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The underlying assumption of any migration scheme is that a macro model of the subsurface accurately accounts
for the propagation effects from the acquisition surface to the target and vice versa. A macro model consists of a
number of geologically oriented macro layers, separated by macro boundaries. In general, the velocity and density
in each macro layer are chosen to be simple functions of position (for instance linear functions of depth, accounting
for the depth dependent compaction properties). Figure 1a shows an example of a homogeneous macro model and
the construction of the forward extrapolation operator W; (z| zo) , where p denotes ‘primary’. Recent studies on
wave propagation through finely layered media have shown that internal multiple scattering effectively results in
an angle-dependent dispersion of the wave field (Burridge and Chang, 1989). In the following we refer to this dis-
persed wave field as the ‘generalized primary’. Figure 1b shows a 1-D example of a model with fine layering and
the construction of the forward extrapolation operator W; (z zo) , where g denotes ‘generalized primary’. Cur-
rent macro models do not account for this dispersion effect. Consequently, this effect is also ignored in migration,
which may result in disperséd images and erroneous amplitude versus angle (AVA) effects. In Delft we are inves-
tigating how to parametrize the effects of fine layering in an extended macro model (Herrmann and Wapenaar,
1992). Now the question arises, what are the implications of the fine layering effects for migration? Generally, the
inverse wave field extrapolation operators required for migration are approximated by the matched filter approach:

F (z2) = W (dzp) ", (1)

(Berkhout, 1982; H stands for complex conjugate transpose). It can be shown that this approach yields accurate
results both for homogeneous as well as inhomogeneous macro models (provided the one-way wave fields are
properly scaled). Does this approach also hold for the generalized primary extrapolation operator, defined in an
extended macro model? Unfortunately the answer is negative: the dispersion effects in the generalized primary
wave are accompanied with an amplitude loss which is not compensated for by the matched filter. Hence, just as is
the case with anelastic losses, the matched filter fails to account for losses due to fine layering. There is an important
difference, however, between anelastic losses and losses due to fine layering. Whereas anelastic losses represent a
conversion of seismic energy into heat, the losses related to fine layering represent a conversion of ‘forward prop-
agating seismic energy’ into ‘back scattered seismic energy’, see Figure 1b. By using the power reciprocity theorem
for one-way wave fields (Wapenaar, 1993), it will be shown in this paper that the energy loss of the downward prop-
agating generalized primary can be quantified by the multi-dimensional autocorrelation of the ‘backscattered wave
field’, i.e., the reflection measurements at the surface. This leads to a ‘modified matched filter’, defined as

-1
F'g" (ZOI ) = I:I - Xéz) (ZO| z) HXéZ) (zo| ZO)J W; (2] zy) H, (2)

where Xéz) (zo| zO) contains the (deconvolved) data at the surface, see Figure 1b. In practice, the matrix inver-
sion in (2) is replaced by a Neumann series expansion. Note that this equation holds for 3-D inhomogeneous (aniso-
tropic) acoustic or elastic media. Using reciprocity, the modified matched filter for the upgoing generalized primary
follows immediately:

F, (zlzy) = F; (zol z) T 3)

The underlying assumption for this approach is that the propagation losses may be entirely ascribed to the fine
layering (scattering losses only). It will be indicated how this approach can be generalized when anelastic losses
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play a role as well. Using these modified matched filter operators in prestack migration will result in a non-dis-
persed image with correct AVA behavior.
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Fig 1. Construction of the forward operators in a homogeneous model (a) and in a model with fine layering (b).
The subscripts p and g denote ‘primary’ and ‘generalized primary’, respectively. (Courtesy E.J.M. Giling)




