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Summary

Ray-Based Stochastic Inversion (RBSI) was introduced in
Verdel et al. (2004) as a new seismic inversion method for
reservoir parameter estimation claimed to be more accurate than
conventional Stochastic Inversion (SI) in laterally heteroge-
neous subsurfaces. In this paper, an RBSI-variant is presented
which utilises a 1D convolutional forward-modeling kernel as
found in common inversion software, offering great practical
benefits. Synthetic datatests demonstrate the superiority of this
variant, in its proper application regime, over Sl in resolving
reservoir-layer- P-velocities and thicknesses in strongly dipping
subsurface structures. Sl, under those circumstances, is severely
affected by wavelet distortion due to migration.

Introduction

Reservoir parameter estimation in a laterally variable subsurface
requires specular reflection-angle- and ray path-information to
determine the local reflection-coefficient. A common way to
estimate reservoir rock- and pore-fluid- parameters including
associated uncertainties, is to perform Sl in the reservoir zone
on the migrated image, with the migration procedure, see
e.g. Schleicher et al. (1993), taking into account the wave
propagation path effects through the subsurface given a coarse
subsurface velocity macro-model. However, it must be realised
that the migrated image is only a bandlimited image of subsur-
face reflection-coefficients in the case of preserved-amplitude
(TA) type migration, a depth migration method which corrects
for amplitude losses along the ray due to geometrical spreading
as well as interface-transmissions. Also, Sl has to deal with
wavelet distortion as a result of migration (Tygel et al., 1994).
Moreover, on the migrated image, reflection-angle information
is often blurred (Levin, 1998) by pre-processing steps, such as
angle-range substacks, applied for the sake of enhancing signal-
to-noise ratios. For a laterally strongly varying, fine-layered
target reservoir sequence, we propose to employ the original
ray-path and reflection-angle information, contained in the pre-
stack unmigrated data, inside the inversion algorithm, in order
to obtain a more accurate reflection amplitude representation
in the target zone and hence a more accurate description of
reservoir parameter distributions. Exactly this is done in RBSI.

The main difference between RBSI and Sl is the inversion-
domain. In RBSI inversion is done directly on the pre-stack
unmigrated dataset. However, RBSI still needs the depth mi-
grated data to pick the reflector normal vector fields, because in
the pre-stack unmigrated domain, RBSI uses 3D elastodynamic
ray-tracing as a forward modeller. In this way RBSI takes into
account reflection-angle- and ray path-information, whereas in
S| 1D convolutional modelling relies on the preceding external
process of migration to do that.

RBSI has been successfully applied on synthetic data for the
determination of laterally varying layer-densities (Verdel et al.,
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Fig. 1: @) NI-rays to a sequence of n smooth target interfaces Z;; angles
of incidence ©6=0°, source- and receiver-position Xs=X; at the surface 0X.
b) Subsurface parameterisation for Reduced RBSI.

2004). In this paper, a way is shown in which the scheme can
be tuned to estimate P-velocities and layer thicknesses from the
wavelet-interfered seismic response of a strongly dipping tar-
get reservoir sequence, which behaves locally as a sequence of
plane-parallel thin layers.

Reduced RBSI

For a sequence of smooth target interfaces of arbitrary shape
(Fig. 1a), the seismic normal-incidence (NI) response recorded
by a single receiver at the surface will contain information
about specular reflection points Xr; associated with, generally,
non-overlapping ray-paths. Since the true 3D forward modelling
must be employed to correctly invert for reservoir parameters of
a 3D subsurface model, 1D forward modelling will generally be
inadequate. If in the target zone on the NI-dataset nevertheless
a 1D convolutional forward modelling engine would be used, as
found in common inversion software, refraction, transmission
and spreading effects are all not properly taken into account.
However, it will be shown that, under certain conditions,
employment of a 1D forward modelling kernel in a ‘reduced’
RBSI scheme - offering great practical advantages - can be
a good approximation of the, generally 3D, RBSI-scheme.
These conditions are: the target interval behaves locally as
plane-parallel layers, contains a moderate amount of layers
with not too large impedance contrasts, and has a total interval
thickness of, at most, a few wavelengths. In this Reduced
RBSI-scheme, amplitude effects of the complex overburden
are removed from the NI-data in a pre-processing step, before
applying inversion.

We assume, for Reduced RBSI, that the target behaves locally
as a sequence of plane-parallel layers (Fig. 1b), and can be
identified by a clearly distinguishable reflector, the reference
reflector: for convenience, we take Z1. Layer- dip angle is 3,
thicknesses are h; < Ag, with Ay the dominant wavelength. h;,
hi = hjcos are the vertical and real thicknesses, respectively.
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The two-way pathlengths through overburden and target are Ig
and It (Iz > It). Overburden P-velocity- and density- macro-
models vpg(X), pa(X) are assumed known; layer P-velocities
and densities in the target are vpj, pi. In this paper, only
surface-recorded zero-offset single P-reflections from a 2.5D
subsurface are discussed.

Theory

Consider the simple 2.5D caustic-free elastic subsurface model
of Fig. 1b, with vs = vp/1.7 in the target. Density is con-
sidered constant throughout the model. The x3-component
of the primary NI P-wave reflection response of the n-th
contrast X, in the target, due to an isotropic point source
S(X,t) = Fo(t)Ao(Xs)d(X — Xs), with Ag the source strength and
Fo the wavelet, can be calculated using the expression (founded
on the high-frequency Asymptotic Ray Theory):

Ul (Xs = %, Xrn) = Ca(Xs, X1)R (Xr, 0 = 0) x
Tn-1(Xrn, 8 = 0)[lg(Xs, X7) + I (X1, %R n)] (1)

with X7t =Xg 1 the intersection point of the NI-ray with %, divid-
ing the ray-path in parts through overburden and target, Cg the
overburden amplitude-effects other than spherical spreading Ig,
R the Zoeppritz reflection coefficient measured from the ray-
incidence direction, and Tn_1 = [T, (6 =0)T," (8 = 0) the
product of transmission losses in the target (while the ray-pair
crosses n — 1 interfaces through the target; Tg := 1).

The zero-offset particle velocity dataset U3 is pre-processed for
Reduced RBSI in such a way that all overburden amplitude ef-
fects Cg and Ig 1 are removed. Amplitude losses within the tar-

get, T,_1 and 11, are neglected. Note that for a homogeneous
isotopic-elastic overburden, Cg = Ag(Xs)Co(Xs, XT), With Cg the
free surface correction factor.

Sl requires TA Pre-Stack Depth Migration of U3, given by [mod-
ified from (Schleicher et al., 1993)]:
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in which ty represents the two-way time between X and Xs = X,
T takes into account target and overburden transmission losses,
and “( ) denotes that R™ is spatially bandlimited.

Regardless of the employed migration algorithm, wavelet dis-
tortion occurs on the migrated image. This distortion is a conse-
quence of varying reflection angle, reflector dip and/or velocity.
For migrated primary P-P reflection data in a 2.5D setting, the
governing expression that measures wavelet stretch in the verti-
cal direction is (Tygel et al., 1994),

mo(vp(X),6,B) = Vipcosecosﬁ 3)

with mg the ratio between the wavelet length in the two-way
recording time domain and the length in the depth domain, vp(X)
the local P-wave velocity, 6 the angle of ray-incidence and 3

the local reflector dip. For blocky velocity models, the stretch-
evaluation point X on the depth migrated image must be chosen
just above or below the velocity discontinuity. For a reflector
on a zero-offset depth migrated image, the stretch induced by a
reflector dip B at position Xa, relative to the stretch at point Xg
with zero dip, is given by,

/ _ mp(vp(Xs),8=0,=0) vp(Xa) 1
o(Bo) = Molvp(Xa).0 = 0,B=Bo) _ Vp(Xe) cosBo

Conventional inversion, Sl, is performed after 1D-depth-to-
vertical-two-way-time conversion. In this procedure, a scal-
ing of the migration image along the vertical with local ve-
locity occurs, effectively removing the velocity dependency in
the stretch-equation above. This yields the expression for the
dip-dependent migration-induced wavelet stretch ng(f3) on the
depth-to-vertical-time converted migrated image:

1
" cosP

no(B) ()

where the subscript for the reflector dip was dropped.
Numerical Examples

Detrimental Effect of Migration Wavelet Stretch no([3) on SI

To analyse the effect of ng(B) on the ability of conventional in-
version, Sl, to estimate vp and h from the migration image [for
density-tests see Verdel et al. (2004)], a series of synthetic data
tests was performed on a model representing the flank, locally
dipping with angle B, of a subsurface structure with a well at
the apex (Fig. 2) - simulating a seismic-to-well tie under zero-
stretch condition (see Eqg. 5). The 2.5D isotropic-elastic sub-
surface has uniform p, constant background v = 2000 m/s and
contains a single contrasting, thin layer with v, = 2500 m/s and h
=10 m (< Aq). The experiments involve Sl for unknown layer-
properties vp and h, using the wavelet derived at B = 0°, on a
single trace from a set of TA PreSDM’ed, 1D vertical depth-
to-time converted, ideal migration images (Fig. 3), each corre-
sponding to a different dip of the flank (all migration artifacts
besides the clearly visible wavelet-stretch - the effect considered
here - were suppressed). In the construction of these images, the
NI-dataset was characterised by a Hanning-tapered zero-phase
bandpass wavelet Fo with corner frequencies 4-12-50-75 Hz. In
the experiments, exact mean values (p,,1n) and the position of
>, were supplied to Sl as prior layer-knowledge, viz. informa-
tion available before inversion.

Fig. 4 gives the layer-vp and -h estimated by Sl for the various
dip angles. Notice that for higher dip angles, inversion results
deviate considerably more than two standard deviations (20)
from the desired values.

To further investigate these results, consider Fig. 5. In Fig. 5a,
one Sl-modeled trace (blue) is plotted on top of the correspond-
ing input trace (black varwig) from the migration image (Fig. 3),
for each dip angle B. SI-modeled traces provide inversion diag-
nostics by convolving the most likely SI outcome with the sup-
plied wavelet. Notice that the match with traces from migration
is relatively good. In this case, however, the adequate match
results in misestimates in vp and h that stem from positioning-
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and amplitude-misalignments due to matching with the wavelet
derived at zero-dip. In purple, the traces are displayed without
migration stretch: only these traces fulfill the wavelet require-
ments of SI when using the wavelet derived at zero dip. Fig. 5b,
shows for each dip the wavelet that would give correct Sl results.

Reduced RBSI vs. Sl for layer- P-velocities and thicknesses

In order to test the performance of Reduced RBSI vs. Sl, the
model was extended to five, plane-parallel, thin layers (h; < Ag)
with fixed dip of f =30° (Fig. 6). Fig. 7 shows the datasets on
which inversion is applied: on the left, for Reduced RBSI, NI-
traces acquired in the subsurface model of Fig. 6, from which
overburden amplitude-losses (I,gl and Ag, Co for the homoge-
neous overburden) are removed. On the right, for Sl, the TA
PreSDM’ed, 1D depth-to-vertical-time converted, ideal migra-
tion image; notice the wavelet stretch.

Fig. 8 gives misestimates in layer-parameters obtained from both
types of inversion. Reduced RBSI results are much closer to the
desired values than Sl results.

Fig. 9a displays on the left an input trace for Reduced RBSI (var-
wig), from the pre-processed NI dataset of Fig. 7a; the match
with the Reduced RBSI-modeled trace (not shown) is almost
perfect. The trace on the right shows the difference (scaled by a
factor 5 for visibility), causing misestimates, between the input
trace and the hypothetical input trace which has losses due to
spreading I+ 1 and transmission Tp_1 in the target also corrected
for. Note that amplitude errors due to neglect of target amplitude
losses are considerably smaller than those occurring by neglect
of migration stretch (compare with Fig. 9b, trace on the right,
which was not amplified). From Eq. 1, the target amplitude-
losses L and Lt along the Nl-ray, at Xg on Zg, as compared to
X1 on Z1 read for this configuration:

_ “T(XTX?)].+|B(XSXT)}_1 ©)
lg~(Xs,XT)
1—-Th_1(X%R,0=0) (M

L(H) = 1

LT(n) =

withH = ||XT —XR|| = Zi”:‘llhi’. In the chosen model (n=6), L, and
Lt are of the same order, about 0.06 each - values that still give
satisfying inversion results (Fig. 8, Red. RBSI). Note also that,
due to the fact that Lt should be small in the application regime
of Reduced RBSI, the amount of generated multiple-energy too
is expected to be small, justifying the choice to model only the
primary response in the inversion kernel of Reduced RBSI.

Fig. 9b displays on the left the SI-modeled trace (blue), plot-
ted on top of the corresponding input trace (varwig) from the
migration image of Fig. 7b. In purple, the hypothetical ideal in-
put trace without migration stretch is displayed - fulfilling the
wavelet requirements of SI when using the wavelet derived at
zero-dip. The trace on the right shows the difference, causing SlI
misestimates, between the real and hypothetical input trace.

Conclusion

Migration stretch severely affects SI and should be accounted
for in some way, before inverting for vp,h,p and related reser-
voir parameters as porosity and pore-fluid content in a strongly
dipping target reservoir sequence. Reduced RBSI, a specific
implementation of RBSI, however, operates in the pre-stack
domain where this stretch is non-existent. The performed
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Fig. 2: Subsurface model with a single v-contrast and dip angle [3; target
layer-v, and -h to be inverted for. The wavelet for Sl was derived from
a seismic-to-well tie at zero dip.
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Fig. 3: no(B) on a detail of ideal migration results, for the subsurface
model of Fig. 2 with dip angle as indicated. Trace separation is 10 m.
Dashed lines denote contrasts Z;.

synthetic datatests show that Reduced RBSI, in its proper
application regime, resolves vp and h much better than SI. The
same has been shown before for RBSI in determining p.
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Fig. 6: Subsurface model with 5 plane-parallel thin layers dipping
at B = 30°; vp and h to be inverted for. Also shown the wavelet
supplied to Sl, derived at 3 = 0°, and a spiky reflectivity trace.
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Fig. 5: @) Sl-modeled traces (blue, see text) using the zero-dip
wavelet, on Sl input traces (black-varwig) from the migration im-
age (Fig. 3). Purple: input at zero-dip. b) Migration response per
%, showing the dip-dependent wavelet required for a correct Sl.
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Fig. 7: Parts of pre-processed NI-data (left, see text) and ideal
migration results (right), for the subsurface model of Fig. 6. Trace
separation is 10 m. Dashed line denotes reference reflector Z;.
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Fig. 9: @) Reduced RBSI input trace (left) and difference (x5) with
ideal input trace. b) On the left, on top of each other: Sl input, SI-
modeled trace and zero-dip input. On the right, difference between
real and zero-dip input. Dashed lines denote layer-interfaces.



