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Introduction

In seismic migration the elimination of propagation effects from the seismic data plays a major role. A wave
propagating through the earth will encounter ’large contrast’ boundaries which are separated by sequences
of thin layers with smaller contrasts. Usually the propagation effects are quantified by a macro model,
which accounts for the large contrast boundaries but suffices with the average velocities (and densities) of
the thin-layering between these boundaries. Hence, the angle-dependent dispersion effects due to internal
multiple scattering in finely layered media, which have been studied extensively (O’Doherty and Anstey,
1971; Burridge and Chang, 1989; Herrmann and Wapenaar, 1992), are neglected in a macro model. We
investigate the possibility of replacing a finely layered medium by a homogeneous, anisotropic, ’effective’
medium with anelastic losses, thus mimicking the angle-dependent dispersion effects, and allowing for these
effects to be incorporated in a 2-D or 3-D eztended macro model for true amplitude migration.

Defining the anisotropic effective medium parameters
The transmission response of a finely layered medium between depth levels 2y and z,, can be written in the
rayparameter-frequency (p,w) domain as

W;'(zm,zo;p, w) = W;(zm,zo;p, w)C(zm, z0; P, w), (1)
where W;‘ is the generalized primary extrapolation operator and

. 1
W;(zm,zo;p, w) = exp{—Jjw cos e < p > Az}, (2)

is the extrapolation operator for the primary wave, in which

08 Pefr = 1/1 — c2gp?, (3)

with ¢z = <c>/<1>and Az =2, — 2.
C(zm, 203 p,w) = exp{—A(wcos gerr)(cos < ¢ >) " Az} (4)

is a correction operator that accounts for the angle-dependent dispersion effects, in which A(w) is the fourier
transform of the causal part of the auto-covariance of the reflectivity function (modified after O’Doherty
and Anstey, 1971), and n is either 0 or 4 for respectively density or velocity contrasts (for simplicity, we
refrain from considering the case of both density as well as velocity contrasts in this abstract). Assuming a
finely layered medium is a realization of a fractal Brownian motion process, we can use the scaling property
A(wcos per) = A(w)(cos per)* (Herrmann, 1991), where o is the slope of the power spectrum.

The response of a homogeneous anisotropic medium with anelastic losses can be written as

W+(zm,zo;p,w) :exp{—j-cﬂ—\ll—-pzci,Az}, (5)
v

with frequency dependent vertical and horizontal phase velocities cy and cy.

Expanding the exponential terms in both equations (1) and (5) around p = 0 (taking geg =< ¢ >) and
equating the resulting coefficients of p® and p?, ¢y and cy can simply be expressed in terms of the fine-
layering medium parameters,

1 1 A 2 -
coefficients of p° : == (< - > +#) coefficients of p? : 4 =<c> (1 + %M) (6)
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Figure 1: Transmission responses, ezact versus macro model versus extended macro model for different angles

These elliptical anisotropic velocities, when used in equation (5), mimic the propagation effects of a finely
layered medium and thus define an effective homogeneous, anisotropic medium with losses. For a more
detailed derivation, see Wapenaar and Slot (1994).

Examples and conclusions

The modeled medium consisted of 15000 layers of 10 cm each, statistically described by fractal Brownian
motion, with average velocity < ¢ > of 2500 m/s and a standard deviation of 413 m/s. The density was
taken constant.

In Figures (1) and (2) the ezact (numerically modeled) transmission response is compared with the response
modeled by the eztended macro model (as described above), and with the response modeled by the (stan-
dard) macro model. The extrapolation operator of the macro model uses only the average slowness of the
stack of thin layers (such that for p = 0, it is identical with equation (2) ). The improvement on the (rather
poor) macro model solution is quite substantial, certainly for angles below 30 degrees. For higher angles
the extended macro model becomes inaccurate due to the expansion around p = 0, and due to tunneling
effects which are not accounted for, but it still matches the exact solution much better than does the macro
model. If, as in equation (6), we also equate the coefficients of p*, we obtain three anisotropic parameters,
which then describe a more general T.I. effective medium. Attenuation effects are again improved (accurate
up to around 45 degrees) and, although arrival-time effects require a more elaborate interpretation, these
also clearly show improvement.
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Figure 2: Transmission responses, (a) for normal incidence and (b) for incidence of around 29 degrees
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