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Summary
Exact Green’s function representations for seismic inter-
ferometry are based on the assumption that the receivers
used in the correlation process are surrounded by a closed
surface of sources. We investigate two situations for which
this condition is not fulfilled: sources only in the subsur-
face, as in passive seismics, and sources only at the sur-
face, as in exploration seismics. We show that in both
cases the full Green’s function, including primary and
multiply scattered waves, can be reconstructed.

Introduction
It has been shown by many researchers in geophysics,
ultrasonics and underwater acoustics that the cross-
correlation of acoustic wavefields recorded by two differ-
ent receivers yields the response at one of the receiver
positions as if there was a source at the other [Claer-
bout (1968), Duvall et al. (1993), Rickett and Claerbout
(1999), Weaver and Lobkis (2001), Campillo and Paul
(2003), Roux et al. (2004), Shapiro et al. (2005)]. Various
theories have been developed to explain this phenomenon,
ranging from diffusion theory for enclosures [Lobkis and
Weaver (2001), Weaver and Lobkis (2002)], multiple scat-
tering theory and stationary-phase theory for random me-
dia [van Tiggelen (2003), Malcolm et al. (2004), Snieder
(2004)] and reciprocity theory for deterministic and ran-
dom media (non-moving or moving) [Wapenaar et al.
(2002, 2004, 2006) Weaver and Lobkis (2004), van Ma-
nen et al. (2005)].

The derivations based on reciprocity theory yield ex-
act representations of Green’s functions in arbitrary
inhomogeneous lossless media. Hence, the reconstructed
Green’s functions do not only contain the direct wavefield
between the two receiver points but also all primary
and multiply scattered waves. This requires, however,
that the two receivers are surrounded by sources on an
arbitrarily shaped closed surface. In reality this condition
is seldom fulfilled. In this paper we discuss two distinct
situations for which the surface containing the sources is
not closed and we discuss the conditions that are needed
in order to reconstruct the exact Green’s function,
including the internal multiples. The first situation we
consider corresponds to passive seismic data, for which
we usually assume a distribution of natural noise sources
along an open surface in the Earth’s subsurface. The
free surface acts as a mirror, which obviates the need
of having sources on a closed surface. This situation
has been extensively discussed in the literature, but we
include it for completeness. The second situation is
that of seismic exploration, with sources at the Earth’s
surface only. Seismic interferometry for exploration
data has been extensively discussed by Schuster et al.

(2001, 2004) and Bakulin and Calvert (2004). Impressive
results have been obtained for primaries and first order
free surface multiples. However, since the surface with
sources is not closed, internal multiples are not correctly
handled by these methods. Bakulin and Calvert (2006)
propose to replace the correlation by a deconvolution
process, which acts as a dereverberation filter. This
approach partly solves the internal multiple problem but
it does not account, for example, for peg-leg multiples.
In this paper we reconsider seismic interferometry for
exploration data and show how, in theory, all internal
multiples can be correctly handled.

Green’s function representation
We consider an arbitrary inhomogeneous lossless medium
in which we define an arbitrarily shaped closed surface
∂ID with outward pointing normal vector n = (n1, n2, n3).
Inside this surface we define two points xA and xB . In
the frequency domain, the Green’s function between these

two points, Ĝ(xA,xB , ω), can be represented as [Wape-
naar et al. (2004, 2006), van Manen et al. (2005)]
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∗(xA,x, ω)
)
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where < denotes the real part, ω the angular frequency,
j the imaginary unit and ρ the mass density. The terms

Ĝ and ∂iĜni under the integral in the right-hand side
of equation 1 represent responses of monopole and dipole

sources at x on ∂ID. The products Ĝ∗ ∂iĜni etc. corre-
spond to crosscorrelations in the time domain. Hence,
the right-hand side can be interpreted as the integral
of the Fourier transform of crosscorrelations of observed
wavefields at xA and xB , respectively, due to impulsive
sources at x on ∂ID; the integration takes place along the
source coordinate x. The left-hand side of equation 1
is the Fourier transform of G(xA,xB , t) + G(xA,xB ,−t),
which is the superposition of the response at xA due to
an impulsive source at xB and its time-reversed version.
This reconstructed Green’s function is exact and contains,
apart from the direct wave between xB and xA, all scat-
tering contributions (primaries and multiples) from in-
homogeneities inside as well as outside ∂ID. When the
medium outside ∂ID is homogeneous, equation 1 can be
approximated by

2<{Ĝ(xA,xB , ω)} ≈ 2

ρc

∮

∂ID

Ĝ∗(xA,x, ω)Ĝ(xB ,x, ω)d2x,

(2)



where c is the propagation velocity. Since the right-hand
side contains one crosscorrelation product of monopole
responses only, this representation is better suited for
seismic interferometry than equation 1. For a detailed
analysis of the approximations in equation 2, see Wape-
naar and Fokkema (2006). Evaluation of either equation
1 or 2 requires that sources are available on a closed
surface ∂ID around the observation points xA and xB . In
the following sections we discuss two situations for which
∂ID is not closed.
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Fig. 1: Configuration for passive data.

Configuration for passive data

For the situation of passive data we assume that natural
sources are available in the subsurface and that the
responses of these sources are measured by receivers at
or below the free surface. We divide the closed surface
∂ID into a part ∂ID0 coinciding with the free surface and
a part ∂ID1 containing the sources in the subsurface,
see Figure 1. For this situation equation 1 needs to be
evaluated over ∂ID1 only. This is exact as long as ∂ID0

and ∂ID1 together form a closed surface. Hence, the
direct wave as well as the primaries and multiples in

Ĝ(xA,xB , ω) are correctly reconstructed by the integral
along the sources on ∂ID1. A more intuitive explanation
is that the free surface ∂ID0 acts as a mirror which
obviates the need of having sources on a closed surface.
Note that when the sources at ∂ID1 are uncorrelated
noise sources, the right-hand side of equation 2 reduces
to a direct crosscorrelation of the observed wavefields at
xA and xB , see Draganov et al. (2006) for a real data
example.
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Fig. 2: Configuration for exploration data.

Configuration for exploration data

For the situation of exploration data, sources are only
available at the acquisition surface. Again we divide the
closed surface ∂ID into two parts, this time a part ∂ID0

coinciding with the acquisition surface and an arbitrarily
chosen source-free part ∂ID1 in the subsurface, see Figure
2. In the following we assume that surface related
multiples have been eliminated, hence the acquisition
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Fig. 3: Horizontally layered medium.

surface ∂ID0 is assumed non-reflecting (if we would
assume a free surface there would be no integral left to
be evaluated). Assuming the responses of the sources
at ∂ID0 are measured by receivers at xA and xB in the
subsurface (for example in a VSP, a vertical array, a
horizontal well, or at the ocean bottom), crosscorrelation
and integration along the sources on ∂ID0 yields an ap-

proximation of the Green’s function Ĝ(xA,xB , ω). The
fact that the integral over ∂ID1 cannot be evaluated due
to the absence of sources in the subsurface means that
not only the amplitudes of the direct wave and primary
reflections may be erroneously reconstructed, but also
that the internal multiples are incorrectly handled and
that spurious multiples may occur. The occurrence of
spurious multiples is extensively discussed by Snieder et
al. (2006). Here we illustrate it with a simple plane-wave
experiment. Consider the horizontally layered medium
of Figure 3. A downgoing plane wave is incident to this
configuration at z = 0 (not shown); the ray parameter is
p = 0.2 s/km, which corresponds to an incidence angle
of 17.5 degrees in the first layer. The responses at xA

and xB are shown in Figure 4. For this plane-wave
experiment we omit the integral over ∂ID0 in equation
2 and replace it by a direct crosscorrelation. The result
is shown in Figure 5, where it is compared with the
exact plane-wave response between xA and xB . Note
the asymmetry and the occurrence of spurious multiples
in the correlation result. For this simple example a
better result could easily be obtained by selecting the
first arrival in the response at xA by means of a time
window and correlating this with the full response at
xB (comparable to what Bakulin and Calvert (2004)
do in their virtual source method). However, in more
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Fig. 4: Responses at xA and xB.
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Fig. 5: Crosscorrelation result, exact response and error. The
vertical scale is the same in all panels.

complicated situations this is not trivial. Moreover, it
introduces other approximations that will not be further
discussed here, since the aim of this paper is to derive an
exact interferometric relation for exploration data.

Analysis of the neglected boundary integral

Consider again the configuration of Figure 2. The fact
that the closed boundary integral of equation 1 or 2 needs
to be replaced by an open boundary integral over ∂ID0 im-
plies a number of approximations, as we have seen above.
Let us have a closer look at the neglected part of the
integral over ∂ID1 in the exact representation of equa-
tion 1. Let ∂ID1 be a half-sphere with radius rID. If we
take rID → ∞ and assume that the medium is homoge-
neous outside some finite domain IDf , then the Green’s
functions under the integral are O(1/rID) and each of the
correlation products is O(1/r2

ID). In the corresponding
convolution-type theorem the two terms of O(1/r2

ID) can-
cel each other, making the integrand O(1/r3

ID). However,
in the correlation-type theorem of equation 1 this can-
cellation does not take place, which means that the inte-
grand is O(1/r2

ID). Since the surface area of the integration
boundary ∂ID1 increases with r2

ID, the integral over ∂ID1

in equation 1 (and also in equation 2) is O(1). In other
words, the boundary integral over ∂ID1 does not vanish
when rID → ∞. For a plane-wave experiment, as in the
example above, we arrive at a similar conclusion. For
zID → ∞ the Green’s functions are O(1) and so are the
crosscorrelations. Again no cancellation takes place and,
since the integral is omitted, the end result is also O(1).

Modified extinction condition

The integral over ∂ID1 does not vanish when rID → ∞,
assuming a homogeneous medium outside some finite do-
main, but what happens when the medium is inhomoge-
neous throughout the lower half-space? Due to internal
multiple scattering, the integrand will be O(f(rID)/r2

ID),
where f(rID) is a decaying function accounting for trans-
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Fig. 6: Horizontally layered medium, with two layers added.

mission loss. The precise behavior of f(rID) depends on
the type and distribution of the inhomogeneities, but
what matters is that it will vanish for rID → ∞. The in-
tegration surface area increases again with r2

ID, hence, the
integral is now O(f(rID)), which means that it vanishes
for rID → ∞. For a plane-wave experiment in a horizon-
tally layered medium we arrive at a similar conclusion,
following the same reasoning as in the previous section.
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Fig. 7: Responses at xA and xB.
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Fig. 8: Crosscorrelation result and exact response. The verti-
cal scale is the same in both panels.

Hence, equation 1, with closed surface ∂ID replaced by
the acquisition surface ∂ID0 (see Figure 2), is exact when
the medium is inhomogeneous throughout the lower half-
space (and equation 2 is a good approximation for the
same situation).

This is a quite remarkable result. Usually one starts with
deriving a modelling or processing scheme for a simpli-



fied situation; complications only arise when it is applied
to a more realistic situation. Here we see the opposite
happening. For the situation of a simple subsurface con-
figuration embedded in a homogeneous medium, equation
1 or 2 (with ∂ID replaced by ∂ID0) involves erroneous am-
plitudes and spurious multiples. For the more realistic sit-
uation of an inhomogeneous subsurface, equation 1 (with
∂ID replaced by ∂ID0) becomes exact.

We illustrate this again for a plane-wave experiment
in a horizontally layered medium. Figure 6 shows the
same configuration as in Figure 3, but with two layers
added. For the same incident plane wave with ray
parameter p = 0.2 s/km, critical reflection occurs at the
lower interface, hence f(zID) vanishes directly below this
interface, which is why adding more layers does not make
any difference. The responses at xA and xB are shown
in Figure 7. The main difference with the responses
in Figure 4 is the longer coda. The crosscorrelation
result is shown in Figure 8, where it is compared with
the exact plane-wave response between xA and xB . Of
course the response is more complicated than in Figure
5, but the match is perfect (the error for this idealized
situation is computational noise only, in the order of
10−13). Note that the crosscorrelation of the long codas
have contributed to the suppression of spurious multiples
at early times.

Concluding remarks

From the theory discussed in this paper as well as from the
numerical example it follows that seismic interferometry
applied to exploration data (Figure 2) benefits from the
fact that the Earth’s subsurface is inhomogeneous. Errors
that would occur in the reconstructed Green’s function
when the response of only a few layers would be available
are suppressed by crosscorrelating the full response of the
inhomogeneous subsurface. This leads to the recommen-
dation that much longer traces should be recorded than
the usual four seconds in seismic exploration. The recon-
struction of the Green’s function is the result of a com-
plex interference of crosscorrelated primaries and multiply
scattered events, present in the coda of the response. It
has been observed before that coda waves are surprisingly
stable [Fink (1997), Snieder and Scales (1998)], hence,
this should not be a limiting factor for practical applica-
tions. Note that, despite the complexity of the coda, this
reconstruction process is fully deterministic and thus does
not rely on diffusivity and equipartitioning assumptions,
as in some of the references mentioned in the introduction.

Throughout the paper we have assumed that the medium
is lossless. Investigations by Slob et al. (2006) for electro-
magnetic passive data indicate that when the losses are
small, interferometry yields Green’s functions with cor-
rect traveltimes and approximate amplitudes. It remains
to be investigated how anelastic losses will degrade the
Green’s function reconstruction for exploration data, as
discussed in this paper.
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