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Summary 
 

Many important details of potential subsurface 
reservoirs that we wish to characterize are only indirectly 
present in the reflected wavefields measured at the Earth’s 
surface. Therefore, the analysis of seismic data always 
presents an inversion problem. 

Instead of analyzing the data trace by trace, we 
propose an automated procedure that adjusts the parameters 
of a two-dimensional geological model by minimizing the 
mismatch between the simulated and measured seismic. 
This approach differs from standard inversion problems in 
that the size of the required details of the 2D geological 
reservoir model is far below the limits of the seismic 
resolution. 
 
 
Introduction 
 
The possibility of getting detailed information on the size 
and location of hydrocarbon reservoirs in the subsurface 
has generated continued interest in seismic research. The 
details of potential reservoirs that we wish to characterize 
are only indirectly present in the reflected acoustic 
wavefields which we are able to measure at the surface. 
Therefore, the analysis of seismic data always presents an 
inversion problem. One of the possible inversion methods 
is the Bayesian approach, which incorporates data-
independent a priori information in order to exclude 
unreasonable models. 

Several recent studies have focused on a high 
resolution inversion technique, which deals with very thin 
reservoirs, with thicknesses at the sub-wavelength scale. 
Usually in a standard seismic experiment, a source wavelet 
with a central frequency in the range of 30 to 50 Hz is used, 
resulting in a vertical resolution in the order of tens of 
meters. This means that layers with smaller thicknesses are 
not easily recognizable on a seismic image as a result of 
wavelet interference. One-dimensional techniques estimate 
the parameters of a geological model on a trace-by-trace 
basis. Hence the typical shapes of geological bodies are not 
taken advantage of in these methods.  

The primary focus of this paper is on the 
development of 2D geological models (in x-t cross-sections 
of the data set), and to incorporate these models in the high 
resolution Bayesian-based inversion process. We assume 
that geological objects are not random structures but that 

they follow certain typical patterns caused by the 
depositional processes that formed them. To exploit these 
characteristics, we model the body as an entity instead of a 
set of independent traces as has previously been done. The 
Bayesian-based inversion method employs a nonlinear 
least-squares estimator for maximizing the a posteriori 
probability. The quasi-Newton method with the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update formula for the 
Hessian matrix is used as a minimizing device. We chose 
the clinoform as a typical geological pattern that occurs on 
a wide range of scales and in a broad spectrum of 
depositional environments, all of which may be conducive 
to form potential reservoir rocks. Here we focus on 
clinoforms at the sub-seismic scale. 
 
 
Theory and method 
 
Geological model description 
Clinoform is a term originally introduced by Rich (1951) to 
describe the shape of a depositional surface at the scale of 
the entire continental margin (Figure 1). In the current 
geologic literature, the term clinoform denotes stratal 
packages with oblique internal layering, best imaged on 
seismic reflection profiles, where three geometric elements 
are recognized: (1) the topset in the shallowest and flattest 
area; (2) the foreset in the central and steepest area; and (3) 
the bottomset in the flat but deepest area (Figure 1b, 
Mitchum et al., 1977). The break in sea floor slope between 
the topset and the foreset is often called the rollover point. 
In the study of modern continental margins, clinoforms are 
widely recognized as one of the fundamental building 
blocks of the stratigraphic record. Over millions of years, 
the entire continental margin can be viewed as a clinoform, 
including the continental shelf as a transfer area, the 
continental slope as the main area of sediment 
accumulation, and the base of the slope as a distal 
bottomset. Changes in clinoform thickness, internal 
geometry, and style of superposition of multiple clinoforms 
provide information regarding long-term margin 
subsidence, sea-level change, and short-term fluctuations of 
sediment supply. Clinoforms forming over a few thousands 
of years are observed on the inner shelf of diverse margins: 
tectonically passive settings, active-margin settings and 
broad epicontinental shelves. Typically, clinoforms are 
defined on vertical scales, ranging from several meters to 
several hundreds of meters and encompass intervals 
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ranging from hundreds to millions of years. Because the 
internal layers of the sediments of the clinoform do not 
differ much from an acoustic point of view, such features 
do not tend to show up very well on seismic images.  
 
Simulated field data  
From a geometrical point of view clinoforms can be 
approximated by a number of sigmoidal curves. The 
sigmoid function ( )if x  may be described by four 
parameters. 
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Let us consider a single clinoform, bounded by two shifted 
sigmoid curves of equal slope a and height b. The 
horizontal and vertical (topset and bottomset thickness) 
shifts add two more parameters, and an entire clinoform 
body may thus be described by means of six parameters. In 
the present study, the thickness of the clinoform was set to 
be less than 1/7th of the wavelength. The parameters of the 
clinoform and their description are depicted in the Table 1. 
 
  Table 1 The parameters of the clinoform 

Parameter Value (m) 
L (length of the model) 100 
a (a lateral scaling) 4 
b (a height scaling 100 

2 1c c−  (thickness) 14 

1 2x x−  (lateral translation) 33 

 
It is obvious that sigmoids cannot be an exact 

description of geological reality. Therefore, some 
alterations were made to the sigmoid curves in order for 
them to be more realistic. We introduced a nonlinear 
geometric disturbance in the lateral direction by locally 
stretching or compressing the sigmoid. This geometrical 
disturbance was applied separately to both the upper and 
lower curves. After that the clinoform boundaries are 
mathematically no longer exact sigmoidal curves, but still 
resemble a sigmoid shape.  

We now assume the presence of a nearby well 
with known rock types and intrinsic rock properties. They 
are chosen to be representative for a typical reservoir and 
homogeneously distributed within the layers. These 
properties are displayed in Table 2; their acoustic 
impedance contrasts are large enough to cause sufficient 
reflections.  

The seismic forward model used consists of a 1D 
convolution with primary reflections only. The source 
wavelet was convolved with the normal-incidence 
reflectivity time-series in order to simulate a 2D seismic 
dataset. 

 

Table 2: Properties of the simulated field data 
Rock type P-velocity, 

m/s 
Density, 

3kg m
 

Layer 1. Sandstone (20% 
porosity, water saturated) 

3850 2320 

Layer 2. Shale 2900 2400 
Layer 3. Sandstone (20% 
porosity, water saturated) 

3850 2320 

 
The convolution is carried out as a multiplication 

in the frequency domain. The parameters of acquisition 
were chosen as follows: time sampling step dt  is 1ms, 
number of samples is 100, trace-to-trace distance dx is 1m 
and the number of traces is 160.  
 
Noise addition 
 To be more realistic, noise was added to the 
synthetic clinoform seismic. The noise is uncorrelated and 
the amplitude is Gaussian-distributed with a zero mean. 
Tests for different noise levels were done and the one with 
the most realistic signal-to-noise ratio was chosen. For the 
given reflection coefficient, a noise standard deviation of 
0.005 was selected. 
 
Phase shift 
 The Ricker wavelet is a zero-phase wavelet, and 
corresponds to the second derivative of a Gaussian 
function. In our experiment the central frequency is 30Hz. 
In a real seismic experiment the wavelet is generally not 
precisely known, which complicates the inversion process. 
Either the amplitude spectrum or the phase spectrum (or 
both) can be disturbed. In order to simulate such an effect, 
we introduced phase distortion. The Ricker wavelet s(t) 
may be represented in the frequency domain as: 
  ( ) ( ) exp( ( ( ) ( )))S f S f j f fγ θ= ⋅ ⋅ + ,   
where | ( ) |S f and ( ) ( )f fγ θ+  are the amplitude and the 
phase spectrum of s(t) respectively. In our experiment, 

( )fγ was a constant part and we used ( ) ( )f a sign fθ = i , 
which is a phase distortion with a  expressing the amount 
of phase distortion. We have applied phase-shifts in a range 
from 0 to 2π . Testing as well as analysis of the seismic 
practice showed that a phase-shift with 6a π=  is quite 
adequate in representing the real seismic situation. Figure 2 
illustrates the simulated field seismic data with noise added 
and phase shift applied. 
 
The forward model 

Although the sigmoid may qualitatively describe 
the global trend, such a simple analytical function cannot 
be expected to exactly match the geological body. Since 
our aim is to arrive at a sub-wavelength resolution in the 
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description of the clinoform needs to be modeled with a 
higher accuracy. We therefore propose to replace the 
sigmoid by a spline. The spline is spanned by a number of 
equi-lateral spaced control points (knots) along the 
sigmoid.  

For the sake of simplicity we used a uniform 
spline function with the knots uniformly distributed over 
the entire interval. Only in areas where the discrepancy 
between the clinoform and the sigmoid curve exceeds a 
certain threshold, we displaced the knots upwards and 
downwards to improve the fit. The number of knots nn  
depends on the ratio between lateral size of the clinoform 
and amount of the seismic traces available on that area. It is 
clear that the more knots are used the more unknown 
variables would be needed in the minimization procedure. 
On the other hand, with more knots a better approximation 
of the clinoform will be achieved, and, therefore, an 
optimum model complexity needs to be strived for.  
For the current clinoform model, a set of tests was done in 
order to find an optimum number of knots needed for the 
spline. The parameters of acquisition were taken to be the 
same as for the field data simulation. For the sake of 
simplicity, knots were uniformly distributed along the 
profile, and the x-coordinates of the knots for the two 
curves were assumed to be equal. The parameters (P-
velocity, density, geometry) were set at several knot 
positions on the line only. The next step was to interpolate 
the parameters’ values between the knots in order to obtain 
them for each seismic trace, not only at the knot positions. 
For this purpose, a cubic spline interpolation was used.  

For the synthetic data the wavelet was chosen to be the 
same as for the field data, with a central frequency of 30 
Hz. The only difference is that this wavelet is initially set to 
a zero-phase. This simulates the real situation when no 
knowledge of the phase-shift in the seismic data is 
available. Of course, no noise was added to the synthetic 
data. 

 
Construction of priors 

Over the last 30 years, the Bayesian based 
seismic inversion has been extensively studied to enhance 
its accuracy and efficiency (Tarantola, 1984, Duijndam, 
1988). Tikhonov and Arsenin (1977) developed a 
regularization method restricting the family of models that 
fit the data.  Two main issues in the Bayesian approach that 
have been widely investigated are obtaining a priori 
information and parameter uncertainty examination. 
Gouveia and Scales (1998) showed an approach where in 
situ (borehole) measurements are used to derive an 
empirical priori for surface seismic data.  
The input parameters for the spline function are coordinates 
of the knots. The x-coordinates for the two curves are 
assumed to be known since they are manually set by the 
user. Assuming all other parameters (the P-velocity and the 

density) to be known from a nearby well, the parameters to 
be estimated are the z-coordinates of the knots of the two 
sigmoidal curves , 1,2; 1, 2,..,jk j k nnz = = , i.e. the 
geometry of the clinoform 

The a priori knowledge of parameters often consists 
of an idea about values (mean) and the uncertainties 
(standard deviation) in these values. A frequently used 
probability density function to describe this type of 
information is the Gaussian distribution. A priori 
information makes the solution stronger only when it is 
close to the real value. In cases where this is not so, the 
shift may occur in the wrong direction. Therefore, the 
means of priors should be close to the true parameters 
values. A priori mean values corresponding to the sigmoid 
curves are , 1,2; 1, 2,..,i

jk j k nnz = = , where the 
superscript i  denotes the priors, the index j  the number 
of the clinoforms, and nn  the number of knots.  The 
restrictions to a priori values are an increase of the i

jkz  
value for the fixed j (to resemble the sigmoid shape) and 

1 2

i i

k kz z<  (to avoid intersections of the curves). The 
standard deviation 1( )zσ and 2( )zσ for the curve’s z-
coordinate priors were set to be 1 2( ) ( ) 5z z mσ σ= = . 
 Clearly a priori information as close as possible to 
the true parameters, with small standard deviation, would 
help considerably in finding a global minimum that most 
closely corresponds to the true solution. We propose the 
following method to obtain i

jkz : As a forward model a 
robust sigmoid model, that may be described by means of 
six parameters, is applied. Applying the exact sigmoid 
model to the generated field data cannot produce an exact 
match (even for low noise levels) due to the geometric 
stretching/compression of the clinoform. From the output 
of the minimization procedure, z-coordinates of the knots 
of the two sigmoid curves , 1, 2; 1,2,..,jk j k nnz = =  may 
then be extracted. They are represented on the right hand 
side of the graph in Figure 3 by a green line. These jkz  
values were used as a priori input information i

jkz  and 
applied to the spline model (described above) to the 
generated field data. Furthermore, we used the output of the 
minimization procedure to update a priori information for 
the next iteration for the spline forward model.  At all 
successive steps, the estimated values of the parameters 
obtained in the previous step were used as the means of the 
priors. The standard deviations of the distributions for all 
priors remained fixed throughout the complete analysis. 
 
 Test and results 

The objective here is to obtain sub-seismic 
information and to estimate the parameters of the two-
dimensional geological model, i.e. the clinoform.  

Two tests were applied for a comparison. The first one 
used a priori information regarding the knot position i

jkz  
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obtained from the well or other sources. The second test 
used the method proposed above where a robust sigmoid 
model may be applied in order to get a priori i

jkz  values.  
The results are depicted in Figure 3 in two columns. 

The graphs of the upper row plot the initial-ground truth 
(blue lines), a priori (green lines), and estimated (red lines) 
of the clinoform. The lower row shows the differences 
between the estimated and initial field data for both cases. 
As can be seen, the mismatch between the estimated and 
the real data decreases when the sigmoid model is applied. 
This is attributed to the fewer degrees of freedom.   
 
Conclusions 
 

The proposed automated procedure is capable of 
modeling a two-dimensional geological model by 
minimizing the mismatch between the simulated and 
measured seismic.  
Incorporating a source wavelet phase disturbance in the 
inversion process makes this method applicable to real 
seismic data where the wavelet is never precisely known. 
By adding geometrical distortion the synthetic seismic 
becomes more realistic. Better parameter estimations may 
be obtained by increasing the number of knots. Updating 
the priors with the proposed method, which employs the 
sigmoid forward model, yields a better convergence and 
more accurate parameter estimation.  
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Figure 3. Comparison of two tests. The first one 
(left column) uses a priori information regarding the 
knots position i

jkz  obtained from a well or other 
external sources. The second test (right column) uses 
the method proposed above with a sigmoid model to 
define the a priori i

jkz  values.  Lines in the upper 
graphs indicate the initial (blue), the estimated (red) 
and the a priori (green) jz coordinates of the 
clinoform. The lower graphs show the differences 
between field and estimated data  

Figure 1. Three-dimensional sketch showing the main 
physical processes responsible for sediment transport 
across the shelf, resulting in clinoforms (Cataneo, 2004) 

Figure 2. The simulated field seismic data with noise 
added and phase shift applied (left).  The 10th, 50th 
and 90th seismic traces (right). 
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