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SUMMARY

The potential has been tested, for the first time on field data, of a
newly developed method for reservoir parameter estimation: Ray-
Based Stochastic Inversion [RBSI, Verdel et al. (2004)]. A special
case of RBSI offering practical advantages, 1D convolutional RBSI,
was applied to invert seismic field data from the Gulf of Mexico.
A comparison was made of the new method’s estimates for reservoir-
layer thickness and P-velocity, with the estimates found by conven-
tional stochastic trace inversion (SI), and with the actual values at a
well drilled after the inversion was done. Despite the fact that this
special case of RBSI uses only 2% of the pre-stack data, the result in-
dicates it has improved accuracy on the dipping part of the reservoir,
where SI suffers from wavelet stretch due to migration.

INTRODUCTION

Seismic trace inversion techniques are aimed at determining subsur-
face rock and pore-fluid parameters from seismic reflections. Com-
monly, SI is applied to invert traces from the migration image in the
reservoir zone, to obtain reservoir-layer parameter estimates includ-
ing uncertainties. SI inverts migrated data using a 1D convolutional
forward modelling kernel; it thereby relies on the preceding migra-
tion procedure to take into account the wave propagation path effects
through the subsurface given a coarse subsurface migration velocity
macro-model.

In practice however, even true-amplitude pre-stack depth migration
(TA PreSDM) does not yield the perfect band-limited image of the
Earth’s reflectivity as assumed by SI: the migration image has finite
lateral resolution, and limited illumination of reflectors, see e.g. Chen
and Schuster (1999) and Toxopeus et al. (2003). Moreover, reflection
angle information — crucial for resolving the reservoir parameters
— is often blurred (Levin, 1998) by processing steps such as angle-
range substacks for enhancing signal-to-noise ratios. Furthermore, on
the migration image wavelet distortion inevitably occurs (Tygel et al.,
1994), while most trace inversion algorithms make use of a stationary
wavelet. Finally, the migration image is the fixed result of an exten-
sive, separate processing scheme. Any possible flaws in the migration
preceding the inversion have to be accepted and cannot be accommo-
dated for by the inversion. The above-mentioned complications are
suspected to degrade inversion results, especially in a structurally com-
plex subsurface with substantial lateral velocity variations.

To extend the validity range of trace inversion methods to such com-
plex media, a ray-based approach to stochastic inversion was proposed
in Verdel et al. (2004), that employs the original wave-path and reflec-
tion angle information inside the inversion kernel. In RBSI, a close
link is provided between Kirchhoff-type pre-stack depth migration and
stochastic inversion for reservoir properties, via the 3D elastodynamic
ray-tracer that is used in the forward modelling step of the inversion
loop.

An RBSI-variant which utilises a 1D convolutional forward modelling
kernel as found in common inversion software, offering great practical
benefits, was presented in van der Burg et al. (2005). This scheme ap-
plies 1D convolution along normal-incidence (NI) ray-paths, whereas
SI follows the vertical direction of the traces from the migration im-
age (see also Fig. 8). In the current paper, 1D convolutional RBSI
is applied to a field dataset from the Gulf of Mexico, containing the
reflection response of a reservoir having a strong structural dip: it is
our suspicion that SI overestimates reservoir-layer thickness with in-
creasing dip, due to dip-dependent migration-induced wavelet stretch
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Figure 1: The capabilities in lateral prediction of target reservoir pa-
rameters away from Well-I to the dipping part of the target at Well-II
are tested for SI versus 1D convolutional RBSI.
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Figure 2: Dip-line in 3D seismic data-cube: around this selected
sailline, the subsurface is laterally invariant in the crossline direction.
A ray-pair reflects on the top interface of the target with angle θ .

(van der Burg et al., 2005). The comparative test of 1D convolutional
RBSI versus SI is set up as shown in Fig. 1. The evaluation well men-
tioned in the figure is assumed to have been drilled after the inversion
was done.

PREPARATIONS BEFORE INVERSION

The considered field in the Gulf of Mexico is a hydrocarbon reservoir
consisting of layers of sheet sands and shales. The reservoir consists
of a horizontal part and a slope with dips to a maximum of 31◦. A
high-resolution seismic survey was conducted over the area, where the
marine acquisition vessel sailed approximately in ‘dip-lines’ over the
target (of which the geometry was already known from a previous seis-
mic survey), see Fig. 2. The acquired data were subsequently migrated
using Kirchhoff-type TA PreSDM to obtain an image suitable for in-
version with SI. Fig. 3 gives an impression of the data quality before
and after migration.

From the 3D data cube, a dip-line was selected on a part where the
subsurface is approximately 2.5D, such that it is located close to the
vertical exploration well, Well-I, where the seismic-to-well tie is done,
and to Well-II where the validation of the inversion results is done.
The data at target level from this dip-line, to be inverted by SI and
1D convolutional RBSI, are shown in Figs. 4 and 5, respectively. The
inversion interval extends ∼ 100 m above the reference reflector, indi-
cated by a red line. Fig. 4 shows the migrated near-offset substack of
16 offsets ranging from 450-2325 m. Fig. 5 displays the common off-
set gather (offset 575 m) selected for inversion with 1D convolutional
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Figure 3: Good data quality on target level around Well-I, on the mi-
grated substack (above) and on the 575 m offset-gather, containing
more high-frequency information. Insets show derived wavelets.

RBSI; the traces from this pre-stack unmigrated dataset containing the
reflection information from the inversion interval were selected on the
basis of ray-tracing (Fig. 6). The angles of incidence visible in the
last-mentioned figure amount to θ = 6◦, close to θ = 0◦ (NI) assumed
by 1D convolutional RBSI in the target.

Notice from Fig. 6 that a range of shot/receiver pairs exists, for which
more than one reflection point per reflector is found: this limits the
reservoir-range that can be inverted well by the new method to the
part on the right-hand side of the steepest dip, because in the inversion
window a trace is assumed to contain only a single response from the
same reflector.

INVERSION FOR P-VELOCITIES AND THICKNESSES

Standard SI
A seismic-to-well tie was done at Well-I on the horizontal part of the
reservoir, to obtain the wavelet with which to invert the nearstack mi-
grated data (Fig. 3). A prior model for layer P-velocities (vp) was used
which has little variation in the lateral direction, whereas more vari-
ations are in layer-thicknesses (h) which come from geological mod-
elling and seismic interpretation (Figs. 10-11).

Posterior mean vp and h obtained from SI, inverting the migrated near
offset substack, are depicted in Fig. 12-13. The trend of increasing
thickness of the total package with increasing dip present in the prior
model, seems to have been strengthened by SI.
Before plotting, a five-point moving average was applied, so that with
a trace spacing of 12.5 m on the migration image, lateral variations
smaller than 62.5 m are smoothed away; a distance not chosen too
large, since the lateral resolution on the migration image, at target
level is ∆r ≈ λdz/L ≈ 210 m (Chen and Schuster, 1999), with dom-
inant wavelength λd = vp/ fd = 2500 m/s /35 Hz ≈ 70 m, depth of
observation z = 3500 m and half-aperture L = 2325/2 m.

1D convolutional RBSI
The seismic-to-well tie was done anew for the pre-stack unmigrated
data: it was expected that the derived wavelet would be much differ-
ent because of a wavelet shaping applied to the migrated data. In the

wavelet derivation, the spherical spreading and transmission losses in
the reservoir zone were neglected, as well as the small extra traveltime
in the target due to having small offset data while assuming zero offset.

Apart from associating the reflection points xR on the reference hori-
zon with the surface source/receiver midpoint positions xm, the elasto-
dynamic ray-tracing through the migration velocity model to the refer-
ence horizon also yields the laterally varying overburden losses needed
for pre-processing the pre-stack unmigrated data in 1D convolutional
RBSI (Fig. 7). Note that for these purposes, the original migration ve-
locity model needed to be somewhat smoothed, in a trade-off between
kinematic accuracy and dynamic stability of the ray-tracing.

In Fig. 8, the layering obtained from 1D convolutional RBSI, inverting
the near offset-gather, is shown; notice the different evaluation direc-
tion along the normals to the reference reflector, which should improve
capability of resolving reservoir-layers: as shown before in synthetic
data tests, SI is hampered by dip-dependent migration-induced wavelet
stretch. After resampling, using linear interpolation, to the grid used
by SI (upper part of Fig. 8) and after applying a five-point moving
average filter, the h and vp-estimates are shown in Figs. 14-15. The
estimated thickness of the total package seems more laterally constant
with increasing dip than was the case for SI.

COMPARISON AT WELL-II

The inversion results obtained with the old and new method are com-
pared with the values found at Well-II in Fig. 9. Standard deviations
are higher for the new method, due to the higher amount of noise on
the offset gather as compared to the nearstack migrated section.
In general, SI overestimates the layer-thicknesses, while 1D convolu-
tional RBSI estimates are slightly better, with the values from Well-
II within one standard deviation from the estimated means; however
for the two thin sand-layers SI thickness-estimates are better. The to-
tal package thickness of 86.5 m at Well-II is overestimated by SI, as
suggested by theory, to 99±3.5 m - the new method somewhat un-
derestimates the package-thickness, but remains within one standard
deviation from the true value: 81±6.5 m. A synthetic test is planned to
quantify the effect of the migration wavelet stretch (amounting 1/cosβ

with β the local reflector dip) on SI estimates at Well-II. The vp-
estimates are closer to the actual values using the new method.
Finally, note that Well-II is at a crossline distance of 200 m from the
section; changes in reservoir properties may have occurred in that in-
terval, although an inspection of the seismics does not suggest this.

CONCLUSION AND OUTLOOK

Inversion results from a Gulf of Mexico field dataset indicate that the
new method, 1D convolutional RBSI, has improved accuracy on the
dipping part of the reservoir, where SI suffers from wavelet stretch
due to migration.
A further investigation of the performance of RBSI on these data is
opportune: only 2% of the available pre-stack data has been used with
1D convolutional RBSI, whereas with ‘full’ RBSI each of the remain-
ing common offset gathers could be used as an independent means of
verification of the result obtained with 1D convolutional RBSI. Also,
contrary to the 1D convolutional variant, the general method is capable
of dealing with caustics.
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Figure 4: Migrated near-offset substack. The solid line indicates
the reference reflector, above which the inversion interval extends
∼ 100 ms.

Figure 5: Common offset gather with small offset of 575 m. The
position of the reference reflector (solid line) was calculated via
ray-tracing (Fig. 6).
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Figure 6: Elastodynamic ray-tracing in the migration P-velocity
model to the reference reflector. P-velocity ranges from 1480 to
3200 m/s. Water-bottom is at 1300 m.

Figure 7: Overburden amplitude correction. After smoothing, the
corrections are applied to the traces from the offset gather.
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Figure 8: Difference in evaluation directions for SI (top) and 1D
convolutional RBSI; plotted with the posterior layer positions.

Figure 9: Thickness h and P-velocity vp at Well-II versus estima-
tions for SI and 1D convolutional RBSI. Error bars denote standard
deviations. Layer-numbering upward from reference reflector.
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Figure 10: Prior mean layer-thicknesses and P-velocities. Figure 11: As Fig. 10, but flattened along the reference reflector.
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Figure 12: SI: estimated mean layer-thicknesses and P-velocities. Figure 13: As Fig. 12, but flattened along the reference reflector.
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Figure 14: 1D convolutional RBSI: estimated mean layer-
thicknesses and P-velocities.

Figure 15: As Fig. 14, but flattened along the reference reflector.
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