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Abstract. Relatively simple closed-form expressions are derived for the
reflection and transmission coefficients belonging to a fluid/porous-medium
interface with open-pore boundary conditions. The wave propagation in
the fluid-saturated porous-medium is described using Biot’s theory and it
is assumed that both the porous skeleton and the pore fluid are much more
compressible than the skeletal solid grains themselves. The obtained results
find their application in forward and inverse surface wave analysis.

1. Introduction

To calculate the reflection and transmission coefficients belonging to a
fluid/porous-medium interface, one normally uses the boundary conditions
of Deresiewicz and Skalak [1]. In a number of papers [2-7] it has been shown
that these boundary conditions lead to a set of four linear equations with
the reflection and transmission coefficients as the four unknowns.

It is rather easy to solve this set of equations numerically, while closed-
form expressions for the reflection and transmission coefficients can be ob-
tained by applying the well-known Cramer’s rule (each coefficient is then
equal to the ratio of two determinants of two different 4 x 4 matrices).
Simply applying Cramer’s rule results in closed-form expressions for the
reflection and transmission coefficients that are very complicated. Due to
this complexity it is rather difficult to acquire a good physical insight in
the dependencies of these coefficients on the many measurable quantities
defining the fluid/porous-medium interface.
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We will show in this paper that it is possible to derive expressions for the
reflection and transmission coefficients that are much simpler than the ones
already known. We note, however, that we have assumed in this derivation
that both the porous skeleton and the pore fluid are much more compress-
ible than the skeletal solid grains themselves. The availability of simpler
expressions for the reflection and transmission coefficients contributes to a
better physical understanding of the reflection and transmission properties
of waves at a fluid/porous-medium boundary.

We finally note that we restrict ourselves to a fluid/porous-medium
interface with open-pore boundary conditions, while results associated with
sealed-pore boundary conditions can be found in a different paper [8].

2. Waves at a fluid/porous-medium boundary

According to Biot’s theory [9] three different types of waves may propagate
through a porous material: a fast P-wave, a slow P-wave, and a S-wave.
Consequently, at the fluid/porous-medium boundary an incident P-wave in
the fluid is converted simultaneously into (i) a reflected P-wave, (ii) a trans-
mitted fast P-wave, (iii) a transmitted slow P-wave, and (iv) a transmitted
S-wave (see Fig. 1).
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Figure 1. Wave conversion at a fluid/porous-medium boundary. The fluid displacements
belonging to the incident and reflected P-wave are denoted by U and U®, respectively.
The fluid displacements belonging to the fast P-wave, slow P-wave, and S-wave are de-
noted by UF*, U*?, and U®, respectively, whereas the corresponding solid displacements
are denoted by u"*, u®?, and u®, respectively.

The fluid displacements in the x-z plane belonging to the incident and
reflected P-wave are in the space-frequency domain given by

o= (F1) - () emtosioe s, 0

U= (A2 = (2) e lqvtr a2, (@)
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where w is the angular frequency, p the horizontal slowness, q the vertical
slowness with a positive real part and a negative imaginary part, and A’
and A® are wave-amplitudes. The slownesses p and ¢ are related to the
propagation velocity c as

1
Prid=5=1L (3)
where p is the fluid density and K the fluid bulk modulus. Furthermore, by
combining the deformation equation P=—K V-(U'+U") with Egs. (1)—(3)
one finds that the fluid pressure P is given by
P(z, 2,6) = jwp [A'exp [—jw(pe + g2)] + A" exp [—jw(pz — ¢2)]| . (4)

The displacements of the solid skeleton in the z-z plane belonging to
the fast P-wave, slow P-wave, and S-wave are given by

w = (0 (P ) arewlgutee tans)], O
"= (EE0) = (o) amemtistoe vansl. O
o (B () womierenn

where AP, AP? and AS are wave-amplitudes. The vertical slownesses gp,,
gp2, and g¢s (all with a positive real part and a negative imaginary part) are
related to the horizontal slowness p and the propagation velocities cp;, Cps,
and cg as
p2+q§1=%, p2+q12>2=%, p2+<1§=l2- (8)
Cp1 Cpa Cs

According to Biot’s theory [3, 9] the propagation velocities cp,, ¢py, and
cg are given by

R R i 9 e, — /€2 —4eye, s Gpa
— ’ — JF22

= 9

P1 %, Cpa %, > Cs c ( )
with

Co = P11P22 — pi, Cy = R(A + 2G) - QZ’ (10)

¢, = Rp,, + (A + 2G)P22 — 2Qp12, (11)

in which G is the shear modulus of the porous material. The generalized
elastic coefficients A, @, and R are related to measurable quantities by the
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following expressions [3, 10]

(1 - ¢)’K:Ks — (1 ¢)Kp K¢ + KKy, 2

4 = Ke(1 — ¢ — Kp/Ks) + 9Ky 39 (12
PK(Ks(1 — ¢) — Ky,)
% K¢ Ko/K) 0K (13)
2
R = & ReK,s (14)

Ki(1— ¢ — Kp/Ks) + K5’

where Kj is the skeletal grain bulk modulus, Ky the pore fluid bulk modulus,
Ky the “jacketed” bulk modulus of the porous material, and ¢ the porosity
(pore fluid volume divided by bulk volume).

The density terms py;, pa2, and py, in Egs. (9)—(11) are defined as

P11 = (1 - ¢)Ps — P12, P22 = Pps — P12, P12 = —(a - 1)¢Pfa (15)

where ps and pr are the densities of the solid skeleton and the pore fluid, re-
spectively. According to Johnson et al. [11] the drag coefficient a belonging
to a fluid-saturated porous material can be defined as

M
We 1+j—i) with  we
w 2 we

ne

= —, 16
kopraso ( )

a:aoo<1—j

where M =~ 1 is the so-called similarity parameter, oo, the inertial drag
at infinite frequency, 1 the pore fluid viscosity, k, the permeability of the
porous material, and the critical frequency w, is the frequency at which the
inertial and viscous drag are of comparable magnitude.

According to Biot’s theory the pore fluid displacements UF*, U*?) and
US? are related to the solid skeleton displacements u®*, u?, and u® as

Q- 012:1,012 _ A+2G - 012-’1,011

U™ = Gp,u"' with Gp, = , (17
" o 2 p2 — R o2 — Q (17)
. Q—02P12 A+2G_C2P11

U™ = Gp,u™? with Gp, = P = P2 (18
" v 2,022 — R 2,012 — Q (18)

— -1
US = Geu® with Gg=_P2=-2"" (19)

P22 a
The pore fluid stress 7¢ and solid skeleton stress 75 are defined as

Tt = —¢Pd = Q(V-u)d + R(V-U)4, (20)

Ts=—0—(1— ¢)Pd = G[Vu+ (Vu)?] + A(V-u)d + Q(V-U)5 (21)
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with u=u"*+u"?+u® and U=U"'+U*"?+U?®, and where P; is the pore
fluid pressure, d a unit tensor, and o the intergranular stress tensor.

3. Reflection and transmission coefficients

The reflection and transmission coefficients RY, TF*, T2, and T* are related
to the wave-amplitudes A', AR, AF*, AP? and A® as

AR — RFAI, API — TPIAI, AP2 — TP?AI, AS — TSAI- (22)
To solve R¥, TP T*?, and T*° we use boundary conditions that are valid
for a fluid/porous-medium boundary with open pores [1, 3, 12]. Hence, at

the boundary z=0:
U + U +U;) + (L= 9)(uw,” +u” +uy) =U, + U7, (23)
P =P, —04 — Pr=—P. (24)

By combining these boundary conditions with Egs. (1), (2), (4)—(8), and
(17)—(21) in an appropriate way one obtains the following set of equations

Oxz = 07

[ q  ge1(1—¢+¢Gr1) gea(1— ¢+ ¢Gr2) p(1—¢+¢Gs)] -RF- [
Q+ RGpy Q + RGps q
e Ta e o lpm| L
0 2_ 1 = (25)
Pgr1 Pgr2 _ E TP2 O
N, N,
i 0 ( 2_2Gc§1) <p2_2G6%2> —Pgs ] _TS_ _0_
with . 1
voane anan(a ),
1-— 1—
Mo 44262500 G (@ S50 R). (27)

To obtain relatively simple closed-form expressions for RF, TF*, T? and

T® we assume that both the porous skeleton and the pore fluid are much
more compressible than the skeletal solid grains themselves. Consequently,
the substitution of K> K3, and K> K¢ in Egs. (12)—(14) leads to

(1 ¢)? 2
A="}}'"" K+ Ky, — -G
) £+ £ip 34

By combining Eq. (28) with Egs. (9), (10), (15), (17)—(19), (26), and (27)
one obtains 5

:70:1__’
o

Q= (1- ¢9)Ks, R = ¢K;. (28)

1— ¢+ ¢Gs (29)
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K¢
1— = 1 ith =
¢+ ¢Gp, ’YO( + 71) wit 71 pfac%,l — Kf’ (30)
1—¢+¢G (1+7) with f (31)
— _= 1 =
P2 = o T W V2 pracz, — K¢’

K K 4
3.2, = Gapff ¢  with Ky=N,=N,=K,+ ;G (32)

where K, is the constrained modulus. The substitution of Egs. (28)—(32)
in the four boundary conditions represented by Eq. (25) leads to

q ge17o(1 + 1) gr270(1 +72) PYo RF

q
—pp  pr(a—P)m pe(a— )7- 0 e o
1 _
0 Pgr1 Pgp2 ( — ﬁ) - = 0 . (33)
K, K,
0 ( - ZGC%I) (p i 2Gc§,2) ~Pas T 0

By solving this set of linear equations one finds that the closed-form
expressions for RF, T*', T"? and T* are given by

R, + R, R, + R, R, +R,’
Ts — qu2AIS:{’1P1 _Zj’quAli’Zl:’2 < 2 i) -1 (35)
R, +R, 2¢2)
where R, and R, are defined as
«a
R, = % (1 8) (72AR1 - ’71AR2);
a
= 2 (1-5) oAt - ), (36)
1
R = o (g _ 1) (qoaya AFYP — go iy AT2F?) (37)
while Ag;, Anr', ARyTY, Ags, ARy 2, and ARy"™? are given by
Ar, = p gsqr1 t+ ( 2 2cs> (38)
K
AS,PI — 2 )( _ P )
Rl P asqer + (p 22 )\P" "6z ) (39)
, _ 2
AR = pgsge + (p 2GC%1> : (40)
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Ay, = pPgsqes + (p2 —

1

) ()
1

ALY = plasges + <p2 — —2)<p2 2Gc%2) , (42)

AFZP? = p2gogp, + (p2 ) : (43)

2G2,

Note that Ag; (multiplied by 4) is the Rayleigh function R(p), which is
associated with surface waves traveling along a solid/vacuum boundary [13].

In Fig. 2 results are shown belonging to an interface between water and
a water-saturated sand-layer. These results can be easily transformed into
figures showing RF, "', T"?, and T as a function of the incident angle 6 by
using the relation @ =arcsin(pc) for the region |pc|<1. In the region |pc|>1
the P-waves in the fluid are evanescent; in this region one observes that
the reflection and transmission coeflicients are very large for pca1.44. The
reciprocal of this p-value is equal to the propagation velocity of the surface
wave traveling along the interface between water and a water-saturated
sand layer, i.e., it is 0.7 times the P-wave velocity in water.

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

pc pc

Figure 2. The coefficients RF, T*!, T*2, and T*® as a function of the horizontal slowness p
times the propagation velocity ¢ of the P-wave in the fluid. The solid lines correspond
to the case K,/Ky, = co: the coefficients RY, T°', T"?, and T® are calculated by using
Egs. (34)—(43). The dashed lines correspond to the case Ks/Kp = 5: the coefficients
RF, T®', T®?, and T° are obtained by solving numerically the set of equations given
by Eq. (25) and by using the expressions for A, @, and R given by Egs. (12)-(14)
instead of the ones given in Eq. (28). The parameters used to obtaln these results are:
w = 10000 rads~", ¢ = 0.24, n = 0.001 Pas, ko = 0.39 1072 m?, p = pr = 1000 kgm~3,

ps=2760kgm 3 K= Ke=2. 22 G Pa, K,=5.8 GPa, G=3. 4GPa oo =2.3,and M=1.
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4. Concluding remarks

In general, the surface wave velocity can be obtained as follows: find the
horizontal slowness p for which the denominator R,+R, of the reflection and
transmission coefficients given by Egs. (34) and (35) is zero. Note, however,
that the obtained p=p, for which R,+ R, =0 is complex-valued. Actually,
Re(p,)~! is the propagation velocity of the surface wave traveling along the
fluid/porous-medium interface, whereas Im(—wp,) is its attenuation in the
propagation direction.

It is clear that the availability of closed-form expressions for R, and
R,, as given by Egs. (36) and (37), will facilitate our research in solving
the inverse problem: “given a measured surface wave, find the physical
parameters describing the porous medium”.
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