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Summary

Relations between reflection and transmission responses
of horizontally layered media have been formulated by
many authors. We derive similar relations for 3-D inho-
mogeneous media and we indicate some applications.

Introduction

In this paper we present a unified approach for deriving
relationships between seismic reflection and transmission
responses in 3-D inhomogeneous media. In all relations,
the codas due to internal multiple scattering are included.
We counsider situations with and without a free surface on
top of the configuration; below a specific depth level we
assume that the medium is homogeneous. Hence, the
responses of interest are (1) reflection responses at the
upper boundary, with and without free surface multiples
at the upper boundary, (2) transmission responses be-
tween the upper and lower boundary, with and without
free surface multiples at the upper boundary, (3) reflec-
tion responses at the lower boundary, with and without
free surface multiples at the upper boundary.

One-way reciprocity theorems

We use acoustic reciprocity as a starting point for de-
riving the relations between the various reflection and
transmission responses. In general, acoustic reciprocity
formulates a relation between two acoustic states in one
and the same domain [de Hoop (1988), Fokkema and van
den Berg (1993)]. We distinguish between two-way and
one-way reciprocity theorems. In this paper we choose to
work with the one-way reciprocity theorem because the
concepts of reflection and transmission apply to down-
going and upgoing wave fields (rather than to full wave
fields). Consider a domain D embedded between horizon-
tal boundaries D¢ and 8Dy, (with 8D., below 0Dg). For
this configuration the one-way reciprocity theorem of the
convolution type for states A and B reads in the space-
frequency domain

{P{Pp — Py P{}d’x= | {P[Py — P, P{}d’x,(1)
Do D,

where Pt= PT(x,w) and P~= P~ (x,w) are flux-
normalized downgoing and upgoing wave fields, respec-
tively. Furthermore, w denotes the angular frequency
and x the Cartesian coordinate vector, defined as x =
(21,22, z3); throughout this paper the z3-axis is point-
ing downward. We speak of a ‘convolution type’ reci-
procity theorem because the products in the frequency
domain (P} Py etc.) correspond to convolutions in the

time domain. This one-way reciprocity theorem is based
on a coupled system of one-way wave equations for flux-
normalized downgoing and upgoing waves. It holds for
primary and multiply reflected waves with any propaga-
tion angle (including evanescent wave modes) in 3-D in-
homogeneous media (Wapenaar and Grimbergen, 1996).
In equation (1) it is assumed that the medium parame-
ters in both states are identical and that the domain D
is source-free. A more general expression can be found in
the reference mentioned above.

The one-way reciprocity theorem of the correlation type
reads

/ (P{*P§ — Py* Py }d® = / (Pf*P§ — Py Py }d?x,
D Do
@)

where * denotes complex conjugation. We speak of ‘corre-
lation type’ because the products in the frequency domain
(PF*PF etc.) correspond to correlations in the time do-
main. In addition to the assumptions for the convolution
type theorem, here it is assumed that the medium is loss-
less and that evanescent wave modes can be neglected.
As a consequence, any result obtained from equation (2)
will be spatially band-limited.

Specification of the states A and B

In this section we define the states A and B that will
be used in the one-way reciprocity theorems for deriv-
ing the relations between the reflection and transmis-
sion responses. Figure 1 shows four possible situations
for state A. The boundaries 0Dy and 0D,, are chosen
at depth levels 30 + € and 3. — €, respectively (with
Z3,m > ¥3,0 and € a vanishing positive constant). As men-
tioned in the introduction, we consider responses without
(states A-1 and A-2 in Figure 1) and with free surface
multiples (states A-3 and A-4 in Figure 1). In states A-
1 and A-3 we choose a source for downgoing waves at
xa = (Xm,a,%3,0), just above the upper boundary 8Do.
Here we used the subscript # to denote the horizontal
coordinates, i.e., xg = (x1,x2). Hence, xm, 4 denotes the
horizontal coordinates of x4, i.e., xg,a = (Z1,4,22,4).
In states A-2 and A-4 we consider a source for upgoing
waves at Xy = (X _a,%3,m), just below the lower bound-
ary 0D,,. The downgoing and upgoing wave fields at 0Dy
and 0D, are given in Table 1 for the different situations.
The notation is as follows. Reflection responses are de-
noted by R* and R™, transmission responses by T and
T~. For example, Ry (x,%4,w) is the reflection response
of the inhomogeneous medium in D, including all inter-
nal multiples, for a source at x4 and a receiver at x. The
subscript ¢ denotes that no free surface multiples are in-
cluded; when this subscript is absent it means that free
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Fig. 1: States for the acoustic one-way reciprocity theorems.
State A-1: At x4 just above 9Dg there is a source for down-
going waves. The half-spaces above 0Dy and below 9D, are
homogeneous. The half-space below 8D, is source-free. State
A-2: As in state A-1, but with a source for upgoing waves at
x’; just below 8D,,. State A-3: As in state A-1, but with a
free surface just above 9Dp. State A-4: As in state A-3, but
with a source for upgoing waves at xy just below dDy,.

surface multiples are included. The superscript + denotes
that this is a response of a downgoing source wave field.
Finally, sa(w) is the source spectrum for state A and r~
is the reflection coefficient of the free surface for upgoing
waves; it is defined as r— = —1.

States B-1 to B-4 are defined analogous to states A-1 to
A-4, except that the source points x4 and x/4 are replaced
by xp and x5, respectively. The reciprocity theorems (1)
and (2) can be applied to find relations between any of
the states A-1 to A-4 on the one hand and any of the
states B-1 to B-4 on the other hand. In the following
sections we make a selection of combinations that lead to
relevant relations between reflection and/or transmission
responses.

Source-receiver reciprocity

In this section we derive source-receiver reciprocity rela-
tions. Although these relations are well-known for full
wave fields (i.e., solutions of the two-way wave equation),
they are less obvious for one-way wave fields (i.e., solu-
tions of the coupled one-way wave equations for downgo-
ing and upgoing waves). We substitute the expressions for
the one-way wave fields in states A-1 and B-1 (Table 1)
into the one-way reciprocity theorem of the convolution
type (equation 1). Dividing the result by sa(w)sp(w) we
thus obtain

/ [5(XH—XH,A)RJ(XHJ&O,XBM)— (3)
8Dq

Rg(xH,xg,o,xA,w)J(xH — xH,B)] d®x = 0,

or

(4)

for x4 and xp just above 0Dy. This equation de-
scribes source-receiver reciprocity for the reflection re-
sponse without the free surface multiples, observed just
above the boundary 0Dg.

A similar result for the reflection response observed just
below the lower boundary 8D, is obtained by substitu-
tion of states A-2 and B-2, yielding

Ra_(xA7xBaw) = R(-)’_(XB1XA7W)7

(5)

for x/, and x5 just below 8D,,. Substitution of states
A-3 and B-3 into equation (1) yields for the reflection
response including the free surface multiples, observed at
the free surface

R(? (xi47 X’B’ w) = RO_ (x’B7 XfAi w)’

RY(x4,xp,w) = R (xp,%4,w). (6)
Similarly, combining states A-4 and B-4 yields
R (x4, Xp,w) = R (Xp, X4, ). (7

Finally, source-receiver reciprocity for the transmission
responses is obtained by substituting either states A-2
and B-1 or states A-4 and B-3 into equation (1), yielding

(8)

T0+(xlA7xBaw) =Ty (XB,XIA,LU)
and

TF (x4, xp,w) =T~ (x5, X4, w). (9)
Equations (4), (5) and (8) were previously derived in the
wavenumber domain by Haines (1988).

From reflection to transmission

In this section we derive the first relation between reflec-
tion and transmission responses, for the situation without
free surface multiples. We substitute the expressions for
the one-way wave fields in states A-1 and B-1 (Table 1)
into the one-way reciprocity theorem of the correlation
type (equation 2). Dividing the result by s’ (w)sp(w) we
thus obtain

[ 4T e x0T 3,000 = B — x.0)
ODm

- {R(-]i_(xa xA,w)}*RE}'(x,xB,w)dzx,
8Do

(10)

for x4 and xp just above 0Dy. Note that this equation
is not exact, since evanescent wave modes have been ne-
glected in the derivation of the one-way reciprocity the-
orem of the correlation type. Similar expressions have
been derived before by Herman (1992) using a two-way
reciprocity theorem and by Wapenaar and Herrmann
(1993) using the one-way reciprocity theorem (equation
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State A-1:|source point x4 just above 0Dy; State A-3:|source point x4 just above 0Dg;
homogeneous half-spaces above 9Dg free surface just above 9Dy; homoge-
and below dD,,; no sources below 9D,, neous source-free half-space below 9D,
Pj(x, x4,w) = 6(xg — xH,4)54(w) Pj(x, x4, w) = 0(xg — xH,4)54(w)

+r7 Py (x,x4,w)
X € 8D0 X € 6D0
Py (x,x4,w) = RY (x,%4,w)s4(w) Py (x,x4,w) = RT(x,%x4,w)s4(w)
Pi(x,x4,w) = Tq (X, %4, w)54(w) Pf(x,x4,w) = TT(x,%x4,w)s4(w)
x € 0Dy, X € 9Dy,
Py (x,x4,w) =0 Py (x,x4,w) =0

State A-2:|source point x/; just below 0D,,; State A-4:|source point x/; just below 0D,,;
homogeneous half-spaces above 9Dg free surface, no sources, just above 0Dg;
and below dD,,; no sources above 9Dy homogeneous half-space below 9D,,
Pi(x,x),w0) =0 Pf(x,xy,w) = r~P7 (x,%,w)

X € B’Do X € BDO
P;(X, x;,,w) = T(]_(xv XIA7W)SA(‘U) PX (X, x:tla"-)) = Tﬁ(xaxhaw)s/‘(w)
PX("’ Xy, w) = Ry (x,%x),w)s4(w) Pj(xaxk:w) = R~ (x,x)y,w)s4(w)

x € 0D, x € 0Dy,

Py (x, %y, w) = 8(xy — X 4)s4(w) Py (x,x)y,w) =6(xm — Xy 4)s4(w)

Table 1. States for the acoustic one-way reciprocity theorems

2). Equation (10) is the basis for deriving the coda of the
transmission response from the cross-correlation of the re-
flection response. Note that the inverse of the transmis-
sion coda, in combination with an inverse primary propa-
gator, may be used in seismic reflection imaging to obtain
an image in which the internal multiple scattering effects
are suppressed.

From transmission to reflection

In this section we derive the second relation between re-
flection and transmission responses, this time for the sit-
uation with free surface multiples. We substitute the ex-
pressions for the one-way wave fields in states A-3 and
B-3 (Table 1) into the one-way reciprocity theorem of the
correlation type (equation 2) and subsequently use the
source-receiver reciprocity relations (6) and (9). Dividing
the result by s% (w)sg(w) we thus obtain

2§R[R+(XA,XB,w)] =6(xu,B —XH,A)
_/a'D {T™ (xa,x,w)}*T" (x5,%x,w)d’x, (11)

for x4 and xp at the free surface, just above 0Dy and
where ${-} denotes the real part. When the transmission
responses T~ (x4, x,w) and T~ (xB, x,w) with free surface
multiples are known for a sufficient range of x-values,

equation (11) is an explicit expression for the real part of
the reflection response RT(x4,xp,w). Since the reflec-
tion response in the time domain is causal, the imaginary
part of R*(xa4,xp,w) is obtained via the Hilbert trans-
form. Equation (11) is the theoretical basis for acoustic
daylight imaging (Wapenaar et al., 2002).

Free surface multiple elimination

In order to find a relation between the reflection responses
with and without free surface multiples, we substitute the
expressions for the one-way wave fields in states A-1 and
B-3 (Table 1) into the one-way reciprocity theorem of
the convolution type (equation 1). Applying the source-
receiver reciprocity relation (4) to the result we obtain

R(T(XA, XB, w) - R+(XA7 vaw)

= R§ (xa,%x,w)R" (x,x5,w)d’x,
8Dg

(12)

for x4 and xp just above 0Dy. When the response
RT(x4,xp,w) with free surface multiples is known (from
decomposed seismic measurements), equation (12) is an
integral equation of the second kind for the response
RZ (x4,xp,w) without free surface multiples. A method
for free surface multiple elimination, based on a similar
type of equation but derived in a different way, has pre-
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viously been proposed by Kennett (1979) and Berkhout
(1982) and implemented by Verschuur et al. (1992).
Fokkema and van den Berg (1993) used a two-way reci-
procity theorem to derive a similar multiple elimination
scheme. Equation (12) may be seen as the ‘one-way coun-
terpart’ of the result of Fokkema and van den Berg (1993).

Next we substitute states A-4 and B-1 into equation (1).
Applying the source-receiver reciprocity relation (9) to
the result we obtain

T(;"(x'A,xB,w) - T+(x'A,xB,w)

:/ TH (%, x,w)RY (x,x5,w)d’x.  (13)
8Dy

for xp just above 0Dy and x4 just below 8D,,. This
is an explicit expression for the transmission response
Ty (x4, x5, w) without free surface multiples in terms of
the transmission response T (x4, x,w) with free surface
multiples and Ry (x,x5,w).

Seismic interferometry

Schuster (2001) proposed to evaluate an integral over the
product of {RJ (x4,%,w)}" and R*(xp,x,w), which cor-
responds to a cross-correlation in the time domain of two
reflection responses recorded at x4 and xpg, respectively.
He showed that this leads to a new reflection response
observed at x4, as if there was a source at xg. We inves-
tigate the integral over the product of {Rg (xa,x,w)}*
and RT(xp,x,w) by substituting states A-1 and B-3
into the one-way reciprocity theorem of the correlation
type (equation 2) and employing the appropriate source-
receiver reciprocity relations. We thus obtain

RY(x4,xp,w) =0(Xu.B — Xu )

- {R§ (xa,%,w)} RT (x5,x,w)d’x
8Dy

- /3 ATy xax @)} T (o x@)d’x, (14)

for x4 and xp just above 0Dy. This equation shows that
an integral over the correlation of reflection responses
recorded at x4 and xp (the first integral on the right-
hand side along the common source coordinate x at 0Dy
of both responses) indeed contributes to the reflection re-
sponse RT(x4,%p,w). Following Schuster (2001), we call
this seismic reflection interferometry.

Expressions for reflectivity ‘from below’

In this section we derive expressions for the reflection re-
sponse for upgoing waves at the bottom of the configura-
tion. We substitute the expressions for the one-way wave
fields in states A-1 and B-2 (Table 1) into the one-way
reciprocity theorem of the correlation type (equation 2).

Dividing the result by s’ (w)sp(w) we thus obtain
[ 13 o xa,0)) Ry (3, 0)%x
8Dm

=— | {R{(x,xa,w)}' T (xp,x,w)d"x, (15)

Dy
for x4 just above 8D and x5 just below 8D,,. When
the reflection response Ry (x,%4,w) and the transmission
response T (x,%4,w), both without free surface multi-
ples, are known, equation (15) is an integral equation of
the first kind for the reflection response R, (x,x,w) for
upgoing waves at the bottom of the configuration, just
below 8Dy, without free surface multiples. R, (x,x’5,w)
may be used for imaging the configuration between the
boundaries 0Dy and 0D, ‘from below’; in addition to
conventional imaging ‘from above’. Other relevant ex-
pressions for the reflectivity from below are obtained by
substituting states A-3 and B-4 or states A-4 and B-4

into equation (2).

Conclusions

We have presented a unified derivation for relations be-
tween reflection and transmission responses of 3-D inho-
mogeneous media, using one-way reciprocity theorems of
the convolution type and of the correlation type (equa-
tions 1 and 2). Note that because all relations apply to
reflection and/or transmission responses for downgoing
and/or upgoing wave fields, in practice a decomposition
of measurements into downgoing and upgoing wave fields
is required as a preprocessing step.
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