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Abstract— Using passive radar is known in radiometry and for
localization of electromagnetic field sources. These sometimes rely
on interferometric principles. Here we present a study that uses a
different concept of interferometry. With interferometry we mean
the creation of data from autocorrelation or crosscorrelation
of two recorded data traces without the use of active sources.
The sources must then have other, unknown, origins. The
obtained result is as if the transmitter was located at one of
the passive receiver locations, while the receiver was located at
the other passive receiver location. Under favorable conditions,
the original sources play no role in the final result. The exact
mathematical formulation of this principle is based on time
reversal invariance, which can be represented as an interaction
quantity for reciprocity theorems. We derive here representations
for the Green’s function for the electric field due to electric
current sources. To arrive at representations that can be used
in practice, some approximations must be made. We discuss
and illustrate the effects of the approximations and of non-zero
medium conductivities.

Index Terms— interferometry, data creation, crosscorrelation,
time reversal, passive GPR.

I. INTRODUCTION

Passive radar techniques have a long history. Usually they
are used for localization of electromagnetic fields [1], or for
radiometry applications, e.g., for Earth observation [2]. In this
paper we extend the use of interferometric techniques and
adopt the notion of interferometry introduced by Schuster [3]
to include the creation of new data. This idea dates back to
1968 when Claerbout [4] showed that the autocorrelation of an
acoustic plane wave transmission response recorded in a one-
dimensional configuration at the pressure-free surface yields
the reflection response at the pressure-free surface. Weaver and
Lobkis showed that the autocorrelation function of an acoustic
wavefield response is the wavefield response of a direct pulse-
echo experiment in a three-dimensional configuration [5]. The
condition is that the wavefield is diffuse, which in their case
was generated by thermal noise. Based on the diffusivity
of the wavefield, many authors showed similar results also
for crosscorrelations in open and closed configurations [6],
[7], [8]. Later it was shown for deterministic instantaneously
reacting media that Claerbout’s principle could be extended to
three-dimensional media [9], [10].

Here we use the reaction principles set out by Bojarski [11]
as the basis for our derivations and derive new interferometric
representations for the electric field Green’s function for an
electric current source. The configuration is a bounded domain
with a closed surface at which sources are active. Inside this

bounded domain two receivers are present that record all re-
sponses from the sources located on the boundary. When these
two recordings are crosscorrelated, the result is independent
of the location of the closed boundary and independent of
the sources. It represents the field as if it was generated at
one of the two recording locations and received at the other
location together with its time-reversed version. When one
receiver is inside the domain and the other is outside the
domain a similar result is obtained but now only the causal
field is constructed. These representations are only valid for
instanteneously reacting media, since time-reversal invariance
relies on the conservation of total wave energy. We show that
the concept can still be used when the conduction losses are
limited to values where radar wave methods are effective.

II. LOCAL TIME-REVERSAL INVARIANCE

In our paper we use the subscript notation for vectors
and tensors, Einstein’s summation convention applies to re-
peated lower case Latin subscripts to which the values 1,
2 and 3 are to be assigned. We use the electric field vec-
tor Ê(x, ω), the magnetic field vector Ĥ(x, ω), and the
external source volume densities of electric and magnetic
currents, {Ĵe

(x, ω), Ĵ
m

(x, ω)}, respectively. The medium pa-
rameters are electric permittivity εkr(x), electric conductivity
σ̂e

kr(x, ω), magnetic permeability µjp(x) and the magnetic
conductivity σ̂m

jp(x, ω). Note that we have defined the electric
permittivity and the magnetic permeability as functions of po-
sition only. This is no restriction because the time dependence
of these medium parameters can be incorporated in the electric
and magnetic conductivities, respectively.

We define the time-Fourier transform of a space-time de-
pendent quantity as

Ê(x, ω) =
∫ ∞

t=0

exp(−jωt)E(x, t)dt, (1)

where j is the imaginary unit and ω denotes angular frequency.
In the space-frequency domain Maxwell’s equations in

matter are given by

−εkmj∂mĤj + [σ̂e
kr + jωεkr]Êr = −Ĵe

k , (2)

εjmr∂mÊr + [σ̂m
jp + jωµjp]Ĥp = −Ĵm

j , (3)

where ∂m denotes partial differentiation with respect to the
coordinate xm and εkmj is the anti-symmetric tensor of rank
three, εkmj = 1 when kmj = {123, 231, 312}, εkmj = −1
when kmj = {132, 213, 321}, while εkmj = 0 otherwise.
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For the time-correlation type reciprocity theorem we need the
complex conjugate of Maxwell’s equations

−εkmj∂mĤ∗
j + [σ̂e∗

kr − jωεkr]Ê∗
r = −Ĵe∗

k , (4)

εjmr∂mÊ∗
r + [σ̂m∗

jp − jωµjp]Ĥ∗
p = −Ĵm∗

j , (5)

where the asterisk denotes complex conjugation. The corre-
sponding interaction quantity is given by

∂mεmkj

(
Ê∗

k,AĤj,B + Êk,BĤ∗
j,A

)
, (6)

upon taking state A as the time-reversed state. For reciprocal
media, which implies that the medium parameters in the two
states are the same,

εkr,A(x) = εrk,B(x), σ̂e
kr,A(x, ω) = σ̂e

rk,B(x, ω), (7)

µjp,A(x) = µpj,B(x), σ̂m
jp,A(x, ω) = σ̂m

pj,B(x, ω). (8)

The local electromagnetic reciprocity theorem of the time-
correlation type is obtained by substituting both Maxwell’s
equations (2) and (3), for state B and the time-reversed
Maxwell’s equations (4) and (5), for state A into the interaction
quantity of equation (6). For reciprocal media this results in

−∂mεmkj

(
Ê∗

k,AĤj,B + Êk,BĤ∗
j,A

)

= 2Ĥ∗
j,A�{σ̂m

jp}Ĥp,B + 2Ê∗
k,A�{σ̂e

kr}Êr,B

+Ĵe∗
r,AÊr,B + Ĵe

r,BÊ∗
r,A + Ĵm∗

p,AĤp,B + Ĵm
p,BĤ∗

p,A, (9)

where �{F̂} denotes real part of F̂ . In the following sections
we apply this local reciprocity theorem to a bounded domain.

III. INTERFEROMETRIC GREEN’S FUNCTION
REPRESENTATIONS

We start with the global form of the reciprocity theorem
of the time-correlation type for the situation applied to the
domain ID with closed boundary ∂ID, which has a unique
outward pointing unit normal nm. Without loss of generality in
the relaxation mechanisms, we have assumed that they are all
contained in the electric and magnetic conductivity functions.
We have assumed reciprocal media and the heterogeneities
are not restricted to occur only inside the domain ID, but may
extend over the whole space. Hence, we find an integral reci-
procity theorem by integrating equation (9) over the domain
ID and applying Gauss’ divergence theorem to the integral
containing the interaction quantity. This leads to∮

x∈∂ID

nmεmkj(Ê∗
k,AĤj,B + Êk,BĤ∗

j,A)d2x

= −2
∫
x∈ID

[Ĥ∗
j,A�{σ̂m

jp}Ĥp,B + Ê∗
k,A�{σ̂e

kr}Êr,B]d3x

−
∫
x∈ID

[
(Ĵe

r,A)∗Êr,B + Ĵe
k,BÊ∗

k,A

+Ĵm
j,BĤ∗

j,A + (Ĵm
p,A)∗Ĥp,B

]
d3x. (10)

Equation (10) is the global reciprocity theorem of the time-
correlation type as only products of quantities and complex
conjugate quantities occur, which leads to correlations of these
quantities in the time domain. For a more detailed discussion

on reciprocity relations, see [12].

Normally we use electric-field receivers and sources and hence
in equation (10) we take zero magnetic current sources and
write the magnetic field vector in terms of the electric field
vector in equation (10). Further we assume an instantaneous
reacting medium and with constant scalar magnetic permeabil-
ity in the neighborhood of the boundary, ∂ID, of the domain,
ID. Substituting all these choices in equation (10) leads to

1
jωµ

∮
x∈∂ID

nmεmkj

(
Ê∗

k,A(εjnr∂nÊr,B)

− Êk,B(εjnr∂nÊ∗
r,A)

)
d2x

=
∫
x∈ID

[
(Ĵe

r,A)∗Êr,B + Ĵe
k,BÊ∗

k,A

]
d3x. (11)

The electric current source terms in the right-hand side of
equation (11) are used to localize the receivers at xA and
xB . By assuming now also isotropy and homogeneity for
the electric permittivity in the neighborhood of the closed
boundary surface, ∂ID, it can be shown that the left-hand side
can be rewritten in terms of time correlations of the electric
field and normal derivatives of the electric field. This results
in

1
jωµ

∮
x∈∂ID

(
Ê∗

k,Anm∂mÊk,B − Êr,Bnm∂mÊ∗
r,A

)
d2x

=
∫
x∈ID

[
(Ĵe

r,A)∗Êr,B + Ĵe
k,BÊ∗

k,A

]
d3x. (12)

3.1 Observation Points xA and xB Inside Domain ID
We define the observation points in this configuration in
terms of impulsive sources with arbitrary orientations and their
locations in the two states with {xA, xB} ∈ ID. Hence, the
sources and the fields are given by,

Ĵk,A = δkrδ(x − xA); Êk,A = Ĝkr(x, xA, ω), (13)

Ĵr,B = δrsδ(x − xB); Êr,B = Ĝrs(x, xB, ω). (14)

Substituting equations (13) and (14) in equation (12) leads to

2�{Ĝkr(xA, xB, ω)} = − 1
jωµ

×
∮
x∈∂ID

(
{Ĝkj(xA, x, ω)}∗nm∂m{Ĝrj(xB, x, ω)}

−{nm∂mĜkp(xA, x, ω)}∗{Ĝrp(xB , x, ω)}
)
d2x, (15)

where µ is the magnetic permeability of the medium in the
neighborhood of the boundaryand where field reciprocity has
been used to interchange the source and receiver positions
in the argument of the green’s functions. This is an exact
representation for the real part of the electric field Green’s
function for an electric current source in terms of crosscorre-
lations of point source responses observed at xA and xB inside
the domain ID. This is true for any heterogeneous anisotropic
medium that is homogeneous and isotropic only in the neigh-
borhood of the boundary ∂ID. To have a representation for the
real part only is sufficient as it represents a causal function
in the time domain together with its time-reversed version,
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which do not overlap except at t = 0. This implies that in the
frequency domain the imaginary part can be constructed from
the real part via a Hilbert transformation. The two terms under
the integral of equation (15) ensure that, when summed over
all sources on the boundary, waves propagating outward from
the sources at x on ∂ID do not interact with those propagating
inward and vice versa.

To bring equation (15) to a form that is more suited for
practical applications we perform several manipulations, for
which it is illustrative to split the Green’s functions into terms
denoting the waves propagating inward or outward from the
sources on ∂ID,

Ĝkj;A = Ĝ
(in)
kj;A + Ĝ

(out)
kj;A , (16)

Ĝrj;B = Ĝ
(in)
rj;B + Ĝ

(out)
rj;B , (17)

where the superscripts (in) and (out) denote the inward and
outward propagating waves and we have written the Green’s
functions Ĝkj(xA, x, ω) and Ĝrj(xB, x, ω) as Ĝkj;A and
Ĝrj;B . In the high-frequency regime, the main contributions to
the integral in equation (15) come from stationary points on
the boundary [13], [14], [15]. At those points the absolute
cosines of the ray angles for Ĝkj;A and Ĝrj;B are the
same. This implies for example that the terms Ĝ

(in)∗
kj;A ∂mĜ

(in)
rj;B

and −Ĝ
(in)
rj;B∂mĜ

(in)∗
kj;A give the same contribution to the

integral, whereas the contributions of Ĝ
(in)∗
kj;A ∂mĜ

(out)
rj;B and

−Ĝ
(out)
rj;B ∂mĜ

(in)∗
kj;A cancel each other. We use this to rewrite

equation (15) as

2�{Ĝkr(xA, xB, ω)} = − 2
jωµ

×
∮
x∈∂ID

(
Ĝ

(in)∗
kj;A ∂mĜ

(in)
rj;B + Ĝ

(out)∗
kj;A ∂mĜ

(out)
rj;B

)
nmd2x. (18)

To measure the inward and outward propagating waves sep-
arately is impossible without source decomposition methods,
which requires full control over the sources. Assuming we
do not have that, we use equations (16) and (17) to write
equation (18) as

2�{Ĝkr(xA, xB , ω)} + ’ghost’ = − 2
jωµ

×
∮
x∈∂ID

{Ĝkj(xA, x, ω)}∗nm∂m{Ĝrj(xB, x, ω)}d2x, (19)

where the ’ghost’ is given by,

’ghost’ = − 2
jωµ

×
∮
x∈∂ID

(
Ĝ

(in)∗
kj;A ∂mĜ

(out)
rj;B + Ĝ

(out)∗
kj;A ∂mĜ

(in)
rj;B

)
nmd2x. (20)

The right-hand side of equation (19) contains only a single
product of crosscorrelations and is therefor a more manegable
form than equation (15). Unfortunately, in equation (19) a
ghost-term is present that leads to spurious events in the re-
constructed Green’s function Ĝkr(xA, xB, ω). These spurious
event are non-physical contributions and, unlike the physical
events, they depend on the source locations. This means that

when the boundary is irregularly shaped the contributions are
not integrated coherently and can lead to a zero contribution,
depending on the distribution of the sources. In such cases
the ghost-contribution can be ignored and equation (19) can
be used to construct the Green’s function, which was first
numerically demonstrated by [16].

We extend our assumption of a homogeneous and isotropic
medium to exist also outside the domain ID. Waves that leave
the domain ID never enter it again, implying that the boundary
is convex seen from the inside of ID. Then the outward
propagating waves are never recorded, hence, equation (20)
vanishes and we find,

2�{Ĝkr(xA, xB, ω)} = − 2
jωµ

×
∮
x∈∂ID

{Ĝkj(xA, x, ω)}∗nm∂m{Ĝrj(xB, x, ω)}d2x, (21)

where now µ is the magnetic permeability of the whole
embedding. Finally, if we take the boundary ∂ID to be a
sphere with large enough radius such that the Fraunhofer far-
field conditions apply [17], we can approximate the normal
derivative as −jω

c | cos(α(x))|, where we only need a minus
sign because only ingoing waves contribute to the final result
and α(x) denotes the angle of emission a generalized ray
makes with the unit normal on ∂ID. Assuming α(x) = 0 for
all source locations, we obtain

2�{Ĝkr(xA, xB, ω)} ≈ − 2
µc

×
∮
x∈∂ID

{Ĝkj(xA, x, ω)}∗{Ĝrj(xB, x, ω)}d2x, (22)

where c = (εµ)−1/2 is the electromagnetic wave velocity in
the embedding. Equations (15)-(22) are the electromagnetic
equivalents of the acoustic and elastic representations for open
configurations given in [18]. Each integrand in the right-hand
side of equation (22) is an electric field generated by an
impulsive souce of arbitrary direction and located at position x
on the boundary and the k-component is recorded at location
xA, while the r-component is recorded at location xB . By
crosscorrelating these two recordings in the time domain
and then summing over all source directions at all locations
on the boundary yields the real part of the k-component
electric field Green’s function recorded at xA and generated
by the r-component of an impulsive source at location xB .
This representation only involves the electric-field electric-
current-source Green’s function and can be used for efficient
modeling schemes. An acoustic example of this idea can
be found in [19]. If the radius of the sphere is taken large
enough, the error involved can be made arbitrarily small and
hence the approximation sign does not involve a large error.
The accuracy depends very much on the total contribution
from waves that leave the boundary in other than the nor-
mal direction. For generalized rays with increasing angle of
emission, relative to the the normal vector of the boundary,
progressively larger errors are involved with making the far-
field approximation. These errors are therefore depending on
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the location of the source on the boundary. This is a potential
cause of spurious events because waves that should cancel
when summed over all sources will now not show complete
destructive interference. In general we can state that amplitude
errors that depend on the source location on the boundary can
lead to spurious events. In principle this is serious because
there is no way to identify spurious from physical events when
they occur in the time window of interest.

3.2 Observation Point xA Inside ID, while xB Outside ID
We define the observation points in this configuration in
terms of impulsive sources with arbitrary orientations and their
locations in the two states with xA ∈ ID, while xB �∈ ID. We
hence define the sources and the fields as,

Ĵk,A = δkrδ(x − xA); Êk,A = Ĝkr(x, xA, ω), (23)

Ĵr,B = δrsδ(x − xB); Êr,B = Ĝrs(x, xB , ω). (24)

Substituting equations (23) and (24) in equation (12) leads to

Ĝkr(xA, xB, ω) = − 1
jωµ

×
∮
x∈∂ID

(
{Ĝkj(xA, x, ω)}∗nm∂m{Ĝrj(xB, x, ω)}

−{nm∂mĜkp(xA, x, ω)}∗{Ĝrp(xB, x, ω)}
)
d2x. (25)

This is an exact representation for the total electric field
Green’s function for an electric current source in terms of
crosscorrelations of point source responses observed at xA and
xB inside the domain ID. This is true for any heterogeneous
anisotropic medium that is homogeneous and isotropic only
in the neighborhood of the boundary ∂ID. This implies that
the exact causal Green’s function is obtained. Notice that the
right-hand side of equation (25) looks similar to the right-
hand side of equation (15), but while the Green’s function
for location xA is indeed the same, the Green’s function for
xB is very different. The two terms under the integral of
equation (15) ensure that waves propagating outward from the
sources at x on ∂ID do not interact with those propagating
inward and vice versa. In this new configuration, waves that
travel from x to xA and whose travel time is larger than for
waves that travel from the same source at x to xB arrive at
negative times. When summed over all sources for which this
applies, these waves must exactly cancel each other. Waves
for which the total travel time from a source location x to the
receiver location at xA is smaller than from the same source to
receiver location xB arrive at possitive times. Summing over
all these waves leads to the exact causal Green’s function as if
there were an impulsive electric current source in xB and the
electric field were recorded at xA. Also for this configuration
we would like to arrive at representations that can be used in
practice. We extend again our assumption of a homogeneous
and isotropic medium to exist also outside the domain ID.
Waves that leave the domain ID never enter it again, implying
that the boundary is convex seen from the inside of ID. It can
then be shown by a similar stationary phase analysis as given
in [13], [14] that the terms under the integral are approximately

equal but with opposite sign for waves that initially travel
toward ID from the sources on the boundary, as in the situation
when both observation points are inside ID. However, in this
new configuration the receiver location xB is located outside
ID and waves that travel initially outward from the sources on
the boundary are recorded at xB and correlated with waves
that are ingoing waves and recorded at xA. For these waves
the two terms are approximately equal and with the same sign
when summed over all sources on the boundary. Since we
cannot decompose the wave fields at the sources in terms of
ingoing and outgoing waves, we make the assumption that
is correct for initially ingoing waves and neglect the error
for interactions with waves that travel initially outward and
recorded at xB and hence, we obtain,

Ĝkr(xA, xB, ω) + ’ghost’ = − 2
jωµ

×
∮
x∈∂ID

{Ĝkj(xA, x, ω)}∗nm∂m{Ĝrj(xB, x, ω)}d2x, (26)

where the ’ghost’ is given by,

’ghost’ = − 2
jωµ

∮
x∈∂ID

(
Ĝ

(in)∗
kj;A ∂mĜ

(out)
rj;B

)
nmd2x. (27)

In this configuration the ghost term is non-zero even when
the embedding is homogeneous. The presence of the ghost
term leads to large errors in the retrieved Green’s function
because ingoing waves recorded at xA are correlated with
outgoing waves recorded at xB and these should have been
canceled. Of course, the travel time from the sources on the
boundary to the receiver at xA is subtracted from the travel
time from the sources on the boundary directly to xB . If
we are able to have the receiver at xB , in terms of travel
time, closer to the boundary than xA, we ensure that all
spurious events arrive before the first desired arrival and most
arrive at negative times. Since we only construct the causal
Green’s functions, events arriving at negative times are directly
identified as spurious events and hence present no problem for
interferometric use. Finally, if we take the boundary ∂ID to be
a sphere with large enough radius such that the Fraunhofer
far-field conditions apply, we obtain

Ĝkr(xA, xB, ω) ≈ − 2
µc

×
∮
x∈∂ID

{Ĝkj(xA, x, ω)}∗{Ĝrj(xB, x, ω)}d2x. (28)

Each integrand in the right-hand side of equation (28) is an
electric field generated by an impulsive souce of arbitrary
direction and located at position x on the boundary and the k-
component is recorded at location xA, while the r-component
is recorded at location xB . By crosscorrelating these two
recordings in the time domain and then summing over all
source locations on the boundary yields the k-component
electric field Green’s function recorded at xA and generated by
the r-component of an impulsive source at location xB . The
radius of the sphere cannot be taken arbitrarily large and the
error involved cannot be made arbitrarily small. The accuracy
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depends very much on the total contribution from waves
that leave the boundary in other than the normal direction.
The above arguments for generating spurious events in the
configuration with both receivers located inside ID also apply
here.

IV. TRANSIENT SOURCES

In situations where we have control over the sources, such as
in the laboratory, we can modify equation (22) to incorporate
the time signatures of the sources. To this end we define
electric wavefield recordings at the receiver locations xA and
xB as

Êobs
kj (xA, x, ω) = ĜEJe

kj (xA, x, ω)ŝ(j)(x, ω), (29)

Êobs
kj (xB, x, ω) = ĜEJe

kj (xB , x, ω)ŝ(j)(x, ω), (30)

where ŝ(j)(x) denotes the source frequency spectrum in the
xj-direction at position x, which can be different for each
direction and for each source position. The power spectrum
of the sources is defined as

Ŝ(j)(x, ω) = ŝ(j)∗(x, ω)ŝ(j)(x, ω). (31)

We further introduce a shaping filter, F̂ (j)(x, ω), under the
assumption that we know the source frequency spectrum at
all locations as

F̂ (j)(x, ω) =
Y Ŝ0(ω)

Ŝ(j)(x, ω)
, (32)

where Y = 1/(µc) denotes the plane wave admittance of the
embedding and Ŝ0 is the desired source power spectrum. This
choice allows a different source signature for each source
direction and for each source position along the boundaries
and we can still have a single source power spectrum, Ŝ0, in
the corrrelation result.

4.1 Observation Points xA and xB Inside Domain ID
Using the definitions of equations (29)-(32) in equation (22)
we find

�{ĜEJe

kr (xA, xB, ω)}Ŝ0 ≈
−
∮
x∈∂ID

F̂ (j)(x, ω){Êobs
kj (xA, x, ω)}∗{Êobs

rj (xB, x, ω)}d2x (33)

when both xA ∈ ID and xB ∈ ID. This expression can be used
in practical applications when all sources are excited separated
in time such that for each source position a full recording
can be made. These can be natural sources as long as the
above requirement of independent measurements is fulfilled. In
this way we obtain independent measurements each of which
can be plotted to form a so-called correlation gather, which,
under favorable conditions, also allows for the identification
of spurious events in case of conductive media or due to the
far-field approximation.

4.2 Observation Point xA Inside ID, while xB Outside ID

Using the definitions of equations (29)-(32) in equation (28)
we find

ĜEJe

kr (xA, xB, ω)Ŝ0 + ’ghost’ ≈
−2

∮
x∈∂ID

F̂ (j)(x, ω){Êobs
kj (xA, x, ω)}∗{Êobs

rj (xB, x, ω)}d2x, (34)

when xA ∈ ID, while xB �∈ ID. The ghost term is equivalent
to equation (ghostio) but now includes the shaping filter. This
expression can be used in practical applications when all
sources are excited separated in time such that for each source
position a full recording can be made. These can be natural
sources as long as the above requirement of independent
measurements is fulfilled. In this way we obtain independent
measurements each of which can be plotted to form a so-
called correlation gather, which, under favorable conditions,
also allows for the identification of spurious events in case of
conductive media or due to the far-field approximation. In case
we can design the configuration such that all travel times of
outward traveling waves from the boundary to the observation
point at xB are smaller than those of the inward traveling
waves from the boundary to the receiver station at xA, all
events of the ghost arrive at negativve times and present no
problem.

V. NUMERICAL RESULTS

x3;1

x3;2

xB xA

ε0, µ0, σ̂
e
0 = 0 S/m, σ̂m

0 = 0 S/m

εr;1 = 9, µ1 = µ0

σ̂e
1 = {0, 5} mS/m, σ̂m

1 = 0 S/m

ε2;r = 16, µ2 = µ0

σ̂e
2 = {0, 10} mS/m, σ̂m

2 = 0

h=2 m

h=1 m

h=2 m

Fig. 1. Configuration for the 2D examples, with a three layer medium and
with zero and non-zero values for the electric conductivity to investigate the
effects of conductivity in crosscorrelation interferometry methods.

We show numerical results to illustrate the concept, the
effect of the far-field approximation and the effect of presence
of conduction losses in the medium, which is often encoun-
tered in GPR applications. For the second configuration with
one receiver outside the domain enclosed by the sources, we
also illustrate the effect of introducing spurious events due to
the erroneous handling the interaction between ingoing waves
recorded xA and outgoing waves recorded at xB . All theory
above is derived for three dimensions, but all examples are
from a two-dimensional model consisting of a plane layered
earth. In that case the closed boundary is opened and extended
to infinity on the sides, which leads to zero contributions from
the sides [20]. The top layer is the upper half space as a model
for air, with free space electromagnetic parameters, the second
layer has a thickness of 1 m, a velocity of 10 cm/ns and in
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Fig. 2. CMP constructed from using the far field approximation in the
crosscorrelation of several antennas, initial offset is 1.5 m and with 20 cm
stepsize. The events are labeled as the direct airwave (1), direct ground
wave (2), primary reflection at the interface (3), first order multiple reflection
between surface and interface (4), refraction at the surface from the primary
reflection at large enough offsets (5) and the spurious event (s1).

case we study the effects of conduction losses a conductivity
of 5 mS/m, while the the third layer is the lower half space
with a velocity of 7.5 cm/ns and in case we study the effects
of conduction losses a conductivity of 10 mS/m, see Figure 1.
If we study the effects of the approximations, all layers are
assumed non-conductive. At the end we show an example of
the combined effects. The sources in the upper half space are,
at x3;1, 2 m above the earth surface, while the sources in the
lower half space are, at x3;2, 2 m below the second interface.
In the configuration where both receivers are located inside ID
then they are at the surface in the air as a model for the usual
surface reflection GPR survey with two parallel antennas.
This reduces all representations to the two-dimensional TE-
mode configuration. As argued in the previous section, the
far-field approximation can lead to spurious events. Resulting
spurious events are the consequence of incomplete destructive
interference due to source location dependent amplitude errors.
This is demonstrated to be actual in Figure 2, where a CMP
gather is shown, obtained using the far-field approximation
of equation (22). The numbered events in the figure are the
direct air- and ground waves (labeled 1 and 2), the primary
reflection from the interface between the layer and the lower
half space (labeled 3) and the first order multiple reflection
between the top and bottom interfaces of the layer. The CMP
gather looks fine at first sight, but a small amplitude spurious
event springs off (labeled s1 in the graph) from the small offset
causal direct groundwave and its arrival time decreases with
increasing offset. This event also occurs in a time-symmetric
form. The amplitude of the spurious event is, in this example,
very small.

To study the effect of conduction losses we have introduced
non-zero conductivity values in the first layer, σ = 5 mS/m,
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Fig. 3. Contributions from the sources at the top and bottom surfaces in
a conductive medium to the crosscorrelation results compared to the directly
modeled result at an antenna offset of 1.5 m.

and the lower half space, σ = 10 mS/m. The high-frequency
limit of the intrinsic attenuation for the two layers is

ATT = 816 × σ/
√

εr dB/m. (35)

Hence, the attenuation is ATT=-2.04 dB/m for the lower half
space and ATT=-1.4 dB/m for the layer. From these numbers
we see that the amplitude is halved every 1.5 m and 2.2 m
of propagation distance in the lower half space and in the
layer, respectively. These are attenuation values that fall well
within the range where GPR can be used. All events coming
from the bottom source boundary have been most dramatically
influenced by the conduction loss factor in the lower half
space, which is clearly seen in Figure 3 where we observe
that the contribution from sources on the bottom boundary
is relatively small. The direct ground wave is almost absent.
The contributions to the primary reflection from the sources
on the top and bottom boundaries are slightly out of phase
due to the conduction losses, which can be seen from the fact
that their sum in the right plot has almost the same maximum
amplitude as the seperate events in the left and middle plots.
From Figure 4 the directly modeled result is shown together
with the causal part of the crosscorrelation result to show that
the amplitude of the reflection is an order of magnitude smaller
than it should be. Here we see that the direct airwave has
the wrong amplitude. In Figure 5 we show a close up of the
first order reflection where the crosscorrelation result has been
multiplied with a factor 13 to emphasize the phase difference
compared to the exact arrival. The onset of the reflection in the
crosscorrelation result is clearly advanced while it is correct
toward the end of the reflection event. The event has become
more distorted due to the construction from events that have
traveled over a larger distance in the layer than required for the
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Fig. 4. Comparison of crosscorrelation result in a conductive medium with
the directly modeled result of the conductive model at an antenna offset of
1.5 m.
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Fig. 5. Close up of the reflection event of Figure 4 with the amplitude of
the crosscorrelation result blown up by a factor 13.

reflection event itself and for contributions from sources in the
lower half space more dispersion is introduced because waves
contributing to the final reflection event have also traveled in
the lower half space. Combining errors due to conduction
losses and due to the dipole-to-monopole approximation shows
that no extra effects occur. This can be seen by comparing it to
the result of the far-field approximated solution for the model
with zero conductivities given in Figure 2 with Figure 6, where
the CMP gather is plotted for the approximate solution with
non-zero conductivities in the subsurface layers. Of course,
due to the conduction losses all amplitudes have decreased, but
four of the five expected events are visible, be it with some
errors in arrival time and in amplitude, and only the direct
ground wave is missing and replaced by a single spurious
event (s1) that is easily identifiable because its arrival time
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Fig. 6. CMP constructed from using the dipole-tomonopole approximation
in the crosscorrelation of several antennas, initial offset is 1.5 m and with 20
cm stepsize, in conductive layered earth.

decreases with increasing offsets. From this we corroborate our
conclusion in the previous section that amplitude errors that
depend on the source location on the boundary surface lead to
slight phase and amplitude errors in desired reflection events
and possibly to spurious events. Here we see that the presence
of non-zero conductivities lead to similar effects, hence the
effects occur irrespective of the origin of the amplitude errors
in the individual source contributions. Amplitude errors in the
desired events due to the dipole-to-monopole approximation
are small compared to errors due to conduction losses. Still,
this type of radar wave interferometry can be used in GPR
applications where medium to low loss factors are present.
The kinematics of all events are almost correctly retrieved,
for which reason we regard equation (33) suitable for radar
wave interferometry.

VI. CONCLUSIONS

We have derived new interferometric representations for the
electric field Green’s function of an electric current source in
two configurations. In the first configuration the two obser-
vation points are inside the bounded domain enclosed by a
boundary containign sources. Crosscorrelation of the record-
ings at the two locations yields the Green’s function as if there
was a source present at one location, while it was recorded at
the other location. The causal Green’s function together with
its time-reversed version is obtained with this representation.
In the other configuration one of the recording locations is
inside the bounded domain, while the other is outside. Here
a similar result is obtained but now only the causal green’s
function is retrieved. The necessary modification to the exact
repreentation in the second configuration leads to spurious
events. A proper choice of the two recording locations allows
moving all spurious events to arrive before the first desired
event, which is known. Hence all spurious events are easily
identified. The presence of non-zero conductivities introduces
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errors of two kinds. The retrieved amplitudes of desired events
are too small and due to position dependent amplitude errors
for the sources on the boundary, spurious events are introduced
due to incomplete destructive interference. This latter error
is a similar cause for spurious events as due to the far
field approximations and hence no new spurious events are
introduced compared to the far field approximation. There
we conclude that both configurations allow for the necessary
modifications to arrive a practical representations, which lead
to kinematically correct radargrams. For this reason we regard
these representations as suitable for GPR interferometry and
interferometric imaging purposes.
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