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Introduction

The key process in seismic imaging is given by migration.
The accuracy and efficiency of the migration process is
directly determined by the involved downward extrapola-
tion operators. Taking into account that a downward
extrapolation operator equals the response at the surface
due to a point source in a subsurface grid point of a macro
model, the computation of point source responses in
macro models is of vital importance for the seismic

method.

Sofar, two methods are used to simulate point source

responses in macro models:
1. Finite difference method
2. Ray tracing method.

The finite difference method is accurate and can handle
complicated macro models without any problem. How-
ever, the major disadvantage is that finite difference mod-
eling is computationally expensive, particularly if one
bears in mind that the modeling should be carried out for
many grid points.

The ray tracing method is fast and, therefore, economi-
cally attractive. However, particularly in complex macro
models, the ray tracing method has problems with deliver-
ing correct amplitudes and multi travel time events.

From the foregoing we may conclude that both methods
are not ideal.

Beamtracing

In this paper we propose a third alternative, called beam
tracing, that may be considered as a compromise between
finite difference modeling and modeling by ray tracing.
Beam tracing is based on Huygens’ principle, where the
travelling wave field is recursively followed by looking at
the response of secondary point sources. However,
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instead of looking at the response of each individual Huy-
gens source, a number of neighboring Huygens sources
are combined into an areal source. Looking in the far field
of this areal source, the directive response can be easily
computed by analytically evaluating the source beam.
Hence, by using the Rayleigh integral (quantification of
Huygens’ principle) we obtain accuracy and by combin-
ing Huygens point sources into areal sources (spatial dis-
cretization) we obtain speed. The above principle of
generalized beam tracing was introduced by Berkhout
(1987, p.279-284). Fig. 1 shows the three basic modules
in beam tracing. First the wave field at depth level z; is
spatially subdivided in a number of (partially overlap-
ping) sub wave fields, such that the sum of the sub wave
fields equals the total wave field (decomposition). Next,
each sub wave field is considered as an areal Huygens’
source and the response is determined at z, by making use
of its beam. Finally, the contribution of all Huygens
sources at z; are superimposed (composition). If a macro
boundary exists between z; and z, , then the boundary
conditions should be applied as well.
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Fig. I The three basic modules in beam tracing.
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Decomposition

To arrive at areal Huygens sources we need to spatially
window the incident wave field at depth level zy. The
main restriction to the decomposition is that the sum of
the overlapping window functions equals unity. We will
show the response of Huygens sources, obtained by win-
dowing with two different window functions: the cosine-
square window (fig. 2a) and the Gaussian window (fig.
2b).

Fig.2 Two types of window functions for the incident
wave field.

Extrapolation

The response at depth level z;, as 2 result of one Huygens
source at depth level zy, is obtained by using the Rayleigh
integral. Using the Fraunhofer approximation, it can be
shown that in the far field region of the Huygens source
this Rayleigh integral may be approximated by a (scaled)
Fourier integral, which yields a considerable reduction in
computational effort and clarifies the directivity proper-
ties of the areal Huygens source. If the incident wavefield
at z, for every Huygens source is approximated by a plane
wave, the Fourier integral will be a function of the local
amplitude and the local angle of incidence only and the
value can be obtained from a table. In the extrapolation
the energy per Huygens source remains spatially central-
ized (the beam concept). The center of this beam corre-
sponds 1o the classical ray path. To illustrate this beam
behaviour, figures 3a and 3b show constant amplitude
contours of the response of one windowed Huygens
source at every depth level z;. In a layered medium, the
extrapolation will be done from interface to interface. At
- every interface the boundary conditions have 10 be

applied. If the interface is curved, the curvature function
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Fig. 3 (a)Constant amplitude contours of the response
at every depth level z, of one cosine-square
windowed Huygens source (b )Constant
amplitude contours of the response at every
depth level 2, of one Gaussian windowed
Huygens source.

can be linearized for each Huygens source, sO that the
Fourier integral approximation is still valid. Our general
representation allows for redefinition of the beam decom-
position at every interface. The spatial complexity of the
interface determines the number of Huygens sources 10 be
evaluated. The redefinition of the decomposition will all-
ways be a trade-off between accuracy and efficiency.
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