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Summary

Ultrasonic experiments carried out on several reservoir
sandstone samples have shown a specific pressure-
dependent behaviour of the transmission response.
Apart from the well-known velocity increase as ambient
pressure increases, the amplitude and the time axis are
scaled as a function of the pressure. In order to quantify
the scaling phenomenon two approaches are used. First,
a heuristically derived model from the experimental data
is tested on numerically simulated data. On the other
hand, an analytically derived model from a modified
version of the O’Doherty-Anstey expression for the
transmission response through finely layered media is
also analyzed and tested on numerically simulated data.
Both scaling models present two scalar parameters that
relate a wavelet recorded at a higher ambient pressure
with another recorded at a relatively lower one. Esti-
mating these parameters from measurements for a range
of different ambient pressures gives valuable information
about the pressure-dependent behaviour of the reservoir
rock.

Introduction

A couple of years ago, ultrasonic transmission measure-
ments have been carried out on Rotliegend reservoir
sandstone samples (den Boer et al., 1996; Swinnen,
1997). The experiments were carried out for a range
of different ambient pressures. Figure 1 shows the
transmission responses for pressures ranging from 2 MPa
(the latest arrival) to 20 MPa (the first arrival).
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Fig. 1: Transmission responses of Rotliegend reservoir sand-
stone for varying ambient pressure.

It appeared that not only the arrival time reduces when

the ambient pressure increases, but that the width of
the wavelet reduces by approximately the same relative
amount. In other words, the time-axis seems to be scaled
by a single factor when the ambient pressure is changed
from one value to another. Also the amplitude changes
with changing pressure. It has been carefully checked that
these time and amplitude changes are not source effects,
but that it is the propagation through the sandstone that
changes with changing pressure.

Heuristically derived scaling model

A simple scaling relation was derived from the exper-
imental data by den Boer et al. (1996) and further
studied by Swinnen (1997). A pair of recorded traces are
related by

ws(t) = fwa(L), M

where wp(t) and wa (t) denote the transmission responses
at two different ambient pressures and « and 3 are the
scaling parameters. The first one stretches the time axis
with respect to ¢ = 0, while the second one affects the
wavelet amplitude. In the frequency domain, the scaling
relation becomes

Wa(w) = BaWa(aw). (2)

In order to calculate @ and 3, two traces are compared
in the time domain, and using a normalized least-squares
criterion, both scaling parameters are found by optimizing
the match between the scaled trace with the recorded
trace at a lower pressure. For example, Figure 2 shows the
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Fig. 2: Illustration of the scaling behaviour wg(t) = wA(i)
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transmission responses recorded at 8.7 MPa (solid) and
at 20 MPa (dashed-dotted) and a scaled version of the
latter trace (dotted) that approximately coincides with
the former.

The binary layered medium approach

We start by making a strong simplification, that is, we
assume that the sandstone is horizontally layered. Al-
though this is not very realistic, it is a suitable starting
point for studying the scaling behaviour analytically. The
second assumption is that the layered medium consists
of only two types of material (hence the name binary
layered medium); the layer thicknesses are in some way
randomly distributed. The third assumption is that
changes in the ambient pressure do not affect the layer
thicknesses, but only the material parameters. With
these assumptions the depth-dependent normal-incidence
plane-wave reflectivity 7(z) obeys the following scaling
relation

re(z) = Bra(z), (3)

where the subscripts A and B refer to two different am-
bient pressure states. When the material parameters of
both layer types react similarly (in a relative sense) to
changes in the ambient pressure then 8 = 1; when they
react differently, then 8 # 1. The average slowness 5 of
the material obeys the following relation

SB = QSA. (4)
It is beyond the scope of this paper to specify the scaling
factors o and 3 and their mutual relation. For our anal-
ysis it is sufficient to assume that relations (3) and (4)
hold for some value of a and g.

In the following section we will evaluate the scaling be-
haviour of the transmission response of binary layered me-
dia analytically.

Scaling behaviour of the transmission response

The normal-incidence plane-wave transmission response
of a layered medium can be expressed in the frequency
domain in terms of a ‘generalized primary’ propagator
W(z1, z0,w), according to

W(z1, z0,w) P(z1, z0,w)M(z1, 20, w)
exp{—jw5Az} exp{—A(2w5)Az},

(5)

where Az = 21 — 209. The first exponential describes the
(lux-normalized) primary propagation from depth level
2o to z1 and the second exponential accounts for the in-
ternal multiples generated at all interfaces between those
two depth levels. The function A is the Fourier transform
of the ‘causal part’ of §(z), according to

A(k) (6)

= /00 exp{—jkz}S(z)dz,

0

where §(z) is the autocorrelation of the reflection function
r(z), expressed by,

1 z1—2
S(z) = Az —z /

20

r(Or(¢ + 2)d¢. (7)

Note that equation (5) is the well-known O’Doherty-
Anstey relation (O’Doherty and Anstey, 1971), except
that A(k) in equation (6) is expressed in terms of a spa-
tial rather than a temporal autocorrelation function. The
depth-time conversion takes place in equation (5), where
A(k) is evaluated at k = 2w3. Assuming r(z) obeys equa-
tion (3), A(k) has the following scaling behaviour

Ap (k) = 8% Aa(k), (8)
where the subscripts A and B refer again to two different
ambient pressure states. For these two pressure states the
generalized primary propagators read

Wa(z1, z0,w) = Pa(z1,20,w)Ma(z1, 20,w) 9)
= exp{—jwsaAz}exp{—Aa(2w5s)Az}
Wsg(z1,z0,w) = Pg(z1,20,w)Mg(21,20,w) (10)

exp{—jwspAz}exp{—Ap(2wsp)Az}

or, using equations (4) and (8),

Wi (21, 20,w)

exp{—jawsa Az} exp{—B°Aa(20w5 1) Az}
1. an

Pa(z1, 20, aw)[Ma(z1, 20, aw)

Numerical experiments

We are faced with two different scaling models for the
transmission response. The former one (equation (1))
was heuristically derived analyzing the experimental
data. The second one (equation (11)) was analytically
derived from a modified O’Doherty-Anstey relation and
making some assumptions on the pressure-dependent
behaviour of the sandstone. We have performed numer-
ical simulations for the transmission response through
a binary layered medium, in order to check whether
it is a convenient starting model for analyzing the
pressure-dependent rock behaviour.

The proposed sandstone model consists of a stack of hor-
izontal acoustic layers with just two alternating veloci-
ties, and the thickness of each bed is a random variable
following an exponential distribution with mean d. The
density is considered constant for both material types.
The assumption is that as the ambient pressure increases
one of the material changes its velocity while the other
remains fixed. Thus the reflectivity and the average slow-
ness change according to equations (3) and (4).

The total transmission response is calculated by means
of forward modelling of the acoustic wave equation in the
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frequency domain, considering a plane-wave incident from
the top and calculating the plane-wave transmitted to the
bottom of the stack of horizontal parallel layers. After
calculating the transmission impulse response, convolu-
tion with a Ricker wavelet is carried out.

Relative amplitude
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Fig. 3:  Transmission responses (convolved with Ricker
wavelet) for varying impedance contrast.

In Figure 3, transmitted zero-phase Ricker wavelets
through binary layered media are shown. The trace with
the fastest arrival corresponds to the smallest impedance
contrast and average slowness. The later arrivals are cal-
culated by fixing one velocity and decreasing the other,
that is increasing the impedance contrast and the aver-
age slowness of the models. Note the similar scaling be-
haviour observed in the experimental data for different
ambient pressures (Figure 1).

The first and third arrivals in Figure 3 are used to check
both equation (1) and equation (11). The corresponding
rock model parameters for these two cases are shown in
Table 1.

Total path | Mean (d) Impedance
thickness contrast
Model A 3200 m/s - 3500 m/s
20 cm 0.3 mm
Model B 3000 m/s - 3500 m/s

Table 1: Binary layered model parameters

Even though the former scaling model was derived from
real data, it does not give any explicit relation between
the scaling parameters (« and 3 in equation (1)) and some
physical characteristic of the reservoir rock. In spite of
the latter, it is worthwhile to scale one trace from a low
impedance contrast to a higher impedance contrast, ap-
plying the same least-squares technique previously used
with the experimental data. The results can be seen in
Figure 4. Although the match is good, some differences
in the amplitude of the main lobes and in the coda can
be seen.
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Fig. 4: First arrival (Model A) and third arrival (Model B)
of Figure 3, and scaled version from A to B using wg(t) =

Buwa(l).

On the other hand, the analytically derived scaling model
of equation (11) presents scaling parameters somehow re-
lated to the acoustic characteristics of the layered model
via equations (3) and (4). From the model velocities and
using those equations, it is possible to calculate the scaling
parameters a = 1.035 and 8 = 1.718. They are used to
scale the transmission response from model A to model B.
The direct path delay is subtracted from both responses
according to the corresponding time delay for each model.
Thus equation (11) simplifies to

M (21, 20,w) = [Ma(21, 20, aw)]® . (12)
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Fig. 5: First arrival (Model A) and third arrival (Model

B) of Figure 3, and scaled version from A to B using
Mp(z1,20,w) = [MA(zl,zo,aw)}ﬂz.

As follows from the latter formulation, the scaling model
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must be applied to the transmission impulse response,
that is, with no source function included. As a first step
in our forward modelling of the wave equation, the plane
wave transmission response through the stack of layers
is calculated. Then the scaling relation (equation (12))
is applied. Finally, the transmission impulse responses
are convolved with a Ricker wavelet and shifted back
to the correct arrival time. In Figure 5 the results are
displayed. The match between the scaled version of the
transmission response of model A (’+’ marked line) and
the transmission response of model B (solid line) is al-
most exact. This is another numerical confirmation of
the O’Doherty-Anstey relation, although we know it is
only an approximation to the total transmission response
through a layered sequence.

Discussion and conclusions

The attenuation and dispersion of seismic energy due to
superposition of internal multiples may well be the cause
of the scaling of the transmitted wavelets through a rock
sample under varying ambient pressure. The wavelet
scaling produced by changes in the impedance contrast
between layers corresponds to the pressure-dependent
scaling behaviour observed in the experimental data.
This correspondance suggests that as the ambient pres-
sure increases, the average slowness and the impedance
contrast within the rock decrease.

Two different scaling models were analyzed. The heuristi-
cally derived scaling model of equation (1) has been tested
with numerical simulated data giving good results. How-
ever, the relation between the scaling parameters and the
acoustic characteristics of the rock is not explicit.

The analytically derived scaling model of equation (11)
has been tested with numerical data giving even better
results (compare Figures 4 and 5), despite it has not been
applied to the real data yet. This result was expected
as long as a binary layered medium approach was used
and the scaling relation was derived from a modified ver-
sion of the well-known O’Doherty-Anstey relation. Our
hypothesis is that as pressure changes, some variation in
the velocity of one constituent material occurs. The o and
(8 parameters are directly related with acoustic character-
istics of the layered model (i.e. reflectivity and average
slowness).

Equation (11) quantifies the scaling behaviour of the
transmission response. Note that in both terms at the
right-hand side the frequency is scaled with the same fac-
tor a. This agrees with our earlier observation that the
arrival time and the width of the wavelet scale by approx-
imately the same amount when the ambient pressure is
changed. The exponent 32 in the second term accounts
for the amplitude change, but has an effect on the phase
as well. Since this exponent is applied to a frequency-
dependent term, there is not a simple scaling relation in
the time-domain.

Although we have made a number of simplifying assump-
tions, it is worthwhile to use equation (11) as a first ap-

proximate model for observations like those in Figure 1.
Estimating the parameters o and 3 from that type of
measurements for a range of different ambient pressures
gives valuable information about the pressure-dependent
behaviour of the reservoir rock. However, more realis-
tic 3-D scattering models within the rock matrix may
also present the scaling behaviour of the transmission re-
sponse. Present research is focused on that direction.
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