GPR wave field decomposition, synthesis and imaging
for lossless layered vertically transverse isotropic media

Evert Slob and Kees Wapenaar
Department of Geoscience & Engineering
Delft University of Technology, Delft, The Netherlands
Email: e.c.slob@tudelft.nl; c.p.a.wapenaar@tudelft.nl

Abstract—In this paper a scheme is presented to process 3D ground-
penetrating radar reflection data acquired on a surface above a
vertical transverse isotropic layered medium. The processing steps first
decompose the data into Transverse Electric and Transverse Magnetic
modes and up and down going waves, where the two modes are fully
separated and can be treated separately in the two following steps. The
first step that follows is wave field synthesis, where a virtual receiver is
constructed in the layered subsurface at any depth level, from which
is virtual vertical radar profile can be constructed. This can be done
down to the depth level where the waves generated from the upper half
space can reach as propagating waves. Once the up and down going
vertical radar profiles are obtained at this virtual receiver position,
well-known interferometry by deconvolution is used as a second step
to obtain an image containing local primary reflection coefficients as
a function of incidence angle of the initial plane wave. A numerical
example demonstrates the effectiveness of removing multiples from
the data and constructing an image free of effects of such internal
multiple reflections.

I. INTRODUCTION

Ground penetrating radar is increasingly being used to provide
quantitative information of layered structures. For application in
civil engineering these can be roads, highway pavements, airport
runways, bridges, tunnels, or buildings. Monitoring is important for
the management and safety of these structures. For high-resolution
imaging and inversion methods wave field processing of reflection
data is necessary. This requires acquisition geometries with multiple
source and receiver positions laid out in a grid on a surface.

A wave field processing method known as data-driven focusing
in 1D is based on inverse scattering theory [1], [2]. Based on the
results of Marchenko type inversion of reflection data in 1D [3],
[4] has recently resulted in schemes for creating virtual vertical
seismic profiles with a virtual receiver at depth where no physical
source or receiver has been placed [5], [6], [7]. These schemes
can be used as a basis to derive 3D Marchenko type schemes for
eliminating internal multiples in seismic migration [8], [9].

Here the derivation is modified and applied to the situation
of a layered medium where the layers can be characterized by
different horizontal and vertical electric permittivity and magnetic
permeability values inside each layer. The necessary processing
steps are described and analyzed. It is shown how measurements

of all four horizontal components of the electromagnetic field
measured with a multi-input multi-ouput acquisition system can
be decomposed into up and down going waves where the TE- and
TM-modes are separated from each other and treated independently
after the first step. The wavefield is focused inside the layered
medium by creating a virtual receiver at a certain depth level and
it is shown how this leads to the construction of a virtual vertical
radar profile with the virtual receiver at a chosen depth level and
the source at the location of the original source. The down going
and up going wave fields at the virtual receiver level are obtained
separately and can be used in an imaging scheme that creates
a subsurface image by deconvolving the up gong VRP Green’s
function by the down going VRP green’s function in a similar way
as previously derived [10], [11]. This approach is similar to but
distinctly different from [12] who described a direct inverse method
on plane wave electromagnetic data that cannot be implemented
numerically for data with finite bandwidth. A numerical example
illustrates the theory presented here and investigates the resolution
capabilities of thin layers and the effects of finite bandwidth data.

II. WAVE FIELD DECOMPOSITION

In a vertical transverse isotropic (VTI) layered medium the TE-
and TM-modes are independent modes that can be separated. The
wave fields can be solved for separately after which the electric
and magnetic fields can be found by combining the two solutions.
This is briefly shown here in the horizontal wavenumber frequency
domain. First we give the expression of Maxwell’s equations in
this domain [13]
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where EZ,f{Z and jj, j;” denote the vertical components of the
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electric and magnetic fields and sources, Er, Hr and Jp,Jp
the electric and magnetic field and source vectors with subscript 7



meaning that the vectors contain only the horizontal components,
eg. Ep = (E,, Ey, 0), and kr denotes the horizontal wave
number vector. The electric and magnetic medium parameters in
the horizontal and vertical directions are given by n = o +iwe, ( =
iwp, N = o £iwe®), ) = iwu ), respectively. The vertical
derivative is denoted 0, and 2 denotes the unit vector in the vertical
direction and points downward. Equation (1) represents the TM-
mode while equation (2) represents the TE-mode. These two modes
can be separated by considering scalar TE-mode, E1, 1, and TM-
mode, 52, 7-22, fields given by
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where x = /k2 + k2 denote the radial wavenumber. From these

equations the vertical electric and magnetic fields can be recov-
ered directly from equations (1) and (2), whereas the horizontal
electric and magnetic field components are retrieved by weighted
combinations of equations (5) and (6). The sources are now given

by
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where we have assumgcei ntlhe sources are point sources given by
J 7 (kr,z,2%5w) = I (w)d(z — 2%). Now the can write the
TE-and TM-mode field equations as a matrix vector equation given
by

82F1,2 + A112F172 = Xl)Q(S(Z — Zs). (9)

The TE-mode field equations are obtained when we take F, =
(5~1, 7:ll)t, where ¢ denotes matrix transposition, and the TM-mode
equations are obtained with Fg = (7:12752)t, while the source
vectors are defined in equations (7) and (8) and the system matrices
are given by
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where the vertical wave numbers are given by I'? = ((x? +

¢@n) /¢ and T3 = n(x? + (™) /n®). 1t is noted that the TE-
mode does not depend on ¢(*) while the TM-mode does not depend
on 7). Solving the TE-mode problem directly solves the TM-
mode problem based on electromagnetic equivalence [14]. Finally
it is noted that the wave equation for either TE-mode or TM-mode
only depends on the radial wave number.

Here the solution for the TE-mode is given without using the
subscript ; in the remainder of this abstract. The first step toward

the solution is to diagonalize the wave equation using an eigenvalue
decomposition such that A = LAL™!, where A is the diagonal
eigenvalue matrix, and the field vector F is composed from up
gomg and down going wave field components as F' = LP and
P =L F. We use flux normalization such that
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A = diag(T", —T"). Using these decompositions in the TE-mode
wave equanon of equation (9) gives 93P + AP = X§ (z3 — 25),
with X = L X the ‘decomposed source vector. The vectors can
be written as P = (Pt, P~)! and X = (X, X~)!, where the
superscripts *,~ denote a down going, and up going component,
respectively. The continuity conditions apply to the TE-mode field
components across any source free boundary in the layered model.
The discrete layered earth solution in the upper half space, z < 0,
for this system is well-known and can be written as

. 0

By (z) = { X+texp(=Toh™) ’ (12)
= X~ exp(~Toh™) + RoX T exp(Toh')

Py (2) = { RoX+ exp(Tgh™) (13

where the subscript ( denotes the layer index, defined as layer D
is described by depth values z;_; < z < z;. The vertical distances
are given by h™ = |z — 2| and h™ = z 4 2® for 2 < 0 and Ry
denotes the reflection response of the layered medium at the top
interface at depth level z = 0. The first row is valid for z < z® and
the second for 2% < z < 0 for 150i. In the remainder it is assumed
that the GPR data is recorded in such a way that this decomposition
is possible. In case the receiver are at or below the source level it is
possible to retrieve the subsurface reflection response Ry from the
measured data as Ry = 150_ / 150+ assuming h* and the propagation
velocity in the upper half space are known from the acquisition
configuration [15]. Note that this decomposition is possible even
when the finite size of transmitting and receiving antennas are taken
into account, because antenna size would merely amount to limiting
the available spatial bandwidth.

IIT. WAVE FIELD SYNTHESIS

From now on the layered medium is assumed lossless, hence o =
0 everywhere in the layered model. For a point in the subsurface,
at depth level z; > 0 the up going wave field at the receiver level z;
of the corresponding vertical radar profile (VRP) can be obtained
from the reflection response in the following form [16]

G (@, 2,0,w) = [R(,0,0,w) — Ri(,0,0,w)] T (e, 0, 2;, w),

(14
where é_(a, 2:,0,w) denotes the upgoing wavefield measured at
depth level z; generated by a plane wave source emitting a wave

at incidence angle o at z = 0 as a function of reflection and



transmission responses. The notation is slightly changed relative to
the previous section, R(cv, 0,0,w) = Ry as defined in equation (13)
represents the reflection response of the layered medium for a down
going point source at depth level = = 0 and the up going field
is measured at the same depth level. The function Ri(a,070,w)
denotes the reflection response with down going source and receiver
at level z = 0 of the medium that is the same layered medium as
the real medium from the upper half space down to level z = z;,
but is homogeneous below that level, z > z; and T(a,O,zi,w)
denotes to total transmission response in this reduced medium. The
homogeneous lower half space of the reduced medium has the same
properties as the actual medium just below z;.

Because flux-normalization is wused T'(cv,0,z;,w) =
T(a, zi,0,w), meaning it is irrelevant whether the source is
at z = z; and the receiver at z = 0 or the other way around. The
angle, «, is defined as the angle of incidence of the plane wave in
the upper half space and corresponds to the wave number frequency
value under investigation, x = wsin(«)/co where co = 1/4/eop
denotes the wave propagation velocity in the horizontal direction
in the upper half space. For a layer D; the vertical wave number
can be written as I'; = iwg;(a) in which the vertical slowness

is given by Gi(a) = \/Q(l/cf—Sin(a)]2/c(2))/g“1v), and the
propagation velocity the horizontal direction in layer D); is

given by ¢; = 6iu§v). From equation (14) it can be seen that

knowledge of R;(«,0,0,w)/T(,0,z2,w) and 1/T(a,0,z,w)
would be sufficient to construct the up going wave field of the
virtual VRP from the measured total reflection response of a
layered medium.

The transmission response of a layered medium across the whole
medium always consists of a single direct arrival followed by
a coda that contains all possible multiple reflections inside the
layered medium. The coda can be represented as a denominator
in a fractional description of the transmission response [16]. This
implies that the inverse of the transmission response contains a
finite number of terms, each representing an event in space-time.
The reflection response on one side of this same layered medium
can be written in fractional form with the same finite number of
terms in the numerator and denominator. The denominator of the
reflection response is the same as the denominator of the trans-
mission response and the ratio of the reflection and transmission
responses also has a finite number of terms. Both the inverse
transmission response and the ratio of reflection and transmission
responses have the same number of finite terms leading to a finite
amount of events in space-time and the first non-zero event occurs
att = —t4(«, 0, z;) where t 4 denotes the one-way vertical intercept
time, which is an apparent arrival time. For real values of g;41
the wave propagates across the reduced layered medium and the
inverse transmission response consists of propagating events. In
that case t4(c,0,2;) = >, _; Gi(a)(zn — 2zn—1) and is half the
two-way vertical intercept time of the recorded primary reflection

event in the measured data. Two-way intercept time is the recording
time when the data is transformed to the horizontal-slowness time
domain. For precritical angles of incidence ¢;(«) is a real and
positive parameter and leads to a real and positive time value.
We will therefore restrict further analysis to precritical angles of
incidence.

For waves that propagate across the first ¢ layers of the layered
medium a second relation can be found that expresses the down
going wave field in the subsurface as if the down going wave field
is measured at z = z; and generated by a down going point source
at z = 0 and the reflection and transmission responses between the
levels z = 0 and z = z;. This is achieved by using the reciprocity
theorem of the time-correlation type for one-way wave fields, which
for the up going and down going wave fields in a layered medium
is given by [17]

[fN’X(a,O’w)]* Ng(a’ 07"‘)) - [Pg (mO,w)]*lf’g (a,O,w) =

[P (e, 2i,w)]* P (v, 25, w) — [Py (v, 25, w]" Py (o, 25,w), (15)
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where denotes complex conjugation. For state A the re-
duced medium is taken that is the same as the real medium
from the upper half space down to z; and homogeneous
below it. We then have PX(O&,O,LU) = T Y,0,z,w),
Pg(a,o,w) = Ri(a,0,0,w)T_l(O,zi,w), and Pj(a,zi,w) =1,
while Py (@, z;,w) = 0. In state B we take the actual configuration
and use Pp(a,0,w) = 1, Pg(a,0,w) = R(a,0,0,w) and
PE(a, zi,w) = G*(a, 2, 20,w). The desired equation is obtained
if we substitute these choices in equation (15). We find

G (a, 2,0,w) = (1 - R(a,0,0,w)[éi(a,0,0,w)]*)

x[T7Ha,0,z,w)]*.  (16)

Equation (16) constructs the downgoing wavefield at receiver level
zi, that is generated by a unit amplitude down going plane wave at
the top, from the measured reflection response R(a, 0,0,w) and
the functions 7~ '(a,0, z;,w) and R;(a,0,0,w)/T(c,0,2;,w).
Summing equations (14) and (16) yields the VRP data for a receiver
at z; and a source at z = 0 in the actual layered medium.

Transforming equations (14) and (16) to the time domain
leads to two coupled equations. First the functions f + (a0, 0, 25, w)
are introduced as ft(a,0,z,w) = T (a,0,z2,w), being
the down going wave field from the upper half space inci-
dent on the reduced layered medium, and f~(o,0,z,w) =
Ri(,0,0,w)/T (e, 0, z;,w) is the up going wave field just
above the top interface and is the reflection response of the reduced
layered model in response to fT. The time-domain equivalents of



equations (14) and (16) are given by
G (a,2,0,t) = —f (e, 0, 2;, 1)

t
+ / fT(, 0,2, t')R(a,0,0,t — t")dt',  (17)
t :—td(a,O,zi)
G+(OZ, Ziy 07 t) = f+(0l, 07 Ziy _t)
t
7/ F (0,0, 2, —t'YR(,0,0,¢t — t")dt'.  (18)
t'=—tq(c,0,2;)

The integration interval is finite because the two functions in the
integrands are non-zero only in a subinterval. The global reflection
response R(0,0,t—t') is causal and therefore zero-valued for ¢’ >
t, putting the upper limit at ¥ = ¢. The functions f* are non-
zero only in the interval —tg(c,0,2;) < t < t4(, 0, 2;). In fact,
the incident wave field has its first arrival at ¢ = —t4(«, 0, 2;)
followed by a coda and can be expressed as

FH(e,0,2,t) = T (a,0,2)8(t + ta(a,0,2)) + fi (@, 0, 2, 1),

| (19)
where T4(c,0,2) = [[,,_o Tn(®) in which 7,,(c) is the local
transmission coefficient across interface n in either direction. It is
understood that f;"(a,0,2;,t) = 0 for [t'| > t4(c,0, 2;). Because
the reflection response is the response to f* it will also be zero
in the interval where f;" is zero, hence f~(a,0,2;,t) = 0 for
[t'| > ta(c,0,2;). The Green’s functions G* are zero before
the first arrival, which arrives at t = t4(«,0, 2;). This implies
that the functions f;¥ and f~ can be found on their interval
—tq(a, 0, 2;) <t < tq(a,0,z). In this way the measured reflection
response of the actual medium is used to find the desired functions
in the reduced medium using equations (17) and (18). Once these
are found the same equations can then be used on the interval
t > tq(a,0, z) to determine the Green’s functions. Hence first we
evaluate

F(0, 25, t,0) = T (0, 2:) R(0,0,t + ta(e, 0, 2;))

t
+/ 70,0, a)R(0,0,t —t', a)dt’, (20)
t'=—tq(x,0,2;)
f1+(0a Zis _t7 Oé) -
t
/ 10,2, —t', @)R(0,0,t — t',a)dt’,  (21)
t/——td(a,o,zi)

valid for —t4(,0,2;) < t < t4(a,0,2;). The Green’s functions
can then be found for ¢t > t4(«,0,2;) from equations (17) and
(18).

IV. WAVE FIELD IMAGING

For imaging the two Green’s functions can be used, because they
represent the wave fields that correspond to up and down going

waves at subsurface depth level z; that are generated by a source
in the upper half space. Previous studies on interferometry by
multidimensional deconvolution techniques have shown that [15]

G (a, 2i,0,t) :/ R(a, 2, zi, t—t )G (, 2;,0,¢")dt’, (22)

t'=tq(c,0,2i)

t

for t > t4(e,0,2;) and R(c,z;,z;,t) denotes the reflection
response of the layered medium that is the same as the actual
medium below z; while it is homogeneous above z; and where the
integration bounds are determined by causality of the reflection
response and the Green’s function. The image Z(«, z;) with the
amplitude of the local reflection coefficient just below depth level
z; is obtained by deconvolving equation (22) for the reflection
response and evaluating the result at ¢ = 0, hence

Z(«, z) = R(ay 2, 25, t = 0). (23)

Hence, the image is obtained with only the local primary reflection
coefficient at the correct depth and no effects of multiple reflections
are present in the final image result. Notice that to find the image
at the correct depth the one-way arrival time of the direct event
tq(, 0, z;) must be known and this can be done by performing
velocity analysis on the 3D data from which very good estimates
of depth level z; can be obtained for a given time t4. Depending
on the frequency bandwidth and the available angles of incidence a
high-resolution image can be obtained with correct local amplitudes
as a function of incidence. On these results amplitude-versus-
angle amplitude analysis can be performed to find the the electric
permittivity and magnetic permeability values inside every layer.
In this situation the image can also first be obtained as a function
of apparent vertical travel time, tg4(c,0,2;) which is half the
recording time hence the image times are known exactly. Once
the image is obtained and the electric permittivity and magnetic
permeability values are obtained inside all layers the image times
can be converted to depth values. This latter would constitute an
inversion step, but is beyond the scope of this paper.

From the equations it is clear that the theory assumes infinite
bandwidth, which cannot be achieved with real data. It is therefore
important to investigate the effects of finite bandwidth on the
results. This is treated in the next section

V. NUMERICAL IMPLEMENTATION AND RESULTS

The reflection response that can be retrieved by processing
measured data will have a limited frequency bandwidth depending
on the antennas used. Let the frequency bandwidth be determined
by the filter function I/i/'(w7 w.) where w, denotes the radial center
frequency. For pulsed radar the filter is a smooth function of
frequency and can often be approximated by a Ricker wavelet given

by
exp(—(w/we)?)
welw/we)? 7’

W(w,we) = 4v/7 (24)
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Fig. 1. Layered model with parameter values for permittivity, magnetic perme-
ability, and layer thickness.

such that the wavelet peak amplitude in the time domain is unity.
For the example a 125 MHz center frequency is used. The layered
model is an isotropic medium with eight interfaces and seven
homogeneous layers of finite thickness, of which the second layer is
thin relative to the dominant wavelength with the parameters given
in Figure 1. The velocity structure is the highest velocity is in the
upper half space where the source is located, which is the usual
situation for surface ground penetrating radar measurements. This
also implies that propagating waves in the upper half space can
always propagate throughout the layered medium. The acquisition
geometry is assumed to be large enough to allow a maximum
angle of incidence of 35 in the upper half space, which leads to a
propagation angle of just over 4° in the three layers with the lowest
propagation velocity and the maximum propagation angle of 15°
occurs in the thin fast layer. At the center frequency the thin layer is
less than one seventh of the wavelength. The horizontal components
of the electric and magnetic fields are recorded and decomposed in
up and down going TE- and TM mode wave fields from which the
TE-mode is used to determine the TE-mode reflection response
by deconvolving the up going field by the down going field. In
this way the presence of the antenna source time signature is
removed, but of course only within the available bandwidth, and the
bandwidth is smoothed using the 125 MHz Ricker wavelet specified
in equation (24). The resulting reflection response is given by
R(,0,0,t) = R(0, 0,0, YW (t —t',w,)dt’.
/=0
Using this definition equations (20) and (21) can be rewritten
for the band limited reflection response and can be solved by
discretization and matrix inversion, but an iterative scheme will
be more advantageous. The initial estimate can be obtained as

f(]_ (07 Ziy tv a) = 7:1_1(03 Zi)R(O’ 07 t+ td(aa O, Zz))a (26)

f_l;O(Ov Ziy tv a) =0.

(25)
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Fig. 2. The reflection response as a function of incidence angle and two-way

intercept time.

Then the nt" iteration can be evaluated for n > 1 as

fn_(07zi7t7a) = f(;((),zi,t,a)

t
+/ i, 10,0, ¢, a)R(0,0,t — ', a)dt’, (28)
t'=—tq(a,0,2;) ’

7a):

f_l—tnfl(oa Ziy —t

t
/ fr: (07 Ziy _t,
t'=—tq(c,0,2;)

Notice that now both R and R occur and that R should be
understood as the numerically deconvolved version of R, because
R is only known within the available bandwidth. The bandwidth
information is present in f, which is defined in the same way as
R is defined in equation (25). These functions can be discretized
in a straightforward manner and the time-convolution integrals are
evaluated using an FFT-algorithm.

,a)R(0,0,t — ', a)dt’. (29)

The band limited TE-mode reflection response is input data as a
function of incidence angle and two-way intercept time as shown in
Figure 2. The data consists of primary and multiple reflections and
especially in the time window between 100 ns and 150 ns primary
and multiple reflections cannot be distinguished. The functions f*
are computed by iteratively solving equations (28) and (29) and for
the model given in Figure 1 the number of coupled iterations is nine
for all image times that are computed in the time window from 0
ns to 200 ns and this number is constant for all angles of incidence
considered. In Figure 3 the result is shown after the deconvolution
step and applying the imaging condition of equations (22) and (23)
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Fig. 3. The image as a function of incidence angle and one-way intercept time,

black solid lines indicate the exact result and the red dotted lines indicate the
numerical result.

up to an image time of 130 ns, to demonstrate that the scheme
remains stable after the latest primary event has arrived and only
multiples are left in the data. rom the figure it can be seen that
the small amplitude primary reflection that has an image time just
larger than 60 ns is well retrieved while all multiple events have
disappeared from the image. Thirdly, the convoluted two primaries
corresponding to the top and bottom of the thin layer and which
have an image time just before 20 ns has been accurately imaged
as well. How well multiples can be removed from real measured
data will depend on the signal-to-noise ratio.

VI. CONCLUSION

A method has been presented for processing multi-offset 3D
GPR reflection data measured on a surface above a layered medium
that does not dissipate electromagnetic wave energy. The first step
decomposes the data in TE- and TM-mode up and down going
waves and each mode wave field can be processed separately after
this this step. The following step consists of determining functions
that can be used to synthesize virtual vertical radar profiles as if
the receiver was placed at a chosen depth in the subsurface while
the source remains at its original position. The virtual VRP is
obtained for up and down going waves separately at the subsurface
receiver level. From these two functions known multidimensional
deconvolution can be used to form an image that is free from sub-
surface multiple reflection effects. Numerical results demonstrate
that for data with finite bandwidth the scheme can be adapted
to work accurately, that thin layers can be resolved within the
available bandwidth while still removing internal multiple effects,

and the small amplitude reflection events are accurately imaged. We
further argued that from the image amplitudes, amplitude-versus-
angle analysis may lead to accurate local inversions. Only filter
steps are involved and the information is obtained from the data.
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