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ABSTRACT
Exact Green’s function representations for seismic in-
terferometry are based on the assumption that the re-
ceivers used in the correlation process are surrounded
by a closed surface of sources. We investigate two
situations for which this condition is not fulfilled:
sources only in the subsurface, as in passive seismics,
and sources only at the surface, as in exploration seis-
mics. We show that in both cases the full Green’s
function, including primary and multiply scattered
waves, can be reconstructed.
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INTRODUCTION

Seismic interferometry is the process of generating
new seismic responses by crosscorrelating seismic ob-
servations at different receiver locations. A first ver-
sion of this principle was derived in 1968 by Claer-
bout (1968), who showed that the reflection response
of a horizontally layered medium can be synthesized
from the autocorrelation of its transmission response.
Between 1968 and 2000 the research on this sub-
ject has been quite sporadic. Some highlights are
Scherbaum (1987a), (1987b), Duvall et al. (1993),
Daneshvar et al. (1995) and Rickett and Claer-
bout (1999). This changed dramatically since the
beginning of the new millennium, when several re-
search groups around the world in different scien-
tific disciplines (ultrasonics, exploration geophysics,
seismology, oceanography) independently discovered
the high potential of retrieving new responses by
cross-correlating measurements at different receivers
[Weaver and Lobkis (2001), Schuster (2001), Wape-
naar et al., (2002), Campillo and Paul (2003), Roux
et al. (2004), Shapiro et al. (2005)]. To date seismic
interferometry (and its counterparts in ultrasonics,
oceanography etc.) has grown to a new branch of
research, practiced by many research groups around
the world. The main reason for this broad interest
is the potential of retrieving new information from
noise without requiring knowledge about the sources.
However, also for controlled-source experiments, like
in seismic exploration, interferometry has interest-
ing applications [Schuster et al., (2004), Bakulin and
Calvert (2004), Wapenaar (2006b)].

Various theories have been developed for the inter-
ferometric principle, ranging from diffusion theory
for enclosures [Lobkis and Weaver (2001), Weaver

and Lobkis (2002)], multiple scattering theory and
stationary-phase theory for random media [van
Tiggelen (2003), Malcolm et al. (2004), Snieder
(2004)] and reciprocity theory for deterministic and
random media (non-moving or moving) [Wapenaar
et al. (2002), (2004), (2006a), Weaver and Lobkis
(2004), van Manen et al. (2005)].

The derivations based on reciprocity theory yield
exact representations of Green’s functions in ar-
bitrary inhomogeneous lossless media. Hence, the
reconstructed Green’s functions do not only contain
the direct wavefield between the two receiver points
but also all primary and multiply scattered waves.
This requires, however, that the two receivers are
surrounded by sources on an arbitrarily shaped
closed surface. In reality this condition is seldom
fulfilled. In this paper we discuss two distinct situ-
ations for which the surface containing the sources
is not closed and we discuss the conditions that are
needed in order to reconstruct the exact Green’s
function, including the internal multiples. The first
situation we consider corresponds to passive seismic
data, for which we usually assume a distribution
of natural noise sources along an open surface in
the Earth’s subsurface. The free surface acts as a
mirror, which obviates the need of having sources on
a closed surface. This situation has been extensively
discussed in the literature, but we include it for
completeness. The second situation is that of seismic
exploration, with sources at the Earth’s surface only.
Seismic interferometry for exploration data has been
extensively discussed by Schuster et al. (2001),
(2004) and Bakulin and Calvert (2004). Also the
work of Verschuur and Berkhout (2005) has inter-
esting connections with seismic interferometry (the
latter authors apply weighted cross-correlations).
In the mentioned references, impressive results
have been obtained for primaries and free surface
multiples, but internal multiples have not received
much attention. In this paper we reconsider seismic
interferometry for exploration data and show how,
in theory, all internal multiples can be correctly
retrieved. The receivers involved in the correlation
may be located at the surface or in the subsurface,
for example at the ocean bottom or in a vertical or
horizontal borehole.

GREEN’S FUNCTION REPRESENTA-
TION
We consider an arbitrary inhomogeneous lossless
medium in which we define an arbitrarily shaped
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Fig. 1: Configuration for passive data.

closed surface ∂ID with outward pointing normal vec-
tor n = (n1, n2, n3). Inside this surface we de-
fine two points xA and xB . In the frequency do-
main, the Green’s function between these two points,
Ĝ(xA,xB , ω), can be represented as [Wapenaar et al.
(2004), (2006), van Manen et al. (2005)]

2<{Ĝ(xA,xB , ω)} = (1)∮

∂ID

−1
jωρ(x)

(
Ĝ∗(xA,x, ω)∂iĜ(xB ,x, ω)

−(
∂iĜ

∗(xA,x, ω)
)
Ĝ(xB ,x, ω)

)
nid2x,

where < denotes the real part, ω the angular fre-
quency, j the imaginary unit and ρ the mass density.
The terms Ĝ and ∂iĜni under the integral in the
right-hand side of equation 1 represent responses of
monopole and dipole sources at x on ∂ID. The prod-
ucts Ĝ∗ ∂iĜni etc. correspond to crosscorrelations in
the time domain. Hence, the right-hand side can be
interpreted as the integral of the Fourier transform
of crosscorrelations of observed wavefields at xA and
xB , respectively, due to impulsive sources at x on ∂ID;
the integration takes place along the source coordi-
nate x. The left-hand side of equation 1 is the Fourier
transform of G(xA,xB , t) + G(xA,xB ,−t), which is
the superposition of the response at xA due to an
impulsive source at xB and its time-reversed version.
This reconstructed Green’s function is exact and con-
tains, apart from the direct wave between xB and
xA, all scattering contributions (primaries and mul-
tiples) from inhomogeneities inside as well as outside
∂ID. When the medium outside ∂ID is homogeneous,
equation 1 can be approximated by

2<{Ĝ(xA,xB , ω)} ≈ (2)
2
ρc

∮

∂ID

Ĝ∗(xA,x, ω)Ĝ(xB ,x, ω)d2x,

where c is the propagation velocity. Since the
right-hand side contains one crosscorrelation product
of monopole responses only, this representation is
better suited for seismic interferometry than equa-
tion 1. For a detailed analysis of the approximations
in equation 2, see Wapenaar and Fokkema (2006).
Evaluation of either equation 1 or 2 requires that
sources are available on a closed surface ∂ID around
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Fig. 2: Single diffractor (C) in a homogeneous
medium below a free surface. The receivers are at A
and B. The numerical integration is carried out along
the sources on the surface ∂ID1. The causal con-
tributions come from the indicated stationary points
between φ = 0o and 45o, the anticausal contribu-
tions from the indicated points between φ = 135o and
180o. The contributions from the indicated stationary
points around φ = 90o cancel each other.

the observation points xA and xB . In the following
sections we discuss two situations for which ∂ID is
not closed.

CONFIGURATION FOR PASSIVE DATA

For the situation of passive data we assume that nat-
ural sources are available in the subsurface and that
the responses of these sources are measured by re-
ceivers at or below the free surface. We divide the
closed surface ∂ID into a part ∂ID0 coinciding with the
free surface and a part ∂ID1 containing the sources in
the subsurface, see Figure 1. For this situation equa-
tion 1 needs to be evaluated over ∂ID1 only. This
is exact as long as ∂ID0 and ∂ID1 together form a
closed surface. Hence, the direct wave as well as the
primaries and multiples in Ĝ(xA,xB , ω) are correctly
reconstructed by the integral along the sources on
∂ID1. A more intuitive explanation is that the free
surface ∂ID0 acts as a mirror which obviates the need
of having sources on a closed surface.

We illustrate equation 2 with a 2-D example for a
configuration with a free surface at x3 = 0. We
consider a single diffractor at (x1, x3) = (0, 600)m
in a homogeneous medium with propagation veloc-
ity c = 2000 m/s, see Figure 2, in which C denotes
the diffractor. Further, we define xA = (−500, 100)m
and xB = (500, 100)m, denoted by A and B in Figure
2. The surface ∂ID1 is a semi-circle with its center at
the origin and a radius of 800 m. The solid arrows
in Figure 2 denote the Green’s function G(xA,xB , t).
For the Green’s functions in equation 2 we use an-
alytical expressions, based on the Born approxima-
tion (hence, the contrast at the point diffractor is as-
sumed to be small). To be consistent with the Born
approximation, in the cross-correlations we also con-
sider only the zeroth and first order terms. Figure
3a shows the time-domain representation of the inte-
grand of equation 2 (convolved with a wavelet with a
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Fig. 3: (a) Time domain representation of the inte-
grand of equation 2. (b) The sum of all traces in (a).

central frequency of 50 Hz). Each trace corresponds
to a fixed source position x on ∂ID1; the source po-
sition in polar coordinates is (φ, r = 800). The sum
of all these traces (multiplied by rdφ) is shown in
Figure 3b. This result accurately matches the time-
domain version of the left-hand side of equation 2,
i.e., G(xA,xB , t) + G(xA,xB ,−t), convolved with a
wavelet. Figure 3 clearly shows that the main contri-
butions come from Fresnel zones around the station-
ary points of the integrand. The causal contributions
come from the indicated stationary points in Figure
2 between φ = 0o and 45o, the anticausal contribu-
tions from the indicated points between φ = 135o and
180o. The contributions from the indicated station-
ary points around φ = 90o cancel each other.

Note that when the sources at ∂ID1 are uncorrelated
noise sources, the right-hand side of equation 2
reduces to a direct crosscorrelation of the observed
wavefields at xA and xB , see Draganov et al. (2006)
for a real data example.

CONFIGURATION FOR EXPLORATION
DATA

For the situation of exploration data, sources are only
available at the acquisition surface. Again we divide
the closed surface ∂ID into two parts, this time a part
∂ID0 coinciding with the acquisition surface and an
arbitrarily chosen source-free part ∂ID1 in the sub-
surface, see Figure 4. In the following we assume
that surface related multiples have been eliminated,
hence the acquisition surface ∂ID0 is assumed non-
reflecting (if we would assume a free surface there
would be no integral left to be evaluated). Assuming
the responses of the sources at ∂ID0 are measured by
receivers at xA and xB in the subsurface (for exam-
ple in a VSP, a vertical array, a horizontal well, or at
the ocean bottom), crosscorrelation and integration
along the sources on ∂ID0 yields an approximation
of the Green’s function Ĝ(xA,xB , ω). The fact that
the integral over ∂ID1 cannot be evaluated due to
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Fig. 4: Configuration for exploration data.
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Fig. 5: Velocity profile. The first 500 m of this profile
is used for the experiments of Figures 6 and 7. The
full profile is used in the experiments of Figures 12
and 13.

the absence of sources in the subsurface means that
not only the amplitudes of the direct wave and pri-
mary reflections may be erroneously reconstructed,
but also that the internal multiples are incorrectly
handled and that spurious multiples may occur. The
occurrence of spurious multiples is extensively dis-
cussed by Snieder et al. (2006). Here we illustrate it
with a simple plane-wave experiment.

Consider a horizontally layered medium, consisting
of 25 layers with a thickness of 20 m each, with
random velocities around an average velocity of 2000
m/s, represented by the first 500 m of the velocity
profile in Figure 5. We define xA = (0, 100)m and
xB = (0, 300)m (as in a vertical seismic profile).
A vertically downward travelling plane wave is
incident to this configuration at x = (0, 0). The
responses at xA and xB are shown in Figure 6. We
use equation 2 to reconstruct the Green’s functions
G(xA,xB , t) + G(xA,xB ,−t). For this plane-wave
experiment we replace the integral over ∂ID0 by a
direct crosscorrelation G(xA,x,−t) ∗ G(xB ,x, t).
The result is shown in Figure 7. Note the asymmetry
and the occurrence of spurious multiples around
t = 0 in the correlation result due to negligence of
the contribution from ∂ID1. This result could be
made exact by adding a similar contribution from a
vertically upward propagating wave illuminating the
layered medium from below.

ANALYSIS OF THE NEGLECTED BOUND-
ARY INTEGRAL

Consider again the configuration of Figure 4. The



fact that the closed boundary integral of equation
1 or 2 needs to be replaced by an open boundary
integral over ∂ID0 implies a number of approxi-
mations, as we have seen above. Let us have a
closer look at the neglected part of the integral
over ∂ID1 in the exact representation of equation
1. Let ∂ID1 be a half-sphere with radius rID. If
we take rID → ∞ and assume that the medium is
homogeneous outside some finite domain IDf , then
the Green’s functions under the integral are O(1/rID)
and each of the correlation products is O(1/r2

ID).
In the corresponding convolution-type theorem the
two terms of O(1/r2

ID) cancel each other, making the
integrand O(1/r3

ID). However, in the correlation-type
theorem of equation 1 this cancellation does not take
place, which means that the integrand is O(1/r2

ID).
Since the surface area of the integration boundary
∂ID1 increases with r2

ID, the integral over ∂ID1 in
equation 1 (and also in equation 2) is O(1). In other
words, the boundary integral over ∂ID1 does not
vanish when rID →∞. For a plane-wave experiment,
as in the example above, we arrive at a similar
conclusion. For z → ∞ the Green’s functions are
O(1) and so are the crosscorrelations. Again no
cancellation takes place and, since the integral is
omitted, the end result is also O(1).
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Fig. 6: Responses at xA and xB.

MODIFIED EXTINCTION CONDITION

The integral over ∂ID1 does not vanish when rID →∞,
assuming a homogeneous medium outside some finite
domain, but what happens when the medium is inho-
mogeneous throughout ID (i.e., the domain enclosed
by ∂ID)? Due to internal multiple scattering, the in-
tegrand will be O(T 2(rID)/r2

ID), where T 2(rID) is a de-
caying function accounting for transmission loss. The
precise behavior of T 2(rID) depends on the type and
distribution of the inhomogeneities, but what matters
is that it will vanish for rID → ∞. The integration
surface area increases again with r2

ID, hence, the inte-
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Fig. 7: Cross-correlation result.

gral is now O(T 2(rID)), which means that it vanishes
for rID → ∞. Hence, equation 1, with closed surface
∂ID replaced by the acquisition surface ∂ID0 (see Fig-
ure 4), is exact when the medium is inhomogeneous
throughout the lower half-space (and equation 2 is a
good approximation for the same situation).

This is a quite remarkable result. Usually one starts
with deriving a modelling or processing scheme for a
simplified situation; complications only arise when it
is applied to a more realistic situation. Here we see
the opposite happening. For the situation of a simple
subsurface configuration embedded in a homogeneous
medium, equation 1 or 2 (with ∂ID replaced by ∂ID0)
involves erroneous amplitudes and spurious multiples.
For the more realistic situation of an inhomogeneous
subsurface, equation 1 (with ∂ID replaced by ∂ID0)
becomes exact.

For a plane-wave experiment in a horizontally layered
medium we find, following the same reasoning as in
the previous section, that the contribution from the
lower boundary decreases with T 2(z) and vanishes for
z → ∞. An example of T 2(z) is shown in Figures 8
and 9. Figures 10 and 11 show that the energy that is
lost in the transmission response is transferred to the
reflection response (bear in mind we assumed a loss-
less medium from the very start). Similar as the free
surface acted as a mirror in the situation for sources
in the subsurface, the inhomogeneous medium acts as
a ‘mirror’ for sources at the surface (but this mirror
has a very complex phase behavior).

We illustrate the reconstruction of G(xA,xB , t) +
G(xA,xB ,−t) for a plane-wave experiment in a
horizontally layered medium. This time we consider
the complete velocity profile of Figure 5. We saw al-
ready in Figures 8 and 9 that the transmitted energy
vanishes, hence, we expect a good reconstruction of
the Green’s function. Again a vertically downward
travelling plane wave is incident to this configuration
at x = (0, 0). The responses at xA = (0, 100)m
and xB = (0, 300)m are shown in Figure 12. The
main difference with the responses in Figure 6 is the
longer coda. The crosscorrelation result is shown
in Figure 13. Note that this response is perfectly
symmetric and that the spurious events around t = 0
have disappeared. Apparently the crosscorrelation
of the long codas have contributed to the improved
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reconstruction of the response and to the suppression
of spurious events at early times.

CONCLUDING REMARKS

From the theory discussed in this paper as well as
from the numerical example it follows that seismic
interferometry applied to exploration data (Figure 4)
benefits from the fact that the Earth’s subsurface is
inhomogeneous. Errors that would occur in the re-
constructed Green’s function when the response of
only a few layers would be available are suppressed
by crosscorrelating the full response of the inhomoge-
neous subsurface. This leads to the recommendation
that much longer traces should be recorded than the
usual four seconds in seismic exploration. To avoid
long time intervals between the shots, the data could
be recorded in a continuous mode, yielding a super-
position of time-shifted shot records [see for example
Shiraishi et al. (2005)]. Correlating the superposed
traces replaces the integral along the sources but also
introduces undesired cross-terms. This needs further
investigation.

The reconstruction of the Green’s function is the re-
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ered medium, as a function of the total depth range
of the medium (see also the caption of Figure 8).
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sult of a complex interference of crosscorrelated pri-
maries and multiply scattered events, present in the
coda of the response. It has been observed before
that coda waves are surprisingly stable [Fink (1997),
Snieder and Scales (1998)], hence, we expect that
this is not a limiting factor for practical applications.
Note that, despite the complexity of the coda, this
reconstruction process is fully deterministic and thus
does not rely on diffusivity and equipartitioning as-
sumptions, as in some of the references mentioned in
the introduction.

Throughout the paper we have assumed that the
medium is lossless. Investigations by Slob et al.
(2006) for electromagnetic passive data indicate that
when the losses are small, interferometry yields
Green’s functions with correct traveltimes and ap-
proximate amplitudes. It remains to be investigated
how anelastic losses will degrade the Green’s func-
tion reconstruction for exploration data, as discussed
in this paper.
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