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Summary

A typical problem found when performing shear-wave
seismic re
ection experiments on land, is the occurrence
of Love waves. Love waves are considered noise, because
they are surface waves, bearing no subsurface re
ection
information. For several reasons it is hard to separate
them from the re
ections with conventional techniques.

This paper will present a technique, useful for removing
Love waves from seismic shear-wave data, using a data
driven approach. No model of the structure of the �rst
layer is needed. The approach is similar to that of van
Borselen et al. (1996), who used acoustic reciprocity to
remove multiples from marine seismic data, where also no
model of the structure of the water bottom is needed. In
this case, elastic reciprocity will be used.

Introduction

In an elastic material, two types of waves can propagate,
i.e. compressional waves, and two types of shear waves,
being vertically and horizontally polarized, SV- and SH-
waves respectively. In crossline (x2) invariant media, the
SH-waves are decoupled from the other two wave types.

The data of an SH-wave shot record are often polluted
with Love waves. Love waves are surface waves and are
considered noise because they bear no subsurface re
ec-
tion information. Because they travel along the surface,
they attenuate slowly, and make up for most of the energy
in a seismogram. In shallow surveys, their wave speed is
almost equal to the shear wave velocity of the upper lay-
ers, making it hard to separate the two kinds of waves
with e.g. f-k analysis. Another problem is, that Love
waves are dispersive, meaning that their phase velocity is
frequency dependent. A full discussion on the behaviour
of Love waves is given by Aki and Richards (1980).

The technique presented in this paper uses full wave the-
ory and elastic reciprocity. Reciprocity is a way to relate
two di�erent states to each other. In this case, the dif-
ference between the two states is the free surface being
present or not. The �nal result gives the desired data
(without the surface) as a function of the recorded data
(with the surface present). No subsurface model of the
top layer is needed. This approach is di�erent from that
of Ernst et al. (1998), because they make a model of
the shallow subsurface, calculate the resulting response,
and the di�erence with the data is then minimized in a
least-squares sense.

Theory

In this section, the Betti-Rayleigh reciprocity theorem is

given. This will be applied to the SH-wave case, i.e. by
using a crossline seismic source and crossline receivers.
An integral equation of the second kind is derived. This
equation is used to derive an algorithm for removing Love
waves from SH-wave data. After some more manipula-
tions simple equations are derived which can be used for
horizontally layered media. These equations can be ex-
panded in a Neumann series.

Integral transforms

The equations are required to be causal, linear and time
invariant. The causality condition is enforced by using the
Laplace transformation (Arfken, 1985), which is de�ned
for causal functions as:

û(x; s) =

Z
1

0

e
�st

u(x; t)dt: (1)

Here, Re(s) > 0. The Laplace transform has the fol-
lowing property with regard to di�erentiation to time:
@tu(x; t)! sû(x; s).

The function û(x; s) can be further transformed to the
horizontal Fourier domain:

~u(k1; x3; s) =

Z
1

�1

e
jk1x1 û(x; s)dx1: (2)

The transformation to the horizontal Fourier domain is
useful for horizontally layered media.

The Betti-Rayleigh reciprocity theorem

Reciprocity in most general terms provides a means for
comparing two di�erent states. In this case, the states
are wave �elds in an elastic medium. The wave �eld in an
elastic earth is described by the elasto-dynamic equations:

@j �̂i;j � s�v̂i = �f̂i; (3)

1

2
(@pv̂q + @q v̂p)� sSp;q;i;j �̂i;j = ĥp;q: (4)

Note that these equations are in the Laplace domain, and
that the Einstein summation convention is used. In these
equations, �̂i;j is the elastic stress tensor, v̂i is the particle
velocity vector, � is the volume density of mass, Sp;q;i;j is
the compliance tensor (the inverse of the sti�ness tensor

Ci;j;p;q), f̂i is the volume-source density of external forces,

and �nally, ĥp;q is the volume source density of deforma-
tion. A derivation of these equations can be found in de
Hoop (1995).

Now consider two di�erent states, call them state A and
state B, and the following scalar interaction quantity:
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Fig. 1: The two states for the reciprocity theorem. a) with stress-free surface, b) without surface. The dashed line is the path
of integration, which goes to in�nity.
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substituted, the interaction quantity is integrated over a
volume, called domain V, and �nally Gauss' theorem is
applied. The following equation is thus obtained:Z
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This is the global form of the Betti-Rayleigh reciprocity
theorem. The media are assumed to be reciprocal, im-
plying the symmetry relation: Sj;k;p;q = Sp;q;j;k. Eq. (5)
can be simpli�ed by taking the SH-wave case, where only
the v2 component is of concern. Also assuming no di�er-
ences in material parameters, no sources of deformation
and two-dimensional media, eq. (5) becomes:

Z
x2@V

�
�̂
A
2;j v̂

B
2 � �̂

B
2;j v̂

A
2

�
�jdx =Z

x2V

h
f̂
B
2 v̂

A
2 � f̂

A
2 v̂

B
2

i
d
2
x: (6)

The removal equations

The two states that have to be compared in order to
arrive at the algorithm to remove Love-waves, are a state
with a stress free surface, as is the case in the �eld, and
a state without a surface, where there are no surface
e�ects. Figure 1 shows a graphical representation of
these two states. In the surface case, a volume-source
density of force cannot be de�ned when the sources are
located on the surface. Instead, the source is introduced

as a boundary condition on the stress-free surface. There
are no such problems in the no-surface case, and a
volume-source density of force can be de�ned normally.
The states are summarized in Table 1. In this table, xR

State A State B
(surface case) (no-surface case)

Field
�
�̂
surf

2;j ;v̂
surf

2

	
(xjxR;s)

�
�̂
nosurf

2;j ;v̂
nosurf

2

	
(xjxS;s)

Material f�; Si;j;p;qg inD f�; Si;j;p;qg inD�
�
0
; S

0

i;j;p;q

	
inD 0

�
�
0
; S

0

i;j;p;q

	
inD 0

Source 0 f̂
nosurf

2 (s)�

�(x1 � x
S
1 )�(x3)

Boundary Surface is stress Not
free, except for a applicable
traction source:

�̂
surf

2;3 = t̂
surf

2 (s)�

�(x1 � x
R
1 )

Domain V = D [ D
0 (see Figure 1)

Table 1: States for the removal of Love-waves

and xS are located on the surface (x3 = 0).

These states can be substituted in eq. (6), and after ap-
plying physical reciprocity, the following equation is ob-
tained, where all the vectors are located on the surface
(x3 = 0):Z
x12R

�̂
nosurf

2;3 (x1jx
S
1 ; s)v̂

surf

2 (x
R
1 jx1; s)dx1 =

1

2
f̂
nosurf

2 (s)v̂
surf

2 (x
R
1 jx

S
1 ; s) + t̂

surf

2 (s)v̂
nosurf

2 (x
R
1 jx

S
1 ; s):

(7)

Note that there's no minus-sign in the equation above.
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This is because the positive x3 direction is down, yielding
an extra minus sign. This is a correction of a previously
published result (van Zanen et al., 1999). The factor 1

2

on the right hand side of the equation is a result of inte-
grating over a delta function located exactly on the path
of integration: the surface. The integral at in�nity in eq.
(6) yields zero (O(��1) as � ! 1), due to causality
(Fokkema and van den Berg, 1993).

When v̂
surf

2 is measured and v̂
nosurf

2 is to be determined,
the only unknown term is the stress-component �̂nosurf2;3 .
The term can be rewritten with the help of eq. (4), and by

assuming a reciprocal medium: �̂nosurf2;3 = (�=s)@3v̂
nosurf

2 .
Here, � is de�ned as the shear modulus. When performing
a Fourier transform to the horizontal Fourier domain, the
di�erentiation with respect to the x3 coordinate becomes
a multiplication with either +
s or �
s, depending on a
di�erentiation of an up-going or down-going �eld respec-

tively. 
s is de�ned as
q

s2

c2
s

+ k2
1
, where cs is de�ned as

the shear-wave velocity of the top layer. Splitting v̂
nosurf

2

in a re
ected and an incoming wave�eld, and realizing
that the derivative of the incoming �eld is zero, it is found
that: (�=s)@3v̂

nosurf

2 !
�
s
s
(~vnosurf2 �~vinc2 ). Finally, for the

incoming wave�eld is written: ~vinc2 = sf̂
nosurf

2 (s)=(2�
s).

For the further analysis of the removal equations it is
remarked that traction is de�ned as the opposite of force.
This means that for the source functions the following is

taken: t̂surf2 (s) = �f̂
nosurf

2 (s) = �f̂2(s).

When transforming eq. (7) to the horizontal Fourier do-
main, taking only horizontally layered media (so-called
1-D media), and following a similar approach as van
Borselen (1995), this equation becomes, for the forward
problem (i.e. generating a Love wave):

~v
surf

2 (k1; x3 = 0; s) =
sf̂2(s)~v

nosurf

2 (k1; x
S
3 = 0; s)

sf̂2(s)� �
s~vnosurf2
(k1; xS3 = 0; s)

;

(8)
and for the inverse problem (i.e. removing the Love wave):

~v
nosurf

2 (k1; x3 = 0; s) =
sf̂2(s)~v

surf

2 (k1; x
S
3 = 0; s)

sf̂2(s) + �
s~vsurf2
(k1; xS3 = 0; s)

:

(9)
Notice that in this last equation the quantities to be
known are: the measured data with surface e�ects (~vsurf2 ),

the wavelet (f̂2(s)), and the material parameters of the
top layer (via �
s). No model is needed for the structure
(in the case of horizontally layered media: depth) of the
�rst layer.

The last two equations can be expanded in a Neumann
series. For the forward problem, this becomes:

~vsurf2 = ~vnosurf2

"
1 +

 
�
s

sf̂2(s)
~vnosurf2

!
+ (� � �)2 + � � �

#
;

(10)

while for the inverse problem, this is:

~v
nosurf

2 = ~v
surf

2

"
1�

 
�
s

sf̂2(s)
~v
surf

2

!
+ (� � �)

2
� � � �

#
: (11)

The terms in the expansion can be seen as multiples, the
same as in the marine case. But a di�erence exists. For
the deeper re
ections they are the same, namely propa-
gating waves, but for shallow layers, the main contribu-
tion of these \multiples" are evanescent waves.

Results

In this section the possibilities of the theory are shown.
First, a dataset was made that included a Love wave, us-
ing �nite di�erence modeling developed by Falk (1998).
This dataset can be seen in Figure 2b). The model for
this dataset is as follows: �rst there is a small layer of
1.2 m with a shear-wave velocity of 200 m/s, then a layer
of 22.0 m thick with a shear-wave velocity of 300 m/s,
and �nally the lower half-space which has a shear-wave
velocity of 350 m/s. Figure 2a) shows a graphical rep-
resentation of this model. The source and receivers are
placed on the surface. The amplitudes in the pictures are
clipped, in order to provide a better view of the data.

The Love wave is the most obvious event present in Figure
2b). As explained, it has the most energy, and due to
its dispersiveness, it obscures the re
ection of the deeper
layer.

Figure 2c) shows the data after application of eq. (9).
For the implementation of this formula a complex Laplace
parameter was used: s = " + j!, where ! is the radial
frequency, and a value of " = 6:0 was taken. The Love
wave has been removed. The re
ection of the deeper layer
has become more clearly visible.

The di�erence between the data with the Love wave re-
moved and theoretical data is shown in Figure 2d). The
theoretical data is also obtained with �nite di�erence
modeling. The error is minimal, only some artifacts due
to the spatial windowing of the input data are introduced.

Conclusions

In this paper a procedure is presented for removing Love
waves from SH-wave data. As in the acoustic case, the
source wavelet is needed to eliminate the surface e�ects.
But no subsurface model of the �rst layer is needed, just
its physical properties. For a synthetic data set, with a
simple model of the subsurface, Love waves can be re-
moved successfully.
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Fig. 2: Inverse problem, the removal of the Love-wave, a) model of the subsurface, b) input data, obtained with �nite di�erence
modeling, c) result of the removal procedure, d) di�erence between c) and theory
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