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ABSTRACT

A layer-stripping inversion method is proposed here,
based on Rayleigh’s reciprocity theorem. Two states
are defined, both in a configuration consisting of two
half-spaces.  The upper half-space (the background
medium) is characterized by a constant acoustic wave
speed, the lower half-space is inhomogeneous. The first
state is the state as described by the measured pressure
and velocity fields. In the second state a thin layer from
the top of the lower half-space is replaced by a layer with
the background medium velocity. Application of the
reciprocity theorem leads to two basic equations. The
first equation describes the propagation of the pressure
field in the first state through the layer, which is to
be replaced. The second equation describes the field
after this layer has been replaced (the second state)
in terms of the fields in the first state. An imaging
condition was derived based on the causality principle.
This condition determines directly the velocity contrast
over each interface. Using this contrast, the field in the
second state can be determined, after which the next
layer can be stripped by repeating the process. The
imaging condition proved to give very good results for
1D and 2D-horizontally layered media. A comparison
to a Schur-based layer-stripping method (which does
not account for laterally varying media) proved the
causality-based method to be much more stable in case
of noise.
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INTRODUCTION

When an imaging procedure is to be satisfactorily ap-
plied to 4D-seismic exploration it is required to be
both very precise and able to deal with laterally variant
media. So far, accurate imaging procedures based on the
layer-stripping method have been derived for laterally
homogeneous media only, like Yagle and Levy (1983).
A technique for inhomogeneous media was proposed by
Fokkema et al. (1998). This technique required a back-
ground velocity model. The method proposed here has
the same physical background as explained by Fokkema
et al. (1998) but does not need background velocity
information. First, the basic equations for the general
3D-case are derived. The horizontally layered case is a
simplification of these equations. In the following section
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Fig. 1: Configuration of the two states in Rayleigh’s reciprocity
theorem.

the derivation of the causality-based imaging condition is
shown. After this an explanation of the implementation
procedure is given. The next section contains some
results for the horizontally layered case. Numerical tests
were done for several angles of incidence. Finally, a
comparison was made to a method based on the Schur
algorithm, showing the advantage of the causality-based
method.

DERIVATION OF BASIC EQUATIONS

In a three-dimensional medium with constant density, two
states are defined as shown in Figure 1. The medium
is divided in thin layers in which the wavespeed is as-
sumed to vary in the lateral direction only. State 0 is
the actual state, in state 1 the top layer is replaced by
a layer with background medium wavespeed co. Applica-
tion of Rayleigh’s reciprocity theorem in the Laplace do-
main (Fokkema and van den Berg, 1993) to these states
leads to:
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where for simplicity of notation the dependence on the
Laplace parameter s = jw is omitted. @7 is the transverse
position vector in the z1, 2 direction, and & = (z7,x3).

W is the spectrum of the source function and the contrast



function K is defined as:
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The total waveﬁelds in state 0 and state 1 are denoted
by P° and P, respectively. Eq. (1) is rewritten, using
Parseval’s theorem:
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The spatial Fourier transformation is defined as:
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The operation KPP is a compact way of writing the con-
volution in the transformed domain:
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to Eq. (3), we find:
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where P is the wavefield in the double spatial Fourier
domain, transformed with respect to the source and re-
ceiver coordlna’ces The total wavefield P° can be decom-
posed into an upgoing (P%") and downgomg (P0 §) part

for & < 2. This can also be done for P! when z < z1.
The incident wavefield in state 0 is known to be:
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with the vertical wavenumber 'y :
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The incident field in state 1 is the same, only for reversed
source and receiver positions. The reflected field in state
0 at depth =& can be extrapolated from the wavefield at
depth z3:
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Analogous to Eq.( 12) the reflected wavefield in state 1
can be described as:
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Using Eq. (10) and taking for the receiver position the
first interface, & = 23, we find:
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and Azs = z3 — z3. Note that the incident fields for state
0 and state 1 cancel since they are exactly the same for
this receiver position. Eq. (14) is the first of our basic
equations, the extrapolation equation. From this equa-
tion the upgoing wavefield in state 1, P'"(jsaf, x| —
jsar,x3) is calculated. When the choice for the receiver
position is & = z1, a term results in which the incident
fields do not cancel. Subtracting Eq. (14), multiplied by



exp(sT'# Axs), from this term results in our second basic
equation:
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_From this equation the total field in state O,
PO(jsak, x3| — jsai,x3), is calculated, which is needed
to be able to solve Eq. (14). Fokkema et al. (1998) pro-
posed to solve the surface integral in Eq. (14) by a Neu-
mann expansion.

DERIVATION OF IMAGING CONDITION

The imaging condition will be used to determine the
contrast over the interface between the background
medium and the layer which is about to be stripped. It
is applied to the fields in state 1 that were calculated
using the two basic equations, Egs. (14) and (16), after
extrapolation of the source and receiver to the interface
level. The fields in this configuration will form the
fields in state 0 for the next layer-stripping step. The
contrast determined using the imaging condition will
then be used to calculate the fields in the new state 1.
In the following, the state indication will be omitted.
For the derivation of the imaging condition we assume
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Fig. 2: Configuration for derivation of imaging condition.

laterally heterogeneous

a configuration as shown in Fig. 2, where the upper
half-space is homogeneous, and the lower half-space is
variant in the lateral direction only. This means that
below the interface there are only downgoing waves. The
two boundary conditions on the interface are continuity
of the pressure wavefield and continuity of the particle
velocity, the latter being expressed by:

03 Pl,g=035P|,. (17)

Since the #3-direction is downwards, 0 § represents the
derivative in the homogeneous part of the medium, just

above the interface, and 0 ,of represents the derivative just
below the interface. It is also known that:
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In Fokkema et al. (1998) it was shown that the pressure
wavefield shows a jump over the interface that is propor-
tional to the contrast over this interface:

{(@3) —(03)"}P = s°KP. (20)
Note that K is a convolutional operator. This equation
can be rewritten as:

(@3$)2P = (03)*P - s°KP, (21)
and using (9 3)2P = $>(T§)2P as:
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Note that the term /(I'%)% — K is a pseudo-differential
operator.

Substituting Eq. (18), and using Eq. (17):

TE(P" — P') = —\/(TR)> — KP. (23)
Now multiply Eq. (19) by T'&:
Tép" +TEP =TEP, (24)
and add the last two equations:
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Subtracting the same two equations results in:
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The inner product is defined as:
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Now write, using (f,3) = (3, f):
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where we used the fact that the pseudo-differential oper-
ator 4/(T'&)2 — K is a symmetric operator, which follows



from the symmetry of the square-root operator in the
space domain (Wapenaar and Grimbergen, 1996). Now
we return to a configuration with a lower halfspace that
is heterogeneous in both vertical and horizontal direction.
This means that the wavefield below the interface consists
of both up- and downgoing waves. Due to causality, the
upgoing part will always need a lapse of time to arrive
at the interface. For this reason the imaging condition
derived above is still valid, but only at times very close
to t = 0. This also explains the recursive character of the
procedure; each interface has to be analysed separately at
time ¢t = 0. We now write for the imaging condition:

F LGP, T¢ P = F ' [(P,KP)], t=0,(29)
where F~! stands for the inverse temporal Fourier trans-
form. The inner products are calculated in the frequency
domain, after which they are transformed back to the time
domain, and the contrast is determined for time ¢t = 0.
The application of the imaging condition, which directly
determines the contrast over an interface, is what makes
this procedure different from other imaging procedures.

2-D HORIZONTALLY LAYERED CASE

In the case of a two-dimensional horizontally layered
medium, the convolutional operator K becomes a scalar
K. Also the surface integral vanishes. The basic
equations in this case are:
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where:
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The imaging condition in case of a horizontally layered
two-dimensional medium takes the following form:
PPN | Y
FWP P = K x FP?,

t=0, (33)

where F~1
form.

stands for the inverse temporal Fourier trans-

IMPLEMENTATION

The layer-stripping procedure is as follows: Pressure and
velocity data are collected on the interface between the
two halfspaces. The data can be decomposed in an upgo-
ing and downgoing pressure field following (Fokkema and
van den Berg, 1993). The imaging condition is applied
to the first interface, such that the contrast over this
interface can be determined. Using this contrast, the
field in state 0 at level 23 can be determined by applying
Eq. (16). After this, Eq. (14) is used to determine
the upgoing field in state 1. The source and receiver
positions are now extrapolated to level z3. State 1 will
now become our new state 0 and the next layer will be
stripped by repeating the procedure, as shown below:

Measured pressure and velocity field

|

Decomposition in up-and downgoing field

|
Y

Contrast determination using imaging condition

|

Calculation of field in state 0 at z}

|

Calculation of field in state 1 at z3

|
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Fig. 3: Flow diagram of layer-stripping algorithm.

SOME RESULTS

To test the algorithm, some experiments were done for
a one-dimensional medium with two interfaces, one at a
depth of 150 m and one at a depth of 300 m. The velocity
of the background medium is 1500 m/s, of the first layer
2000 m/s, and of the second layer 4000 m/s. Synthetic
data were generated using a modeling program based on
the recursion formula (Fokkema and Ziolkowski, 1987).
The velocity model is shown in Figure 4 together with the
velocities determined by the layer-stripping procedure.

The thickness of the stripped layers is 1.5 m. For the
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wavelet a zero-phase Gaussian was used. Instead of using
just the value of the wavefields at time ¢ = 0 when ap-
plying the imaging condition, the energy of the wavelet
around time ¢t = 0 was used. The results are very close to
the modeled velocities. Figure 5 shows the calculated up-
going field in state 1 after every 20 layer-stripping steps.
The upper trace is the syntheticly generated trace. Ob-
viously, the primary reflection moves closer to time ¢t =0
when the medium is penetrated deeper. When the first
reflection reaches time ¢ = 0 it is ’detected’ by the al-
gorithm, and the contrast gets a value while the second
reflection keeps moving to the ¢ = 0-axis, now with a
different speed. The multiple reflection, which is hardly
visible in the figure due to the scale, travels with double
speed towards time ¢ = 0 and reaches this point exactly
together with the primary reflection that caused it. The
procedure handles the multiples in the data correctly. In
Eq. (14) a multiple generator term can be recognized (van
Borselen, 1995).
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Fig. 5: Calculated reflected field in state 1 for every 20 layer-
stripping steps.

Figure 6 shows velocity results for a more complicated

earth model (the Amsterdam model). The results for this
model are still satisfactory. The overshoot or ’ears’ near
the velocity jumps are a results of the Gibb’s phenomenon
and can easily removed by a filter, as shown in Fig. 7.
Tests on horizontally layered media also proved good re-
sults for different angles of incidence. This is shown in
Fig. 8 for two different p-values, where p = sin¢/co. A
known problem with existing layer-stripping methods is
the accumulation of errors during the process. To test the
sensitivity of our causality-based method to these kind of
errors, it was compared to a Schur-based layer-stripping
method (Yagle and Levy, 1983). This method already
shows more deviation from the original model for clean
data, as shown in Fig. 9. Note that the highest values in
this figure are much higher than the model values. An
example for rather heavily disturbed data is shown in
Figs. 10 and 11, where the causality-based method shows
much better results than the Schur method.

CONCLUSIONS

The theory of a layer-stripping method for laterally vary-
ing media was derived. This method makes use of
an imaging method which is based on the causality
principle, which yields directly the contrast parameters
of the medium. Testing for horizontally layered media
shows good results. The laterally varying case involves
solving convolutional and pseudo-differential operators.
This is what our current work focuses on, as well as on
the application of this algorithm to time-lapse problems.
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