is non-reflective. Further, 𝒙𝑈 ∈
𝜕𝔻𝑈,  𝒙𝐿 ∈ 𝜕𝔻𝐿, 𝒙𝑈

′  is located at a distance 𝜀 → 0 above 

𝜕𝔻𝑈 and 𝒙𝐿
′  is located at a distance 𝜀 → 0 below 𝜕𝔻𝐿.  
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Γ𝐿(𝒙, 𝒙𝐿
′ ) = ℛ𝐿𝐿𝐹𝐿(𝒙, 𝒙𝐿

′ ) + 𝐹𝐿
⋆(𝒙, 𝒙𝐿

′ ),        (4) 

  

with  ℛ𝐿𝐿𝐹𝐿(𝒙, 𝒙𝐿
′ ) = ∫  𝐹𝐿(𝒙, 𝒙𝐿)Γ𝐿

+(𝒙𝐿, 𝒙𝐿
′ )

 

𝜕𝔻𝐿
𝑑𝒙𝐿, where ℛ𝐿𝐿 can be interpreted as a reflection 

operator at the lower boundary. Equations (3) and (4) can be written in matrix-vector form as 

 

(
Γ𝑈(𝒙, 𝒙𝑈

′ )

Γ𝐿(𝒙, 𝒙𝐿
′ )

) − (
F𝑈(𝒙, 𝒙𝑈

′ )

F𝐿(𝒙, 𝒙𝐿
′ )

)
⋆

= (
ℛ𝑈𝑈 0

0 ℛ𝐿𝐿
) (

F𝑈(𝒙, 𝒙𝑈
′ )

F𝐿(𝒙, 𝒙𝐿
′ )

).     (5) 

 

To solve this system of equations for the focusing functions F𝑈 and F𝐿, we typically design a time 

window operator (van der Neut et al., 2015) such that Θ𝑈Γ𝑈 = 0  and  Θ𝑈𝐹𝑈
⋆ = 𝐹𝑈𝑚

⋆ , where F𝑈𝑚 is the 

coda of F𝑈; that is F𝑈𝑚 = F𝑈 − F𝑈𝑑, with F𝑈𝑑 being the direct field. When we apply Θ𝑈 to the upper 

row of equation (5) and an equivalent operator Θ𝐿 to the lower row, we obtain the Marchenko equation 

 

− (
F𝑈𝑚(𝒙, 𝒙𝑈

′ )

F𝐿𝑚(𝒙, 𝒙𝐿
′ )

)
⋆

= (
Θ𝑈 0
0 Θ𝐿

) (
ℛ𝑈𝑈 0

0 ℛ𝐿𝐿
) ((

F𝑈𝑑(𝒙, 𝒙𝑈
′ )

F𝐿𝑑(𝒙, 𝒙𝐿
′ )

) + (
F𝑈𝑚(𝒙, 𝒙𝑈

′ )

F𝐿𝑚(𝒙, 𝒙𝐿
′ )

)).  (6) 

 

Given the direct fields F𝑈𝑑 and F𝐿𝑑, equation (6) can be solved for the codas F𝑈𝑚 and F𝐿𝑚 by iterative 

substitution. After convergence, the Green's functions can be computed with equations (3) and (4).   

 

A Marchenko equation for double-sided reflection and transmission data  

In this section, we will use transmission data to eliminate the Green's functions on the left-hand side of 

equation (5). To facilitate this, we substitute  𝑝 = Γ𝑈  into equation (2), yielding 

 

Γ𝑈(𝒙, 𝒙𝑈
′ ) =  𝒯𝑈𝐿𝐹𝐿(𝒙, 𝒙𝐿

′ ).         (7) 

 

Here, 𝒯𝑈𝐿𝐹𝐿(𝒙, 𝒙𝐿
′ ) = ∫  𝐹𝐿(𝒙, 𝒙𝐿)Γ𝑈

+(𝒙𝐿, 𝒙𝑈
′ )

 

𝜕𝔻𝐿
𝑑𝒙𝐿, where 𝒯𝑈𝐿 can be interpreted as a transmission 

operator from the lower to the upper boundary. Similarly, substituting 𝑝 = Γ𝐿  into equation (1) yields 

 

Γ𝐿(𝒙, 𝒙𝐿
′ ) = 𝒯𝐿𝑈𝐹𝑈(𝒙, 𝒙𝑈

′ ),         (8) 

 

with 𝒯𝐿𝑈𝐹𝑈(𝒙, 𝒙𝑈
′ ) = ∫  𝐹𝑈(𝒙, 𝒙𝑈)Γ𝐿

−(𝒙𝑈, 𝒙𝐿
′ )

 

𝜕𝔻𝑈
𝑑𝒙𝑈, where 𝒯𝐿𝑈 is a transmission operator from the 

upper to the lower boundary. Equations (7) and (8) can be written in matrix-vector form as 

 

(
Γ𝑈(𝒙, 𝒙𝑈

′ )

Γ𝐿(𝒙, 𝒙𝐿
′ )

) = (
0 𝒯𝑈𝐿

𝒯𝐿𝑈 0
) (

F𝑈(𝒙, 𝒙𝑈
′ )

F𝐿(𝒙, 𝒙𝐿
′ )

),       (9) 

 

To eliminate the Green's functions on the left-hand side, we subtract equation (9) from (5), yielding 

 

− (
F𝑈(𝒙, 𝒙𝑈

′ )

F𝐿(𝒙, 𝒙𝐿
′ )

)
⋆

= (
ℛ𝑈𝑈 −𝒯𝑈𝐿

−𝒯𝐿𝑈 ℛ𝐿𝐿
) (

F𝑈(𝒙, 𝒙𝑈
′ )

F𝐿(𝒙, 𝒙𝐿
′ )

).      (10) 

 

This result holds for any 𝒙 ∈ 𝔻. Hence, equation (10) cannot be solved without additional constraints 

specifying this location. Although there are probably better solutions to deal with this issue (which we 

are currently investigating), we present an initial attempt here by combining the upper row of equation 

(10) with the lower row of equation (6); that is 

 

− (
F𝑈(𝒙, 𝒙𝑈

′ )

F𝐿𝑚(𝒙, 𝒙𝐿
′ )

)
⋆

= (
1 0
0 Θ𝐿

) (
ℛ𝑈𝑈 −𝒯𝑈𝐿

0 ℛ𝐿𝐿
) ((

0
F𝐿𝑑(𝒙, 𝒙𝐿

′ )) + (
F𝑈(𝒙, 𝒙𝑈

′ )

F𝐿𝑚(𝒙, 𝒙𝐿
′ )

)).   (11) 

 

Given F𝐿𝑑, equation (11) can be solved by iterative substitution. Unlike the conventional Marchenko 

equation in (6), no time window is applied to the upper row. Consequently, forward-scattered 

components of F𝑈 can be retrieved by this procedure, as we will demonstrate in the following section. 
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Numerical example 

In this section, we support our theory with a numerical experiment. The configuration is shown in Figure 

2. The upper and lower acquisition arrays contain 128 source / receiver pairs each, with a 5m source / 

receiver spacing (we applied a cosine taper to the first 12.5% and the last 12.5% of the traces). Synthetic 

data are computed by solving an interface contrast source integral equation (van den Berg, 2021). We 

use the second derivative of a Gaussian with a peak frequency of 50Hz as a wavelet and analytic time-

reversed dipole Green's functions in a homogeneous background medium as initial focusing functions. 

In Figure 3, we show some of the data. We compute the focusing functions F𝑈 and F𝐿 by 20 iterative 

substitutions of equation (6) or (11), and the Green's function Γ𝑈 and Γ𝐿 with help of equations (3) and 

(4). For reference, we also construct a ground truth Green's function Γ𝑈 by direct modeling, which is 

shown in Figure 4(a). A ground truth focusing function F𝑈 is computed by direct inversion of equation 

(3) (using the ground truth Γ𝑈), see Figure 5(a). In Figure 4(b), we show the focusing function that is 

retrieved from equation (6). While most major events are retrieved correctly, the forward-scattered 

contributions are clearly underestimated, as pointed out by the green arrow in Figure 4(b). In Figure 

4(c), we show the equivalent results as obtained from equation (11). This time, the forward-scattered 

contributions have been recovered correctly, as pointed out by the green arrow in Figure 4(c). The 

retrieved Green's functions are shown in Figures 5(b) and 5(c). Despite this preliminary success, we can 

also observe a drawback of our current approach. The orange arrow in Figure 4(c) points at an artifact 

that cannot be found in Figure 4(b). An intuitive explanation is that errors in F𝐿𝑑 and F𝐿𝑚  are transported 

to F𝑈 by the action of −𝒯𝑈𝐿 in equation (11). Hence, the methodology still suffers from incorrect 

forward-scattered waveforms in the second row of equation (11). As a consequence, some of the events 

in the Green's function are retrieved with erroneous amplitudes, as pointed out by the purple arrow in 

Figure 5(c). To overcome this issue, we reason that equation (10) rather than (11) should be inverted. 

We are currently investigating if this can indeed be done by least-squares inversion with additional 

constraints that specify the focal location 𝒙. 

 

Discussion and conclusion 

In the conventional Marchenko equation, time windows are fundamentally required to separate the 

Green's function and focusing on the left-hand side of the underlying representation. In this abstract, we 

have  shown that  the  Green's function  can  be  eliminated from  the representations by  using  auxiliary   

Figure 3 (a) Reflection response at the upper 

array for a source at the lateral position of 

the blue dot in Figure 2; (b) Transmission 

response of the same source, recorded at the 

lower array; (c) Initial focusing function at 

the upper array. All responses are clipped at 

10% of their maximum value. 

 

Figure 2  Configuration with a constant velocity  

𝑐 = 1500 𝑚 𝑠−1. The black boxes denote two 

density anomalies with 𝜌 = 2000 𝑘𝑔 𝑚−3. Outside 

these boxes, we have a constant density of 𝜌 =
1000 𝑘𝑔 𝑚−3. In green and red, we denote the 

upper and lower array. Focusing functions and 

Green's functions are evaluated at the blue dot. 
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transmission  data. Hence, the conditions for time windowing can be relaxed, allowing the retrieval of 

waveforms beyond the scope of the conventional Marchenko equation. Although more research is 

required to exploit this advantage to its full potential, we have demonstrated some of the prospected 

gains in this abstract. In this process, we have focused our attention to diffraction-type events in the 

data. However, the methodology might also help us to cope with short-period multiples, which are 

difficult to retrieve with the conventional Marchenko methodology due to the bandlimited nature of our 

data, especially in case of severe lateral variations (Elison et al., 2020). 
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Figure 4 Focusing function 𝐹𝑈: (a) Ground 

truth, (b) retrieved from equation (6) and 

(c) retrieved from equation (11). All 

responses are clipped at 10% of their 

maximum value. 

 

 

Figure 5 Green's function 𝛤𝑈  as retrieved from 

equation (3): (a) Ground truth and by  using focusing 

functions from (b) equation (6) and (c) equation (11). 

All responses are clipped at 10% of their maximum 

value. 

 

 




