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Abstract—We present a three-dimensional scheme that can be
used to compute the electromagnetic impulse response between
any two subsurface points from surface reflection data measured
at a single surface of a lossless medium. The scheme first
computes a virtual vertical radar profile using the Marchenko
scheme from which focusing wavefields are computed. With the
aid of the Green’s functions of the virtual vertical radar profiles
these focusing wavefields are then used to compute the Green’s
function between any two points in the subsurface. One point is
a virtual receiver and the other point is a virtual source. Virtual
radar images can be created as well as the whole time evolution
of the radar wave field in the whole subsurface generated by
one virtual source. We show with a numerical example that the
method works well in a one-dimensional configuration.

Index Terms—virtual source, virtual receiver, interferometry,
autofocusing, 3D GPR.

I. INTRODUCTION

Virtual receivers can be placed inside an acoustic scattering
medium without having a physical source at the location
of the virtual receiver [1], [2]. For ground-penetrating radar
the theory for the electric and magnetic field in the earth
impulse responses at virtual subsurface receiver locations were
derived in [3] assuming a lossless earth model. These Green’s
functions of virtual vertical radar profiles can be obtained in
ID without any model information and in 3D with limited
model information. The required information in 3D is that
travel time from a source location at the measurement surface
to the virtual receiver location inside the scattering medium
must be estimated from the data, which requires some velocity
analysis similar to what is done for standard imaging. For
ground-penetrating radar it is important to include conductivity
or more general dissipation/dispersion effects, for which a
general theory for acoustic waves and electromagnetic waves
can be found in [4], [5]. Retrieving virtual vertical radar
profiles in a dissipative medium requires access at two side
of the medium and the full scattering matrix as input data.
Retrieving up- and downgoing parts of the Green’s function
for a virtual receiver inside the earth allows for creating an
image that is free from artefacts. Such artefacts would occur
when the measured surface reflection response would be used
to make an image using a standard (model-driven) migration
scheme [6]—[8] or linearised inversion [9].

A next step is creating the Green’s functions between any
two points in the subsurface. These are of relevance for
holography, imaging, inverse scattering, and Green’s func-
tion retrieval from ambient noise. A general unified theory
was developed in [10] that can be used e.g., for acoustic,
electromagnetic, and elastic wavefield applications. Here we
derive the electromagnetic Green’s function representation
for a virtual source and a virtual receiver both located in
the subsurface. We show how these virtual earth impulse
responses can be obtained form the measured reflection re-
sponse on the earth surface in a multi-source, multi-receiver
acquisition configuration. We restrict ourselves to lossless
media to be able to work with the surface reflection re-
sponse only. The representations are given in the frequency
domain, but are valid in the time domain. To this end, we
define the time-Fourier transform of a space-time depen-
dent vector-quantity as @(x,w) = [, exp(—jwt)u(w,t)dt,
where j is the imaginary unit, w denotes angular frequency,
and « is the position vector in three-dimensional space. In
the space-frequency domain the electromagnetic field vec-
tor @ is given by 4'(z,w) = (4i(z,w),ai(x,w)) =
((EAw,EAy)t, (H,, —flx)t), with E,(z,w) and H,(z,w) be-
ing the z-components of the electric and magnetic field vectors
and the superscript ¢ denotes transposition. The domain I is
bounded by measurement surfaces at two depth levels given
by 0Dy at z = zp and ID,, at z = z,,, the focusing depth
level OD); is at z = z; with 29 < z; < z,,,. In what follows
the physical sources are outside the domain ). Hence inside
D the Maxwell equations can be written as
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where 7 = jwe and ¢ = jwp. Notice that M! = M, and
M| = —M,, forn = 1,2, and where the superscript t means
complex conjugation and transposition.



II. GREEN’S FUNCTION REPRESENTATION FOR VERTICAL
SOURCE AND VIRTUAL RECEIVER

At any location in between the outer depth levels of D we
can write the horizontal components of the electric field as
up- and downgoing electric wavefields according to [3]
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where @] denotes the downgoing and 4 denotes the upgoing
electric field components and a similar expression can be
used for the magnetic field. The horizontal components of the

electric and magnetic field vectors can be written in terms of
the up- and downgoing magnetic and electric fields as [11]
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Following the procedure in [3] we apply the reciprocity
theorem of the convolution and correlation types to wavefields
in the same medium. Exploiting the separation in up- and
downgoing waves we can select to use only electric field
measurements by Following a procedure similar to the one
given in Appendix C in [12] we assume that the permeability
and permittivity at the depth levels 2y and z; are continuously
differentiable in horizontal direction, then we find
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In equation (8) an additional approximation is made by ignor-
ing evanescent waves at depth levels zp and z;.

State A represents the focusing wavefield where the electric
field focuses at the location «; at depth z; and its up and
downgoing components of the magnetic field are at the level
0Dy in the time domain represented as fli(:no, x;,t) as
shown in Figure 1. The wavefields in State B are the electric
reflection response generated by an electric current source at
the measurement surface and the upgoing and downgoing parts
of the magnetic field impulse response, or Green’s function,
at the focusing level as shown in Figure 2. In both states we
work with two vector components of the fields and each can
be generated by either of the horizontal source components,
hence all fields are 2 x 2 matrices.

Using these wavefields in equations (7) and (8) results in
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Fig. 1. State A: The focusing wavefield f li at the different depth levels.
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Fig. 2. State B: The actual wavefield consists of a downgoing source wavefield
and its corresponding reflection response R at the depth level zo and the up-
and downgoing parts of the electric field impulse response (Green’s function)
at depth level z;.

Equations (9) and (10) represent, respectively, the upgoing
and downgoing magnetic field impulse responses at a virtual
receiver location x;, generated by an electric current dipole
source at xj, in terms of the measured electric field reflection
response and the up- and downgoing parts of the focusing
wavefield that focuses at the virtual receiver point ;. We can
add both equations to find a representation for the total Green’s
function as (omitting the dependency on frequency for brevity)

G(a: ah) = / (2o, )]t R(wo, x)daco + [F(ah )],
ODg
(11)
with R R X
fo(wo, ;) = fi(wo, ;) — [f1 (o, )]".

We now proceed with a different configuration that has
a magnetic current source at a location xp in state B and
we need the magnetic field Green’s function I at the level
za and we take zp > z4 and the electric field Green’s

function, G at dDy. Both Green’s functions correspond to
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fields generated by a magnetic current source and hence at
0D 4 we have ﬂéﬁ;B = I'* (x4, xp,w) and at IDy we have
uyp = G(x), x5, w) and @}z = 0. In state A we choose
again the same focusing wavefields as before, but now the
corresponding electric field focuses at « 4 at 9D 4. Substituting
these choices in equations (7) and (8) gives
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We can add these equations, transpose both sides and
use source-receiver reciprocity for both Green’s functions
([I‘(wAva)]t = I‘(wB’wA)vg(w67wB) = _[G(CBBvxé))]t)
to find the final Green’s function representation
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These equations are valid when z4 < zp. When z4 > zp we
must first put the magnetic source in state B at 4 and focus
at £p and obtain

G(za, ) f2(x), zp)dz).
oDg

D(xp,x4)]' = — (16)
Starting with the electric field reflection response measured,
and generated by an electric dipole source, at the surface of
a lossless medium we first use the magnetic field focusing
wavefield to bring the receivers into the subsurface after which
we use the same focusing wavefield to bring the sources into
the subsurface. In this process we end up with the magnetic
field response at any subsurface location x4 generated by a
magnetic dipole at any subsurface location . To carry out
these two steps we need to obtain the focusing wavefields f 1i
and the procedure is described in detail in [3] and not repeated
here. We suffice to say that equations (9) and (10) must be
solved in the time domain in the interval where the Green’s
functions are zero. Once these are found equations (12) and
(11) are used to compute the Green’s functions G‘, which
are then used in equations (15) and (16) to compute the
Green’s fucntions between any two locations in the subsurface.
These can be useful in many applications including monitoring
applications.

III. NUMERICAL EXAMPLE

To visualise how the method works and how much data can
be generated from a single data trace we look at a 1D example.
The model is shown in Table I and has vertical variations in
the relative permittivity ¢,.. The electric source is 5 cm above
the ground surface and emits a Ricker wavelet with center
frequency of 250 MHz. The electric field reflection response
of the medium is computed and shown in the top plot of
Figure 3. We first compute the focusing functions from the
data, subsequently retrieve the virtual vertical profile Green’s
functions, followed by the Green’s functions between any two
points. Equations (9) and (10) are solved in the time domain
with truncations to block out the Green’s function to compute

TABLE I
LAYER THICKNESS AND PERMITTIVITY MODEL.
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the focusing functions f; at all depth levels and they are
combined in f, which is shown in the bottom plot of Figure 3.
Comparing the top and bottom plots in Figure 3 we can see
that it is possible to focus the wavefield at any depth level from
a single trace of data. The vertical axis is depth, but that is
just done for plotting purposes. The actual resulting focusing
wavefield comes as a function of one-way travel time and in
a 1D model there is no information in the data to convert
those times to depth. In the bottom plot we can also see that
every time we cross a boundary when we focus deeper into
the model the number of events double and when we focus
below the fourth and bottom reflecting boundary eight events
are found in the focusing wavefield. There are 2"~ ! events in
f1 and 2™ in f5 for n reflectors above the focus depth.
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Fig. 3. The data (top) and focusing wavefield fo (bottom).
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Fig. 4. Virtual source (top) and virtual source-receiver (bottom) Green’s
functions

Then we compute the magnetic field Green’s functions for
an electric dipole source at the surface in the frequency domain
using equations (11) and (12) for virtual receiver positions
from the surface to 0.25 m below the bottom reflector. The
result is shown in the time domain for virtual receivers at all
depth levels in the top plot of Figure 4. We can see from this
plot that with the aid of the wavefields shown in Figure 3 we
are able to make a virtual vertical radar profile at all depth
levels. When this is done we have predicted the wavefield
generated by electric dipole source just above the surface for
receivers anywhere in the model. We then select the magnetic
dipole source to be located at 1.75 m below surface, which is
1.15 m below the second reflector and compute the magnetic
field Green’s functions at all depth levels in the model with
equations (12)-(16). The result is shown in the bottom plot of
Figure 4. Hence, with the aid of the wavefield in the bottom
plot of Figure 3 and the top plot of Figure 4 the wavefield
shown in the bottom plot of Figure 4 is obtained. It is noted
that the source can be taken anywhere in the model. We
observe that from a single trace of radar data with a source and

receiver just above the surface, the receiver and the source can
be put at any depth level and all possible multi-source multi-
receiver wavefields (data cube) can be computed.

IV. CONCLUSION

We have shown the theory and a numerical example to
retrieve the Green’s function of a virtual receiver located at
a chosen position in the subsurface generated by a source
at a chosen position in the subsurface. In this process the
electric field reflection response generated by an electric dipole
source, both located at the surface, is turned into the magnetic
field generated by a magnetic dipole source, both located
at arbitrary subsurface locations. The example shows that
the theory works well in 1D. The next challenge is to test
the method on 2D numerical data and on data measured in
the laboratory or in the field. In the latter case we need to
incorporate the effects of conductivity in the model.
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