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Summary

In this paper we present elastodynamic reciprocity the-
orems for the full and one-way wave equations and we
discuss their application in time-lapse seismic methods.

Introduction

Reciprocity theorems play an important role in formu-
lating true amplitude operations on seismic wave fields,
such as multiple elimination, migration and character-
ization. In general, a reciprocity theorem interrelates
the quantities that characterize two admissible physical
states that could occur in one and the same domain
(de Hoop, 1988). One state is identified with an actual
measurement, while the other state can either be a
computational state (e.g. migration operators), a desired
state (e.g. multiple-free data) or another measurement
(characterizing time-lapse differences in the reservoir).
In previous work we discussed the application of acoustic
reciprocity theorems for time-lapse seismic methods. In
particular, in Fokkema et al. (1999) we discussed appli-
cations based on the full and one-way wave equations.
Here we extend this to the elastodynamic situation.

Reciprocity theorem for the full wave field

In the space-frequency (x,w) domain, the equations that
govern elastodynamic wave motion read
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where Tj; is the stress, V; is the particle velocity, g is the
volume density of mass, s;;x; is the compliance, Fj is the
volume source density of volume force and H;; is the vol-
ume source density of deformation rate. The Latin sub-
scripts take on the values 1 to 3 and the summation con-
vention applies to repeated subscripts. The stress obeys
the symmetry relation 7;; = T};. The compliance obeys
Sijkl = Sjiki = Sjik and, assuming that the wave motion
occurs adiabatically, sijrxi = skii;. We introduce two elas-
todynamic states (i.e., wave fields, medium parameters
and sources), that will be distinguished by the subscripts
A and B. For these two states we consider the interaction
quantity 8;{Ti;,aVi g — Vi, aTij }. Applying the product
rule for differentiation, substituting equations (1) and (2)
for states A and B, integrating the result over a volume
VY with boundary 3V and outward pointing normal vector
n = (n1, n2,ns) (see Figure 1) and applying the theorem
of Gauss yields
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Fig. 1: Configuration for Betti-Rayleigh reciprocity theorem.
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with Asmkl = 8i;k1,B — Sijki,A and Ag = gp — pa. Equa-
tion (3) is the Betti-Rayleigh reciprocity theorem.
Reciprocity theorem for one-way wave fields
We introduce a system of coupled equations for the one-

way wave fields PT and P~, propagating in the positive
and negative depth direction, respectively, according to

5P =BP +8, (4)

(the hat denotes a pseudo-differential operator), with
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where ®*, U* and Y% represent the (fux-normalized)
down- and upgoing quasi-P, quasi-S1 and quasi-S2 waves,
respectively. ST and S~ are source vectors for these one-
way wave fields. The one-way operator matrix ]3 is de-
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Fig. 2: Modified configuration for the one-way reciprocity the-
orem. The combination of the two planar surfaces is denoted
by OVy; the cylindrical surface is denoted by 9V.
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where A~ is the vertical slowness operator, and R

and 'i‘i are the reflection and transmission operators,
respectively.  We introduce two different states that
will be distinguished by the subscripts A and B. For
these two states we consider the interaction quantity
3:{P4 NP}, with N :(E’I (l)) or, written alternatively,
2 {(P1)'P5; — (P7)'PL}. The superscript * denotes
transposition. Applying the product rule for differen-
tiation, substituting the one-way wave equation (4) for
states A and B, integrating the result over a cylindri-
cal volume V with boundary 8V, U dV: (see Figure 2),
applying the theorem of Gauss and using the symplec-
tic relation Btl}l = —NB, yields the following one-way
reciprocity theorem

/ P4 NPgnadA = /P;N{BB—BA}PBdV
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For elastodynamic one-way wave fields this reciprocity
theorem has been strictly proven only for laterally invari-
ant media; for acoustic one-way wave fields it has been
proven for laterally varying media as well (Wapenaar and
Grimbergen, 1996). In the following we will use it with-
out further proof for elastodynamic one-way wave fields
in laterally varying media.

Reciprocity theorems for time-lapse seismic

Since in a reciprocity theorem two states interact, it is
optimally fitted to formulate the relation between two
measurements in a time-lapse seismic experiment. State
A is associated with the reference wave field at, say,
t = t1, while state B is associated with the monitoring
wave field at, say, ¢ = t2 > t;. It is noted that &2 — £; is
much longer than the seismic experiment time. In our
analysis 1R® is divided in three domains (Figure 3): V, is
the domain where there are no differences between the
material parameters in the two states, mostly associated
with the domain above the reservoir (i.e., 3 < z3); the
domain V., for example associated with the reservoir
(r} < 23 < 3), where there is a difference between
the material parameters in the two states mostly due
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Fig. 3: Configuration for time-lapse seismic.

to the reservoir production history; and V' denotes the
complement of V = V, UV, (i.e., 3 > z3); the material
parameters in this domain may or may not be different.

Full wave equation

In order to simplify the analysis we only consider point
sources of the volume force type. The source of state A is
taken at x = X in the z,,-direction, while the source of
state B is taken at x = xgr in the z,-direction, according
to

Fia(x,w) = fa(w)d(x — x5)dim,
Fi 5(x,w) = fB(w)d(x — xRr)din.

9)
(10)
Application of reciprocity theorem (3) to domain V =
Vo UV, yields
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The surface integral on the right-hand side of equation
(11) takes into account a possible difference of the ma-

terial parameters in V', below the reservoir; it vanishes
when there is no difference between the two states in V.

One-way wave equation
In the one-way analysis we consider point-sources for
downgoing waves in both states:

Sa(x,w) = ({5 (@)} 0)'d(x - xs),
Sn(x, w) = ({sh(@)}' 0)'6(x - x5).

(12)
(13)

Application of reciprocity theorem (8) to domain V =
Vo UV, yields

{55 ()} P3 xcnlxs) = % (@)} P (xcslxr)
= [ Phexxa)NB(x) - B, (0)Pa(xixa)dV
xEVe
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—{P1(x|x5)}P5(x|xr)]dA. (14)
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Fig. 4: Simplified representation of the two terms in the bound-
ary integral in equation (14). Both terms accomplish a forward

extrapolation of upgoing waves from zg to the surface.

As in the previous case, the surface integral on the right-
hand side of equation (14) vanishes when there is no dif-
ference between the two states in V' (i.e., below x5 = x3).
Let us analyze this boundary integral, however, for the
situation in which there are changes below x5 = #3. Fig-
ure 4 shows a configuration with two regions in which
changes occur (the grey areas). Figure 4a shows some
wavepaths in the first term of the boundary integral in
equation (14), which can be written as

/ (P (x|x5)} Ph(x[xr)dA = (1)

— 2
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If &%
and \I/E are interpreted as Green’s functions for state B
(multiplied by a source function), then it is understood
that this integral performs an upward extrapolation of
&7 and U7 in state A from the depth level x% to xgr at
the acquisition surface. This results in a virtual experi-
ment in which the downgoing waves propagate from xg
through the medium in state A (before the changes took
place), reflection at the second reservoir occurs in state
A, and the upgoing waves propagate through the medium
in state B (after the changes took place) to xr. The
second term in the boundary integral in equation (14)
(see Figure 4b) represents a similar virtual experiment
with the same propagation paths, except with reflection
taking place at the second reservoir in state B. Hence,
since the traveltimes in these virtual experiments are the
same, the difference of these terms (as expressed by the
boundary integral in equation (14)) is proportional to the
time-lapse changes of the elastodynamic reflectivity of the
second reservoir.

(note that we ignore the contribution T3 T%).

Example

Figure 5 shows a subsurface model, including a reservoir
layer in which changes take place. The propagation ve-
locity in the reservoir in state A (before the changes took
place) is given by ca4 = 2500 m/s; in state B (after the

reservoir ¢ = 2500 2580
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Fig. 5: Subsurface model, including a reservoir in which
changes take place: c4 = 2500 m/s, cp = 2580 m/s.
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Fig. 6: Shot gather for the model of Figure 5 in state A (the
‘reference’ shot gather) and in state B (the ‘monitor’ shot
gather) and the difference of these two shot gathers.

changes took place) it is given by ¢ = 2580 m/s. Figure 6
shows a shot record in state A (the ‘reference’ shot gather)
and in state B (the ‘monitor’ shot gather) as well as the
difference of these two shot gathers. Note that the first
event in the difference shot gather is representative for
the time-lapse changes of the reflectivity of the top of the
reservoir. The other events in this difference shot gather,
however, are spurious events: they are caused by the trav-
eltime differences of the waves propagating through the
reservoir and bear no relation with the time-lapse differ-
ences with the reflectors below the reservoir (as a matter
of fact there are no time-lapse differences below the reser-
voir, so these events should actually be zero).

For the acoustic situation the boundary integral in equa-
tion (14) simplifies to

/ [Px (x|xs) P (x|xr) — P (x|xs) Pj (x|xr)JdA.

=2
T3=x]

(16)

Let 3 = a:g denote the dotted line in Figure 5 below the
reservoir. Following the explanation in the previous sec-
tion, the two terms in the integral in equation (16) should
cancel, because they can be seen as virtual experiments
with the same propagation paths and with the same re-
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Fig. 7: Fvaluation of the two terms of the integral in equation
(16) and their difference.
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Fig. 8: Subsurface model, including two reservoirs in which
changes take place. Reservoir 1: c4 = 2500 m/s, cg = 2580
m/s. Reservoir 2: c4 = 3100 m/s, cg = 3000 m/s.

flectors below the dotted line in Figure 5. Figure 7 shows
the two contributions of this integral (anti-causal events
have been muted) as well as their difference (Scherpen-
huijsen, 2000). Unlike the difference section in Figure 6,
the difference section in Figure 7 is indeed zero.

Figure 8 shows a subsurface model, including two reser-
voirs in which changes take place. In reservoir 1 the ve-
locity changes from ca = 2500 m/s to ¢ = 2580 m/s; in
reservoir 2 from c4 = 3100 m/s to ¢ = 3000 m/s. Figure
9 shows the difference of two shot gathers, contaminated
by traveltime differences (left panel), as well as the re-
sult of evaluating the boundary integral (16) (right panel,
after muting non-causal events). The latter result con-
tains the true time-lapse changes of the reflectivity of the
second reservoir.

Conclusions

We have formulated elastodynamic reciprocity theorems
for time-lapse seismic methods, based on the full and
the one-way wave equations. The latter form allows a
straightforward physical interpretation of the various
contributing terms. Its implementation requires wave
field decomposition (Schalkwijk et al., 1998) and one-way
wave field extrapolation of down- and upgoing P and
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Fig. 9: Results for the stacked reservoir model of Figure 8.
Left panel: difference of two shot gathers, contaminated by
traveltime differences. Right panel: evaluation of the boundary
integral (16). This result contains the true time-lapse changes
of the reflectivity of the second reservoir.

S waves. We have illustrated the evaluation of the
boundary integral in the one-way reciprocity theorem for
the acoustic situation. Unlike difference data taken at the
acquisition surface, the boundary integral represents the
true time-lapse changes of the reflectivity of a reservoir
below the boundary at which the integral is evaluated.
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